1
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. Sleep 2024; 47:zsae226. [PMID: 39331490 DOI: 10.1093/sleep/zsae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
STUDY OBJECTIVES Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and reduction of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep (VIS) provides similar cognitive and health benefits in Drosophila. METHODS We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synaptic varicosities of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and suppress the accumulation of Amyloid β (Aβ) and Tubulin Associated Unit (TAU). RESULTS VIS enhanced performance in a courtship conditioning paradigm and reduced the number of synaptic varicosities in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, reducing Aβ and TAU levels. CONCLUSIONS Mechanosensory stimulation offers a promising noninvasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
2
|
Iyer AR, Scholz-Carlson E, Bell E, Biondi G, Richhariya S, Fernandez MP. The Circadian Neuropeptide PDF has Sexually Dimorphic Effects on Activity Rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578273. [PMID: 38352594 PMCID: PMC10862788 DOI: 10.1101/2024.01.31.578273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The circadian system regulates the timing of multiple molecular, physiological, metabolic, and behavioral phenomena. In Drosophila as in other species, most of the research on how the timekeeping system in the brain controls timing of behavioral outputs has been conducted in males, or sex was not included as a biological variable. The main circadian pacemaker neurons in Drosophila release the neuropeptide Pigment Dispersing Factor (PDF), which functions as a key synchronizing factor in the network with complex effects on other clock neurons. Lack of Pdf or its receptor, PdfR, results in most flies displaying arrhythmicity in activity-rest cycles under constant conditions. However, our results show that female circadian rhythms are less affected by mutations in both Pdf and PdfR. Crispr-Cas9 mutagenesis of Pdf specifically in the ventral lateral neurons (LNvs) also has a greater effect on male rhythms. We tested the influence of the M-cells over the circadian network and show that speeding up the molecular clock specifically in the M-cells leads to sexually dimorphic phenotypes, with a more pronounced effect on male rhythmic behavior. Our results suggest that the female circadian system is more resilient to manipulations of the PDF pathway and that circadian timekeeping is more distributed across the clock neuron network in females.
Collapse
|
3
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
4
|
Shirakawa R, Kurata Y, Sakai T. Regulation of long-term memory by a few clock neurons in Drosophila. Biophys Physicobiol 2024; 21:e211002. [PMID: 39175866 PMCID: PMC11338676 DOI: 10.2142/biophysico.bppb-v21.s002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 08/24/2024] Open
Abstract
Identification of the neural circuits in the brain regulating animal behavior and physiology is critical for understanding brain functions and is one of the most challenging goals in neuroscience research. The fruitfly Drosophila melanogaster has often been used to identify the neural circuits involved in the regulation of specific behaviors because of the many neurogenetic tools available to express target genes in particular neurons. Neurons controlling sexual behavior, feeding behavior, and circadian rhythms have been identified, and the number of neurons responsible for controlling these phenomena is small. The search for a few neurons controlling a specific behavior is an important first step to clarify the overall picture of the neural circuits regulating that behavior. We previously found that the clock gene period (per), which is essential for circadian rhythms in Drosophila, is also essential for long-term memory (LTM). We have also found that a very limited number of per-expressing clock neurons in the adult brain are required for the consolidation and maintenance of LTM. In this review, we focus on LTM in Drosophila, introduce the concept of LTM regulation by a few clock neurons that we have recently discovered, and discuss how a few clock neurons regulate Drosophila LTM.
