1
|
Bendig J, Aurup C, Blackman SG, McCune EP, Kim S, Konofagou EE. Transcranial Functional Ultrasound Imaging Detects Focused Ultrasound Neuromodulation Induced Hemodynamic Changes In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.08.583971. [PMID: 38559149 PMCID: PMC10979885 DOI: 10.1101/2024.03.08.583971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Focused ultrasound (FUS) is an emerging non-invasive technique for neuromodulation in the central nervous system (CNS). Functional ultrasound imaging (fUSI) leverages ultrafast Power Doppler Imaging (PDI) to detect changes in cerebral blood volume (CBV), which correlate well with neuronal activity and thus hold promise to monitor brain responses to FUS. Objective Investigate the immediate and short-term effects of transcranial FUS neuromodulation in the brain with fUSI by characterizing hemodynamic responses. Methods We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation (FUS-fUSI) in lightly anesthetized mice. We investigated the effects of varying pressures and transducer positions on the hemodynamic responses. Results We found that higher FUS pressures increase the size of the activated brain area, as well as the magnitude of change in CBV and could show that sham sonications did not produce hemodynamic responses. Unilateral sonications resulted in bilateral hemodynamic changes with a significantly stronger response on the ipsilateral side. FUS neuromodulation in mice with a cranial window showed distinct activation patterns that were frequency-dependent and different from the activation patterns observed in the transcranial model. Conclusion fUSI is hereby shown capable of transcranially monitoring online and short-term hemodynamic effects in the brain during and following FUS neuromodulation.
Collapse
Affiliation(s)
- Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Samuel G. Blackman
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Erica P. McCune
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Seongyeon Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
- Department of Neurosurgery, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Bandet MV, Winship IR. Aberrant cortical activity, functional connectivity, and neural assembly architecture after photothrombotic stroke in mice. eLife 2024; 12:RP90080. [PMID: 38687189 PMCID: PMC11060715 DOI: 10.7554/elife.90080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within 'remapped' forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.
Collapse
Affiliation(s)
- Mischa Vance Bandet
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| | - Ian Robert Winship
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
- Neurochemical Research Unit, University of AlbertaEdmontonCanada
- Department of Psychiatry, University of AlbertaEdmontonCanada
| |
Collapse
|
3
|
Mingazov B, Vinokurova D, Zakharov A, Khazipov R. Comparative Study of Terminal Cortical Potentials Using Iridium and Ag/AgCl Electrodes. Int J Mol Sci 2023; 24:10769. [PMID: 37445945 DOI: 10.3390/ijms241310769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Brain ischemia induces slow voltage shifts in the cerebral cortex, including waves of spreading depolarization (SD) and negative ultraslow potentials (NUPs), which are considered as brain injury markers. However, different electrode materials and locations yield variable SD and NUP features. Here, we compared terminal cortical events during isoflurane or sevoflurane euthanasia using intracortical linear iridium electrode arrays and Ag/AgCl-based electrodes in the rat somatosensory cortex. Inhalation of anesthetics caused respiratory arrest, associated with hyperpolarization and followed by SD and NUP on both Ir and Ag electrodes. Ag-NUPs were bell shaped and waned within half an hour after death. Ir-NUPs were biphasic, with the early fast phase corresponding to Ag-NUP, and the late absent on Ag electrodes, phase of a progressive depolarizing voltage shift reaching -100 mV by two hours after death. In addition, late Ir-NUPs were more ample in the deep layers than at the cortical surface. Thus, intracortical Ag and Ir electrodes reliably assess early manifestations of terminal brain injury including hyperpolarization, SD and the early phase of NUP, while the late, giant amplitude phase of NUP, which is present only on Ir electrodes, is probably related to the sensitivity of Ir electrodes to a yet unidentified factor related to brain death.
