1
|
Ahasan MM, Alam MT, Murata Y, Taniguchi M, Yamaguchi M. Function of orexin-1 receptor signaling in the olfactory tubercle in odor-guided attraction and aversion. Commun Biol 2024; 7:1702. [PMID: 39725686 DOI: 10.1038/s42003-024-07438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT. When odor-food reward associated mice underwent OxR1 antagonist injection in the amOT, their odor-attractive behavior was suppressed and odor-aversive behavior was conversely induced. Although odor-attractive mice showed activation of attraction-promoting dopamine receptor type 1-expressing D1 cells in the amOT, the antagonist injection increased activation of aversion-promoting D2 cells in the amOT and D1 cells in the lOT. The results highlight the amOT as the crucial structure integrating OxR1 signaling and odor information, thereby controlling metabolic status-dependent olfactory behavior through the cell type- and domain-specific activation.
Collapse
Affiliation(s)
- Md Monjurul Ahasan
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Md Tasnim Alam
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Murata
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Mutsuo Taniguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
| |
Collapse
|
2
|
Wolf D, Oettl LL, Winkelmeier L, Linster C, Kelsch W. Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs. J Neurosci 2024; 44:e0231242024. [PMID: 39266300 PMCID: PMC11529817 DOI: 10.1523/jneurosci.0231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Laurens Winkelmeier
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
3
|
Yamaguchi M. Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity. Front Neural Circuits 2024; 18:1423505. [PMID: 38841557 PMCID: PMC11150588 DOI: 10.3389/fncir.2024.1423505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The olfactory tubercle (OT) is a unique part of the olfactory cortex of the mammal brain in that it is also a component of the ventral striatum. It is crucially involved in motivational behaviors, particularly in adaptive olfactory learning. This review introduces the basic properties of the OT, its synaptic connectivity with other brain areas, and the plasticity of the connectivity associated with learning behavior. The adaptive properties of olfactory behavior are discussed further based on the characteristics of OT neuronal circuits.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
4
|
Sha MFR, Koga Y, Murata Y, Taniguchi M, Yamaguchi M. Learning-dependent structural plasticity of intracortical and sensory connections to functional domains of the olfactory tubercle. Front Neurosci 2023; 17:1247375. [PMID: 37680965 PMCID: PMC10480507 DOI: 10.3389/fnins.2023.1247375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
5
|
Martiros N, Kapoor V, Kim SE, Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle. eLife 2022; 11:e75463. [PMID: 35708179 PMCID: PMC9203051 DOI: 10.7554/elife.75463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Positive and negative associations acquired through olfactory experience are thought to be especially strong and long-lasting. The conserved direct olfactory sensory input to the ventral striatal olfactory tubercle (OT) and its convergence with dense dopaminergic input to the OT could underlie this privileged form of associative memory, but how this process occurs is not well understood. We imaged the activity of the two canonical types of striatal neurons, expressing D1- or D2-type dopamine receptors, in the OT at cellular resolution while mice learned odor-outcome associations ranging from aversive to rewarding. D1 and D2 neurons both responded to rewarding and aversive odors. D1 neurons in the OT robustly and bidirectionally represented odor valence, responding similarly to odors predicting similar outcomes regardless of odor identity. This valence representation persisted even in the absence of a licking response to the odors and in the absence of the outcomes, indicating a true transformation of odor sensory information by D1 OT neurons. In contrast, D2 neuronal representation of the odor-outcome associations was weaker, contingent on a licking response by the mouse, and D2 neurons were more selective for odor identity than valence. Stimulus valence coding in the OT was modality-sensitive, with separate sets of D1 neurons responding to odors and sounds predicting the same outcomes, suggesting that integration of multimodal valence information happens downstream of the OT. Our results point to distinct representation of identity and valence of odor stimuli by D1 and D2 neurons in the OT.
Collapse
Affiliation(s)
- Nuné Martiros
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Vikrant Kapoor
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Spencer E Kim
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| |
Collapse
|
6
|
Winkelmeier L, Filosa C, Hartig R, Scheller M, Sack M, Reinwald JR, Becker R, Wolf D, Gerchen MF, Sartorius A, Meyer-Lindenberg A, Weber-Fahr W, Clemm von Hohenberg C, Russo E, Kelsch W. Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning. Nat Commun 2022; 13:3305. [PMID: 35676281 PMCID: PMC9177857 DOI: 10.1038/s41467-022-30978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents. Where and how the brain learns from experience is not fully understood. Here the authors use a hierarchical approach from behavioural modelling to systems fMRI to cellular coding reveals brain mechanisms for history informed updating of future predictions.