Collapse
Affiliation(s)
- Rei Shirakawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yuto Kurata
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
5
|
Force E, Sokolowski MBC, Suray C, Debernard S, Chatterjee A, Dacher M. Regulation of feeding dynamics by the circadian clock, light and sex in an adult nocturnal insect. Front Physiol 2024; 14:1304626. [PMID: 38264330 PMCID: PMC10803417 DOI: 10.3389/fphys.2023.1304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Animals invest crucial resources in foraging to support development, sustenance, and reproduction. Foraging and feeding behaviors are rhythmically expressed by most insects. Rhythmic behaviors are modified by exogenous factors like temperature and photoperiod, and internal factors such as the physiological status of the individual. However, the interactions between these factors and the circadian clock to pattern feeding behavior remains elusive. As Drosophila, a standard insect model, spends nearly all its life on food, we rather chose to focus on the adults of a non-model insect, Agrotis ipsilon, a nocturnal cosmopolitan crop pest moth having structured feeding activity. Our study aimed to explore the impact of environmental cues on directly measured feeding behavior rhythms. We took advantage of a new experimental set-up, mimicking an artificial flower, allowing us to specifically monitor feeding behavior in a naturalistic setting, e.g., the need to enter a flower to get food. We show that the frequency of flower visits is under the control of the circadian clock in males and females. Feeding behavior occurs only during the scotophase, informed by internal clock status and external photic input, and females start to visit flowers earlier than males. Shorter duration visits predominate as the night progresses. Importantly, food availability reorganizes the microstructure of feeding behavior, revealing its plasticity. Interestingly, males show a constant number of daily visits during the 5 days of adult life whereas females decrease visitations after the third day of adult life. Taken together, our results provide evidence that the rhythmicity of feeding behavior is sexually dimorphic and controlled by photoperiodic conditions through circadian clock-dependent and independent pathways. In addition, the use of the new experimental set-up provides future opportunities to examine the regulatory mechanisms of feeding behavior paving the way to investigate complex relationships between feeding, mating, and sleep-wake rhythms in insects.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | | | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Abhishek Chatterjee
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
6
|
Nakano H, Sakai T. Impact of Drosophila LIM homeodomain protein Apterous on the morphology of the adult mushroom body. Biochem Biophys Res Commun 2023; 682:77-84. [PMID: 37804590 DOI: 10.1016/j.bbrc.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
A LIM homeodomain transcription factor Apterous (Ap) regulates embryonic and larval neurodevelopment in Drosophila. Although Ap is still expressed in the adult brain, it remains elusive whether Ap is involved in neurodevelopmental events in the adult brain because flies homozygous for ap mutations are usually lethal before they reach the adult stage. In this study, using adult escapers of ap knockout (KO) homozygotes, we examined whether the complete lack of ap expression affects the morphology of the mushroom body (MB) neurons and Pigment-dispersing factor (Pdf)-positive clock neurons in the adult brain. Although ap KO escapers showed severe structural defects of MB neurons, no clear morphological defects were found in Pdf-positive clock neurons. These results suggest that Ap in the adult brain is essential for the neurodevelopment of specific ap-positive neurons, but it is not necessarily involved in the development of all ap-positive neurons.
Collapse
Affiliation(s)
- Hikari Nakano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
8
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
9
|
Zhuravlev AV, Ivanova PN, Makaveeva KA, Zakharov GA, Nikitina EA, Savvateeva-Popova EV. cd1 Mutation in Drosophila Affects Phenoxazinone Synthase Catalytic Site and Impairs Long-Term Memory. Int J Mol Sci 2022; 23:ijms232012356. [PMID: 36293213 PMCID: PMC9604555 DOI: 10.3390/ijms232012356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Being involved in development of Huntington's, Parkinson's and Alzheimer's diseases, kynurenine pathway (KP) of tryptophan metabolism plays a significant role in modulation of neuropathology. Accumulation of a prooxidant 3-hydroxykynurenine (3-HOK) leads to oxidative stress and neuronal cell apoptosis. Drosophila mutant cardinal (cd1) with 3-HOK excess shows age-dependent neurodegeneration and short-term memory impairments, thereby presenting a model for senile dementia. Although cd gene for phenoxazinone synthase (PHS) catalyzing 3-HOK dimerization has been presumed to harbor the cd1 mutation, its molecular nature remained obscure. Using next generation sequencing, we have shown that the cd gene in cd1 carries a long deletion leading to PHS active site destruction. Contrary to the wild type Canton-S (CS), cd1 males showed defective long-term memory (LTM) in conditioned courtship suppression paradigm (CCSP) at days 5-29 after eclosion. The number of dopaminergic neurons (DAN) regulating fly locomotor activity showed an age-dependent tendency to decrease in cd1 relative to CS. Thus, in accordance with the concept "from the gene to behavior" proclaimed by S. Benzer, we have shown that the aberrant PHS sequence in cd1 provokes drastic LTM impairments and DAN alterations.