Collapse
Affiliation(s)
- Bulat Mingazov
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - Andrei Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
- Department of Physiology, Kazan State Medical University, Kazan 420012, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
- Institut de Neurobiologie de la Méditerranée (Inserm U1249), Aix-Marseille Université, 13273 Marseille, France
| |
Collapse
|
4
|
Vinokurova D, Zakharov A, Chernova K, Burkhanova-Zakirova G, Horst V, Lemale CL, Dreier JP, Khazipov R. Depth-profile of impairments in endothelin-1 - induced focal cortical ischemia. J Cereb Blood Flow Metab 2022; 42:1944-1960. [PMID: 35702017 PMCID: PMC9536115 DOI: 10.1177/0271678x221107422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of ischemic lesions has primarily been studied in horizontal cortical space. However, how ischemic lesions develop through the cortical depth remains largely unknown. We explored this question using direct current coupled recordings at different cortical depths using linear arrays of iridium electrodes in the focal epipial endothelin-1 (ET1) ischemia model in the rat barrel cortex. ET1-induced impairments were characterized by a vertical gradient with (i) rapid suppression of the spontaneous activity in the superficial cortical layers at the onset of ischemia, (ii) compartmentalization of spreading depolarizations (SDs) to the deep layers during progression of ischemia, and (iii) deeper suppression of activity and larger histological lesion size in superficial cortical layers. The level of impairments correlated strongly with the rate of spontaneous activity suppression, the rate of SD onset after ET1 application, and the amplitude of giant negative ultraslow potentials (∼-70 mV), which developed during ET1 application and were similar to the tent-shaped ultraslow potentials observed during focal ischemia in the human cortex. Thus, in the epipial ET1 ischemia model, ischemic lesions develop progressively from the surface to the cortical depth, and early changes in electrical activity at the onset of ET1-induced ischemia reliably predict the severity of ischemic damage.
Collapse
Affiliation(s)
- Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of Physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Viktor Horst
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
5
|
Ceto S, Courtine G. Optogenetic Interrogation of Circuits Following Neurotrauma. Front Mol Neurosci 2022; 14:803856. [PMID: 34975403 PMCID: PMC8716760 DOI: 10.3389/fnmol.2021.803856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Biological and engineering strategies for neural repair and recovery from neurotrauma continue to emerge at a rapid pace. Until recently, studies of the impact of neurotrauma and repair strategies on the reorganization of the central nervous system have focused on broadly defined circuits and pathways. Optogenetic modulation and recording methods now enable the interrogation of precisely defined neuronal populations in the brain and spinal cord, allowing unprecedented precision in electrophysiological and behavioral experiments. This mini-review summarizes the spectrum of light-based tools that are currently available to probe the properties and functions of well-defined neuronal subpopulations in the context of neurotrauma. In particular, we highlight the challenges to implement these tools in damaged and reorganizing tissues, and we discuss best practices to overcome these obstacles.
Collapse
Affiliation(s)
- Steven Ceto
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
6
|
Mirza Agha B, Akbary R, Ghasroddashti A, Nazari-Ahangarkolaee M, Whishaw IQ, Mohajerani MH. Cholinergic upregulation by optogenetic stimulation of nucleus basalis after photothrombotic stroke in forelimb somatosensory cortex improves endpoint and motor but not sensory control of skilled reaching in mice. J Cereb Blood Flow Metab 2021; 41:1608-1622. [PMID: 33103935 PMCID: PMC8221755 DOI: 10.1177/0271678x20968930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A network of cholinergic neurons in the basal forebrain innerve the forebrain and are proposed to contribute to a variety of functions including cortical plasticity, attention, and sensorimotor behavior. This study examined the contribution of the nucleus basalis cholinergic projection to the sensorimotor cortex on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region of the somatosensory cortex. Mice were trained to perform a single pellet skilled reaching task and their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-frame by video analysis with endpoint, movement and sensorimotor integration measures. Somatosensory forelimb lesions produced impairments in endpoint and movement component measures of reaching and increased the incidence of fictive eating, a sensory impairment in mistaking a missed reach for a successful reach. Upregulated acetylcholine (ACh) release, as measured by local field potential recording, elicited via optogenetic stimulation of the nucleus basalis improved recovery of reaching and improved movement scores but did not affect sensorimotor integration impairment poststroke. The results show that the mouse cortical forelimb somatosensory region contributes to forelimb motor behavior and suggest that ACh upregulation could serve as an adjunct to behavioral therapy for acute treatment of stroke.