Collapse
Affiliation(s)
- Aleksandr V. Zhuravlev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence:
| | - Polina N. Ivanova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Ksenia A. Makaveeva
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia
| | | | - Ekaterina A. Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia
| | | |
Collapse
|
10
|
Inami S, Sakai T. Circadian photoreceptors are required for light-dependent maintenance of long-term memory in Drosophila. Neurosci Res 2022; 185:62-66. [PMID: 36096270 DOI: 10.1016/j.neures.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
In the fruit fly Drosophila melanogaster, environmental light is required for maintaining long-term memory (LTM). Furthermore, the Pigment dispersing factor (Pdf), which is a circadian neuropeptide, and the neuronal activity of Pdf neurons are essential for light-dependent maintenance of courtship LTM. Since Pdf neurons can sense light directly via circadian photoreceptors [Rhodopsin 7 (Rh7) and Cryptochrome (Cry)], it is possible that Rh7 and Cry in Pdf neurons are involved in the maintenance of LTM. In this study, using a courtship conditioning assay, we demonstrated that circadian photoreceptors in Pdf neurons are required for maintaining courtship LTM.
Collapse
Affiliation(s)
- Show Inami
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| |
Collapse
|
11
|
Inami S, Sato T, Sakai T. Circadian Neuropeptide-Expressing Clock Neurons as Regulators of Long-Term Memory: Molecular and Cellular Perspectives. Front Mol Neurosci 2022; 15:934222. [PMID: 35909447 PMCID: PMC9326319 DOI: 10.3389/fnmol.2022.934222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide pigment-dispersing factor (Pdf) is critically involved in the regulation of circadian rhythms in various insects. The function of Pdf in circadian rhythms has been best studied in the fruitfly, i.e., Drosophila melanogaster. Drosophila Pdf is produced in a small subset of circadian clock neurons in the adult brain and functions as a circadian output signal. Recently, however, Pdf has been shown to play important roles not only in regulating circadian rhythms but also in innate and learned behaviors in Drosophila. In this mini-review, we will focus on the current findings that Pdf signaling and Pdf-producing neurons are essential for consolidating and maintaining long-term memory induced by the courtship conditioning in Drosophila and discuss the mechanisms of courtship memory processing through Pdf-producing neurons.