Collapse
Affiliation(s)
- Behroo Mirza Agha
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Roya Akbary
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Arashk Ghasroddashti
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Mojtaba Nazari-Ahangarkolaee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
7
|
In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2. Neuroimage 2019; 192:135-144. [DOI: 10.1016/j.neuroimage.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2023] Open
|
8
|
Chen Q, Zhou J, Zhang H, Chen Y, Mao C, Chen X, Ni L, Zhuo Z, Zhang Y, Geng W, Yin X, Lv Y. One-step analysis of brain perfusion and function for acute stroke patients after reperfusion: A resting-state fMRI study. J Magn Reson Imaging 2018; 50:221-229. [PMID: 30569565 DOI: 10.1002/jmri.26571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/23/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rs-fMRI) can noninvasively estimate the perfusion and function of the brain. PURPOSE To investigate the perfusion and functional status using rs-fMRI in acute ischemic stroke (AIS) patients after reperfusion therapy. STUDY TYPE Prospective. SUBJECTS Twenty-five AIS patients who underwent dynamic susceptibility contrast (DSC) upon hospital admission and both rs-fMRI and DSC scans at 24 hours after reperfusion therapy. FIELD STRENGTH/SEQUENCE 3T; DSC, rs-fMRI. ASSESSMENT The time delay of the blood oxygenation level-dependent (BOLD) signal was calculated using time-shift-analysis (TSA) and compared with the time to peak (TTP) derived from the DSC. For patients who exhibited partial or complete reperfusion in the supratentorial hemisphere, we quantified the function of different regions (healthy tissue, reperfused tissue, not reperfused tissue) by using three rs-fMRI measurements (functional connectivity, the amplitude of low-frequency fluctuation [ALFF] and regional homogeneity [ReHo]). Correlations between the functional measurements and modified Rankin Scale (mRS) scores were calculated. STATISTICAL TESTS Dice coefficient (DC) analysis, two-sample t-tests, Pearson correlation coefficient. RESULTS Twelve patients who exhibited complete reperfusion on their TTP maps showed no time-delayed areas on the TSA maps. For the remaining 13 patients with partial reperfusion (5/13) or no reperfusion (8/13) on the TTP maps, the TSA detected comparable time-delayed areas. Eleven out of 13 patients showed moderate to good overlap (mean DC, 0.58 ± 0.1) between the TTP and TSA results. Fourteen patients were chosen for functional analyses and most patients (12/14) showed abnormal functional connectivity in the reperfused regions. The reperfused and not reperfused tissues had lower mean ReHo values than those of the healthy tissue (both P < 0.001). The mRS scores showed negative correlation with mean ReHo values of reperfused region (R = -0.523, P = 0.027). DATA CONCLUSION: rs-fMRI might be a useful way to estimate both the perfusion and functional status for AIS patients after reperfusion therapy. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:221-229.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Radiology, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ling Ni
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhizheng Zhuo
- Department of MR Clinical Science, Philips, Beijing, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yating Lv
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Nie X, Wang W, Wang Q, Zhu D, Song H. Intranasal erythropoietin ameliorates neurological function impairments and neural pathology in mice with chronic alcoholism by regulating autophagy‑related Nrf2 degradation. Mol Med Rep 2018; 19:1139-1149. [PMID: 30535439 PMCID: PMC6323205 DOI: 10.3892/mmr.2018.9706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022] Open
Abstract
The neurological disorders and neural pathology brought about by chronic alcoholism are difficult to be reversed. Increasing evidence highlights the protective roles of erythropoietin (EPO) in neurodegenerative diseases and injuries of the central nervous system. In the present study, we investigated the therapeutic effects of EPO on the neurological function deficits and neural pathology caused by chronic alcoholism and the regulatory mechanisms. Using the canonical mouse model of chronic alcohol exposure designed to mimic the repeated cycles of heavy abuse typical of chronic alcoholism, it was found that EPO delivered via intranasal route effectively restored the alcohol-impaired motor cooperation in rotarod and beam walk tests, reversed alcoholic cognitive and emotional alterations in the novel location recognition task and open-filed test, and rescued alcohol-disrupted nervous conduction in the somatosensory-evoked potential (SSEP) test. Consistently, the intranasally administered EPO promoted the remyelination and synapse formation in chronic alcohol-affected neocortex and hippocampus as evidenced by immunofluorescence staining and transmission electron microscopy. Additionally, we discovered that the exogenous rhEPO, which entered the cerebrum through intranasal route, activated the erythropoietin receptor (EPOR) and the downstream ERKs and PI3K/AKT signaling, and suppressed autophagy-related degradation of nuclear factor, erythroid 2-like 2 (Nrf2). Furthermore, the intranasal EPO-exerted neuroprotection was almost abolished when the specific Nrf2 antagonist ATRA was administered intraperitoneally prior to intranasal EPO treatment. Collectively, our data demonstrated the repairing potential of EPO for the neurological disorders and neural pathology caused by chronic alcoholism, and identified the Nrf2 activity as the key mechanism mediating the protective effects of EPO.
Collapse
Affiliation(s)
- Xuedan Nie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Intensive Care Unit, The Fifth Affiliated Hospital of Qiqihar Medical University (Daqing Longnan Hospital), Daqing, Heilongjiang 163453, P.R. China
| | - Qin Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Zhu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongshan Song
- Department of Neurology, The Fifth Affiliated Hospital of Qiqihar Medical University (Daqing Longnan Hospital), Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
10
|
Whishaw IQ, Mirza Agha B, Kuntz JR, Qandeel, Faraji J, Mohajerani MH. Tongue protrusions modify the syntax of skilled reaching for food by the mouse: Evidence for flexibility in action selection and shared hand/mouth central modulation of action. Behav Brain Res 2017; 341:37-44. [PMID: 29229548 DOI: 10.1016/j.bbr.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
Skilled reaching for food by the laboratory mouse has the appearance of an action pattern with a distinctive syntax in which ten submovements occur in an orderly sequence. A mouse locates the food by Sniffing, Lifts, Aims, Advances, and Shapes the hand to Pronate it over a food target that it Grasps, Retracts, and Withdraws to Release to its mouth for eating. The structure of the individual actions in the chain are useful for the study of the mouse motor system and contribute to the use of the mouse as a model of human neurological conditions. The present study describes tongue protrusions that modify the syntax of reaching by occurring at the point of the reaching action at which the hand is at the Aim position. Tongue protrusions were not related to reaching success and were not influenced by training. Tongue protrusions were more likely to occur in the presence of a food target than with reaches made when food was absent. There were vast individual differences; some mice always make tongue protrusions while other mice never make tongue protrusions. That the syntax of reaching can be altered by the insertion of a surrogate (co-occurring) movement adds to a growing body of evidence that skilled reaching is assembled from a number of relatively independent actions, each with its own sensorimotor control that are subject to central modulation. That tongue and hand reaching movements can co-occur suggests a privileged relation between neural mechanisms that control movements of the tongue and hand.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Behroo Mirza Agha
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Jessica R Kuntz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Qandeel
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Golestan University of Medical Sciences, Faculty of Nursing & Midwifery, Gorgan, Islamic Republic of Iran
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
11
|
Cheng MY, Aswendt M, Steinberg GK. Optogenetic Approaches to Target Specific Neural Circuits in Post-stroke Recovery. Neurotherapeutics 2016; 13:325-40. [PMID: 26701667 PMCID: PMC4824024 DOI: 10.1007/s13311-015-0411-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stroke is a leading cause of death and disability in the USA, yet treatment options are very limited. Functional recovery can occur after stroke and is attributed, in part, to rewiring of neural connections in areas adjacent to or remotely connected to the infarct. A better understanding of neural circuit rewiring is thus an important step toward developing future therapeutic strategies for stroke recovery. Because stroke disrupts functional connections in peri-infarct and remotely connected regions, it is important to investigate brain-wide network dynamics during post-stroke recovery. Optogenetics is a revolutionary neuroscience tool that uses bioengineered light-sensitive proteins to selectively activate or inhibit specific cell types and neural circuits within milliseconds, allowing greater specificity and temporal precision for dissecting neural circuit mechanisms in diseases. In this review, we discuss the current view of post-stroke remapping and recovery, including recent studies that use optogenetics to investigate neural circuit remapping after stroke, as well as optogenetic stimulation to enhance stroke recovery. Multimodal approaches employing optogenetics in conjunction with other readouts (e.g., in vivo neuroimaging techniques, behavior assays, and next-generation sequencing) will advance our understanding of neural circuit reorganization during post-stroke recovery, as well as provide important insights into which brain circuits to target when designing brain stimulation strategies for future clinical studies.