Collapse
Affiliation(s)
- Show Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tomohito Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- *Correspondence: Takaomi Sakai
| |
Collapse
|
12
|
Huang B, Sun B, Yang R, Liang S, Li X, Guo Y, Meng Q, Fu Y, Li W, Zhao P, Gong M, Shi Y, Song L, Wang S, Yuan F, Shi H. Long-lasting effects of postweaning sleep deprivation on cognitive function and social behaviors in adult mice. Neuropharmacology 2022; 215:109164. [PMID: 35716724 DOI: 10.1016/j.neuropharm.2022.109164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Sleep deprivation (SD) has adverse effects on physical and mental health. Recently increasing attention has been given to SD in the early-life stage. However, the effects and mechanisms of postweaning SD on cognitive function and social behaviors are still unclear. In this study, SD was conducted in mice from postnatal Day 21 (PND21) to PND42, 6 h a day. Meanwhile, changes in body weight, food and water intake were continuously monitored. Behavioral tests were carried out in adulthood of mice. The levels of serum corticosterone, the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and the anti-inflammatory cytokines interleukin-10 (IL-10), vasopressin (VP) and oxytocin (OT) were measured by ELISA. Golgi staining was used to calculate neural dendritic spine density in the dorsal hippocampus (dHPC) CA1 region and medial prefrontal cortex (mPFC). We found that postweaning SD increased the food intake and the weight of female mice. Behavioral results showed that postweaning SD caused cognitive impairment and lowered social dominance in adult male mice but not in female mice. ELISA results showed that SD increased the levels of serum corticosterone, VP and OT in male mice and serum OT in female mice. Golgi staining analysis showed that SD decreased neural dendritic spine density in the dHPC in male mice. These results suggest that postweaning SD has a long-term effect on social dominance and cognitive function in male mice, which may provide a new insight into the role of SD in regulating cognitive function and social behaviors.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Fang Yuan
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
13
|
Suzuki Y, Kurata Y, Sakai T. Dorsal‐lateral clock neurons modulate consolidation and maintenance of long‐term memory in
Drosophila. Genes Cells 2022; 27:266-279. [DOI: 10.1111/gtc.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yuki Suzuki
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Yuto Kurata
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Takaomi Sakai
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| |
Collapse
|
14
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Consolidation and maintenance of long-term memory involve dual functions of the developmental regulator Apterous in clock neurons and mushroom bodies in the Drosophila brain. PLoS Biol 2021; 19:e3001459. [PMID: 34860826 PMCID: PMC8641882 DOI: 10.1371/journal.pbio.3001459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Memory is initially labile but can be consolidated into stable long-term memory (LTM) that is stored in the brain for extended periods. Despite recent progress, the molecular and cellular mechanisms underlying the intriguing neurobiological processes of LTM remain incompletely understood. Using the Drosophila courtship conditioning assay as a memory paradigm, here, we show that the LIM homeodomain (LIM-HD) transcription factor Apterous (Ap), which is known to regulate various developmental events, is required for both the consolidation and maintenance of LTM. Interestingly, Ap is involved in these 2 memory processes through distinct mechanisms in different neuronal subsets in the adult brain. Ap and its cofactor Chip (Chi) are indispensable for LTM maintenance in the Drosophila memory center, the mushroom bodies (MBs). On the other hand, Ap plays a crucial role in memory consolidation in a Chi-independent manner in pigment dispersing factor (Pdf)-containing large ventral–lateral clock neurons (l-LNvs) that modulate behavioral arousal and sleep. Since disrupted neurotransmission and electrical silencing in clock neurons impair memory consolidation, Ap is suggested to contribute to the stabilization of memory by ensuring the excitability of l-LNvs. Indeed, ex vivo imaging revealed that a reduced function of Ap, but not Chi, results in exaggerated Cl− responses to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in l-LNvs, indicating that wild-type (WT) Ap maintains high l-LNv excitability by suppressing the GABA response. Consistently, enhancing the excitability of l-LNvs by knocking down GABAA receptors compensates for the impaired memory consolidation in ap null mutants. Overall, our results revealed unique dual functions of the developmental regulator Ap for LTM consolidation in clock neurons and LTM maintenance in MBs. A neurogenetic study using Drosophila reveals that the centrally expressed LIM-homeodomain transcription factor Apterous plays a crucial neuron-type-dependent role in two different memory processes - consolidation and maintenance of long-term memory.