Collapse
Affiliation(s)
- Michelle Y Cheng
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA.
| | - Markus Aswendt
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA
| | - Gary K Steinberg
- Department of Neurosurgery, R281, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5327, USA.
| |
Collapse
|
12
|
Abstract
Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.
Collapse
Affiliation(s)
- Michael Kyweriga
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge at Lethbridge, 4401 University Dr W., Lethbridge, AB, Canada, T1K 3M4
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge at Lethbridge, 4401 University Dr W., Lethbridge, AB, Canada, T1K 3M4.
| |
Collapse
|
13
|
Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading. J Neurosci 2015; 35:12172-87. [PMID: 26338328 DOI: 10.1523/jneurosci.0400-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with recurrent transient focal swelling (beading) of dendrites. Numerous ion channels have been demonstrated to be involved in generation and propagation of spreading depolarization, but the molecular machinery responsible for the dendritic beading has remained elusive. Using real-time in vitro and in vivo two-photon laser scanning microscopy, we have identified the transport mechanisms involved in the detrimental focal swelling of dendrites. These findings have clear clinical significance because they may point to a new class of pharmacological targets for prevention of neuronal swelling that consequently will serve as neuroprotective agents.
Collapse
|
14
|
Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow. J Cereb Blood Flow Metab 2015; 35:1579-86. [PMID: 26082013 PMCID: PMC4640302 DOI: 10.1038/jcbfm.2015.140] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/27/2022]
Abstract
We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.
Collapse
|
15
|
Hussin AT, Boychuk JA, Brown AR, Pittman QJ, Teskey GC. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically. Brain Stimul 2015; 8:742-50. [PMID: 25892002 DOI: 10.1016/j.brs.2015.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/08/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. OBJECTIVE The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. METHODS We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. RESULTS With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. CONCLUSION Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1; Department of Neuroscience, University of Calgary, Alberta, Canada T2N 4N1
| | - Jeffery A Boychuk
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1; Department of Neuroscience, University of Calgary, Alberta, Canada T2N 4N1; Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada T2N 4N1; Department of Cell Biology and Anatomy, University of Calgary, Alberta, Canada T2N 4N1
| | - Andrew R Brown
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1; Department of Neuroscience, University of Calgary, Alberta, Canada T2N 4N1
| | - Quentin J Pittman
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1; Department of Neuroscience, University of Calgary, Alberta, Canada T2N 4N1; Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada T2N 4N1
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1; Department of Neuroscience, University of Calgary, Alberta, Canada T2N 4N1; Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada T2N 4N1; Department of Cell Biology and Anatomy, University of Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
16
|
Silasi G, Murphy TH. Stroke and the connectome: how connectivity guides therapeutic intervention. Neuron 2015; 83:1354-68. [PMID: 25233317 DOI: 10.1016/j.neuron.2014.08.052] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Connections between neurons are affected within 3 min of stroke onset by massive ischemic depolarization and then delayed cell death. Some connections can recover with prompt reperfusion; others associated with the dying infarct do not. Disruption in functional connectivity is due to direct tissue loss and indirect disconnections of remote areas known as diaschisis. Stroke is devastating, yet given the brain's redundant design, collateral surviving networks and their connections are well-positioned to compensate. Our perspective is that new treatments for stroke may involve a rational functional and structural connections-based approach. Surviving, affected, and at-risk networks can be identified and targeted with scenario-specific treatments. Strategies for recovery may include functional inhibition of the intact hemisphere, rerouting of connections, or setpoint-mediated network plasticity. These approaches may be guided by brain imaging and enabled by patient- and injury-specific brain stimulation, rehabilitation, and potential molecule-based strategies to enable new connections.
Collapse
Affiliation(s)
- Gergely Silasi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
17
|
Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice. J Neurosci 2015; 34:14890-900. [PMID: 25378156 DOI: 10.1523/jneurosci.1775-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Relatively few studies have examined plasticity of inhibitory neuronal networks following stroke in vivo, primarily due to the inability to selectively monitor inhibition. We assessed the structure of parvalbumin (PV) interneurons during a 5 min period of global ischemia and reperfusion in mice, which mimicked cerebral ischemia during cardiac arrest or forms of transient ischemic attack. The dendritic structure of PV-neurons in cortical superficial layers was rapidly swollen and beaded during global ischemia, but recovered within 5-10 min following reperfusion. Using optogenetics and a multichannel optrode, we investigated the function of PV-neurons in mouse forelimb somatosensory cortex. We demonstrated pharmacologically that PV-channelrhodopsin-2 (ChR2) stimulation evoked activation in layer IV/V, which resulted in rapid current sinks mediated by photocurrent and action potentials (a measure of PV-neuron excitability), which was then followed by current sources mediated by network GABAergic synaptic activity. During ischemic depolarization, the PV-ChR2-evoked current sinks (excitability) were suppressed, but recovered rapidly following reperfusion concurrent with repolarization of the DC-EEG. In contrast, the current sources reflecting GABAergic synaptic network activity recovered slowly and incompletely, and was coincident with the partial recovery of the forepaw stimulation-evoked current sinks in layer IV/V 30 min post reperfusion. Our in vivo data suggest that the excitability of PV inhibitory neurons was suppressed during global ischemia and rapidly recovered during reperfusion. In contrast, PV-ChR2 stimulation-evoked GABAergic synaptic network activity exhibited a prolonged suppression even ∼1 h after reperfusion, which could contribute to the dysfunction of sensation and cognition following transient global ischemia.
Collapse
|
18
|
Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A 2014; 111:12913-8. [PMID: 25136109 DOI: 10.1073/pnas.1404109111] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinical and research efforts have focused on promoting functional recovery after stroke. Brain stimulation strategies are particularly promising because they allow direct manipulation of the target area's excitability. However, elucidating the cell type and mechanisms mediating recovery has been difficult because existing stimulation techniques nonspecifically target all cell types near the stimulated site. To circumvent these barriers, we used optogenetics to selectively activate neurons that express channelrhodopsin 2 and demonstrated that selective neuronal stimulations in the ipsilesional primary motor cortex (iM1) can promote functional recovery. Stroke mice that received repeated neuronal stimulations exhibited significant improvement in cerebral blood flow and the neurovascular coupling response, as well as increased expression of activity-dependent neurotrophins in the contralesional cortex, including brain-derived neurotrophic factor, nerve growth factor, and neurotrophin 3. Western analysis also indicated that stimulated mice exhibited a significant increase in the expression of a plasticity marker growth-associated protein 43. Moreover, iM1 neuronal stimulations promoted functional recovery, as stimulated stroke mice showed faster weight gain and performed significantly better in sensory-motor behavior tests. Interestingly, stimulations in normal nonstroke mice did not alter motor behavior or neurotrophin expression, suggesting that the prorecovery effect of selective neuronal stimulations is dependent on the poststroke environment. These results demonstrate that stimulation of neurons in the stroke hemisphere is sufficient to promote recovery.
Collapse
|
19
|
Xue S, Gong H, Jiang T, Luo W, Meng Y, Liu Q, Chen S, Li A. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain. PLoS One 2014; 9:e88067. [PMID: 24498247 PMCID: PMC3907580 DOI: 10.1371/journal.pone.0088067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 01/05/2014] [Indexed: 11/18/2022] Open
Abstract
The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3) for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.