Collapse
|
16
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
17
|
Abstract
Drosophila melanogaster males reduce courtship behaviour after mating failure. In the lab, such conditioned courtship suppression, aka 'courtship conditioning', serves as a complex learning and memory assay. Interestingly, variations in the courtship conditioning assay can establish different types of memory. Here, we review research investigating the underlying cellular and molecular mechanisms that allow male flies to form memories of previous mating failures.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spencer Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Flyer-Adams JG, Rivera-Rodriguez EJ, Yu J, Mardovin JD, Reed ML, Griffith LC. Regulation of Olfactory Associative Memory by the Circadian Clock Output Signal Pigment-Dispersing Factor (PDF). J Neurosci 2020; 40:9066-9077. [PMID: 33106351 PMCID: PMC7673005 DOI: 10.1523/jneurosci.0782-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023] Open
Abstract
Dissociation between the output of the circadian clock and external environmental cues is a major cause of human cognitive dysfunction. While the effects of ablation of the molecular clock on memory have been studied in many systems, little has been done to test the role of specific clock circuit output signals. To address this gap, we examined the effects of mutations of Pigment-dispersing factor (Pdf) and its receptor, Pdfr, on associative memory in male and female Drosophila Loss of PDF signaling significantly decreases the ability to form associative memory. Appetitive short-term memory (STM), which in wild-type (WT) is time-of-day (TOD) independent, is decreased across the day by mutation of Pdf or Pdfr, but more substantially in the morning than in the evening. This defect is because of PDFR expression in adult neurons outside the core clock circuit and the mushroom body (MB) Kenyon cells (KCs). The acquisition of a TOD difference in mutants implies the existence of multiple oscillators that act to normalize memory formation across the day for appetitive processes. Interestingly, aversive STM requires PDF but not PDFR, suggesting that there are valence-specific pathways downstream of PDF that regulate memory formation. These data argue that the circadian clock uses circuit-specific and molecularly diverse output pathways to enhance the ability of animals to optimize responses to changing conditions.SIGNIFICANCE STATEMENT From humans to invertebrates, cognitive processes are influenced by organisms' internal circadian clocks, the pace of which is linked to the solar cycle. Disruption of this link is increasingly common (e.g., jetlag, social jetlag disorders) and causes cognitive impairments that are costly and long lasting. A detailed understanding of how the internal clock regulates cognition is critical for the development of therapeutic methods. Here, we show for the first time that olfactory associative memory in Drosophila requires signaling by Pigment-dispersing factor (PDF), a neuromodulatory signaling peptide produced only by circadian clock circuit neurons. We also find a novel role for the clock circuit in stabilizing appetitive sucrose/odor memory across the day.
Collapse
Affiliation(s)
- Johanna G Flyer-Adams
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Emmanuel J Rivera-Rodriguez
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Junwei Yu
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
19
|
Hussein AAA, Baz ES, Mariën J, Tadros MM, El-Shenawy NS, Koene JM. Effect of photoperiod and light intensity on learning ability and memory formation of the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE : IN 2020; 20:18. [PMID: 33078292 PMCID: PMC7572358 DOI: 10.1007/s10158-020-00251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Natural light is regarded as a key regulator of biological systems and typically serves as a Zeitgeber for biological rhythms. As a natural abiotic factor, it is recognized to regulate multiple behavioral and physiological processes in animals. Disruption of the natural light regime due to light pollution may result in significant effects on animal learning and memory development. Here, we investigated whether sensitivity to various photoperiods or light intensities had an impact on intermediate-term memory (ITM) and long-term memory (LTM) formation in the pond snail Lymnaea stagnalis. We also investigated the change in the gene expression level of molluscan insulin-related peptide II (MIP II) is response to the given light treatments. The results show that the best light condition for proper LTM formation is exposure to a short day (8 h light) and low light intensity (1 and 10 lx). Moreover, the more extreme light conditions (16 h and 24 h light) prevent the formation of both ITM and LTM. We found no change in MIP II expression in any of the light treatments, which may indicate that MIP II is not directly involved in the operant conditioning used here, even though it is known to be involved in learning. The finding that snails did not learn in complete darkness indicates that light is a necessary factor for proper learning and memory formation. Furthermore, dim light enhances both ITM and LTM formation, which suggests that there is an optimum since both no light and too bright light prevented learning and memory. Our findings suggest that the upsurge of artificial day length and/or night light intensity may also negatively impact memory consolidation in the wild.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| | - El-Sayed Baz
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Menerva M Tadros
- Malacology Lab, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Nahla S El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|