Collapse
Affiliation(s)
- Songchao Xue
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Luo
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzheng Meng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
20
|
Anenberg E, Arstikaitis P, Niitsu Y, Harrison TC, Boyd JD, Hilton BJ, Tetzlaff W, Murphy TH. Ministrokes in channelrhodopsin-2 transgenic mice reveal widespread deficits in motor output despite maintenance of cortical neuronal excitability. J Neurosci 2014; 34:1094-104. [PMID: 24453302 PMCID: PMC6705317 DOI: 10.1523/jneurosci.1442-13.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/28/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022] Open
Abstract
We evaluated the effects of ministrokes targeted to individual pial arterioles on motor function in Thy-1 line 18 channelrhodopsin-2 (ChR2) transgenic mice within the first hours after ischemia. Using optogenetics, we directly assessed both the excitability and motor output of cortical neurons in a manner independent of behavioral state or training. Occlusion of individual arterioles within the motor cortex led to a ministroke that was verified using laser speckle contrast imaging. Surprisingly, ministrokes targeted to a relatively small region of the forelimb motor map, with an ischemic core of 0.07 ± 0.03 mm(2), impaired motor responses evoked from points across widespread areas of motor cortex even 1.5 mm away. Contrasting averaged ChR2-evoked electroencephalographic, spinal (ChR2 evoked potential), and electromyographic responses revealed a mismatch between measures of cortical excitability and motor output within 60 min after stroke. This mismatch suggests that apparently excitable cortical neurons (even >1 mm into peri-infarct areas, away from the infarct core) were impaired in their capacity to generate spinal potentials leading to even more severe deficits in motor output at muscles. We suggest that ischemia, targeted to a subset of motor cortex, leads to relatively small reductions in excitability within motor cortex, and cumulative depression of both descending spinal circuits and motor output in response to the activation of widespread cortical territories even outside of the area directly affected by the ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Brett J. Hilton
- Department of Zoology, and
- International Collaboration on Repair Discoveries, University of British Columbia at Vancouver, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wolfram Tetzlaff
- Department of Zoology, and
- International Collaboration on Repair Discoveries, University of British Columbia at Vancouver, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
21
|
Uncoupling PSD-95 interactions leads to rapid recovery of cortical function after focal stroke. J Cereb Blood Flow Metab 2013; 33:1937-43. [PMID: 24022623 PMCID: PMC3851903 DOI: 10.1038/jcbfm.2013.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
Since the most significant ischemic sequelae occur within hours of stroke, it is necessary to understand how neuronal function changes during this time. While histologic and behavioral models show the extent of stroke-related damage, only in vivo recordings can illustrate changes in brain activity during stroke and validate effectiveness of neuroprotective compounds. Spontaneous and evoked field potentials (fEPs) were recorded in the deep layers of the cortex with a linear microelectrode array for 3 hours after focal stroke in anesthetized rats. Tat-NR2B9c peptide, which confers neuroprotection by uncoupling the PSD-95 protein from N-methyl-D-aspartate receptor (NMDAR), was administered 5 minutes before ischemia. Evoked field potentials were completely suppressed within 3 minutes of infarct in all ischemic groups. Evoked field potential recovery after stroke in rats treated with Tat-NR2B9c (83% of baseline) was greater compared with stroke-only (61% of baseline) or control peptide (Tat-NR2B-AA; 67% of baseline) groups (P<0.001). Electroencephalography (EEG) power was higher in Tat-NR2B9c-treated animals at both 20 minutes and 1 hour (50% and 73% of baseline, respectively) compared with stroke-only and Tat-NR2B-AA-treated rats (P<0.05). Tat-NR2B9c significantly reduces stroke-related cortical dysfunction as evidenced by greater recovery of fEPs and EEG power; illustrating the immediate effects of the compound on poststroke brain function.
Collapse
|
22
|
Xie Y, Chen S, Anenberg E, Murphy TH. Resistance of optogenetically evoked motor function to global ischemia and reperfusion in mouse in vivo. J Cereb Blood Flow Metab 2013; 33:1148-52. [PMID: 23736644 PMCID: PMC3734785 DOI: 10.1038/jcbfm.2013.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/22/2013] [Accepted: 04/28/2013] [Indexed: 11/09/2022]
Abstract
Recently we have shown that despite reperfusion, sensory processing exhibits persistent deficits after global ischemia in a mouse in vivo model. We now address how motor output, specifically cortically evoked muscle activity, stimulated by channelrhodopsin-2 is affected by global ischemia and reperfusion. We find that the light-based optogenetic motor map recovers to 80% within an hour. Moreover, motor output recovers relatively faster and more completely than the sensory processing after 5-minute period of global ischemia. Our results suggest a differential sensitivity of sensory and motor systems to the effects of global ischemia and reperfusion that may have implications for rehabilitation.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|