Collapse
Affiliation(s)
- Laurens Winkelmeier
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Carla Filosa
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Markus Sack
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Robert Becker
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | | | - Eleonora Russo
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
7
|
Wright KN, Johnson NL, Dossat AM, Wilson JT, Wesson DW. Reducing local synthesis of estrogen in the tubular striatum promotes attraction to same-sex odors in female mice. Horm Behav 2022; 140:105122. [PMID: 35101702 DOI: 10.1016/j.yhbeh.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor. We demonstrate here that mRNA for estrogen receptors appears to be expressed upon TuS dopamine 1 receptor-expressing neurons, suggesting that E2 may play a neuromodulatory role in circuits which are important for motivated behavior. Therefore, we reasoned that E2 in the TuS may influence attraction to urinary odors which are highly attractive. Using whole-body plethysmography, we examined odor-evoked high-frequency sniffing as a measure of odor attaction. Bilateral infusion of the aromatase inhibitor letrozole into the TuS of gonadectomized female adult mice induced a resistance to habituation over successive trials in their investigatory sniffing for female mouse urinary odors, indicative of an enhanced attraction. All males displayed resistance to habituation for female urinary odors, indicative of enhanced attraction that is independent from E2 manipulation. Letrozole's effects were not due to group differences in basal respiration, nor changes in the ability to detect or discriminate between odors (both monomolecular odorants and urinary odors). Therefore, de novo E2 synthesis in the TuS impacts females' but not males' attraction to female urinary odors, suggesting a sex-specific influence of E2 in odor hedonics.
Collapse
Affiliation(s)
- Katherine N Wright
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA.
| | - Natalie L Johnson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Amanda M Dossat
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Jamie T Wilson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| | - Daniel W Wesson
- University of Florida, Department of Pharmacology & Therapeutics, Center for Smell and Taste, Center for Addiction Research and Education, 1200 Newell Dr., Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Zhang YF, Vargas Cifuentes L, Wright KN, Bhattarai JP, Mohrhardt J, Fleck D, Janke E, Jiang C, Cranfill SL, Goldstein N, Schreck M, Moberly AH, Yu Y, Arenkiel BR, Betley JN, Luo W, Stegmaier J, Wesson DW, Spehr M, Fuccillo MV, Ma M. Ventral striatal islands of Calleja neurons control grooming in mice. Nat Neurosci 2021; 24:1699-1710. [PMID: 34795450 PMCID: PMC8639805 DOI: 10.1038/s41593-021-00952-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
The striatum comprises multiple subdivisions and neural circuits that differentially control motor output. The islands of Calleja (IC) contain clusters of densely packed granule cells situated in the ventral striatum, predominantly in the olfactory tubercle (OT). Characterized by expression of the D3 dopamine receptor, the IC are evolutionally conserved, but have undefined functions. Here, we show that optogenetic activation of OT D3 neurons robustly initiates self-grooming in mice while suppressing other ongoing behaviors. Conversely, optogenetic inhibition of these neurons halts ongoing grooming, and genetic ablation reduces spontaneous grooming. Furthermore, OT D3 neurons show increased activity before and during grooming and influence local striatal output via synaptic connections with neighboring OT neurons (primarily spiny projection neurons), whose firing rates display grooming-related modulation. Our study uncovers a new role of the ventral striatum's IC in regulating motor output and has important implications for the neural control of grooming.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigim Vargas Cifuentes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Mohrhardt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Emma Janke
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunjie Jiang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suna L Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Schreck
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Moberly
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqun Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement. Cell Rep 2021; 32:107919. [PMID: 32697986 DOI: 10.1016/j.celrep.2020.107919] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 01/15/2023] Open
Abstract
Odors are well known to elicit strong emotional and behavioral responses that become strengthened throughout learning, yet the specific cellular systems involved in odor learning and the direct influence of these on behavior are unclear. Here, we investigate the representation of odor-reward associations within two areas recipient of dense olfactory input, the posterior piriform cortex (pPCX) and the olfactory tubercle (OT), using electrophysiological recordings from mice engaged in reward-based learning. Neurons in both regions represent conditioned odors and do so with similar information content, yet the proportion of neurons recruited by conditioned rewarded odors and the magnitudes and durations of their responses are greater in the OT. Using fiber photometry, we find that OT D1-type dopamine-receptor-expressing neurons flexibly represent odors based on reward associations, and using optogenetics, we show that these neurons influence behavioral engagement. These findings contribute to a model whereby OT D1 neurons support odor-guided motivated behaviors.
Collapse
|
10
|
The Tubular Striatum. J Neurosci 2021; 40:7379-7386. [PMID: 32968026 DOI: 10.1523/jneurosci.1109-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
In the mid-19th century, a misconception was born, which understandably persists in the minds of many neuroscientists today. The eminent scientist Albert von Kölliker named a tubular-shaped piece of tissue found in the brains of all mammals studied to date, the tuberculum olfactorium - or what is commonly known as the olfactory tubercle (OT). In doing this, Kölliker ascribed "olfactory" functions and an "olfactory" purpose to the OT. The OT has since been classified as one of several olfactory cortices. However, further investigations of OT functions, especially over the last decade, have provided evidence for roles of the OT beyond olfaction, including in learning, motivated behaviors, and even seeking of psychoactive drugs. Indeed, research to date suggests caution in assigning the OT with a purely olfactory role. Here, I build on previous research to synthesize a model wherein the OT, which may be more appropriately termed the "tubular striatum" (TuS), is a neural system in which sensory information derived from an organism's experiences is integrated with information about its motivational states to guide affective and behavioral responses.
Collapse
|
11
|
Blazing RM, Franks KM. Odor coding in piriform cortex: mechanistic insights into distributed coding. Curr Opin Neurobiol 2020; 64:96-102. [PMID: 32422571 PMCID: PMC8782565 DOI: 10.1016/j.conb.2020.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Olfaction facilitates a large variety of animal behaviors such as feeding, mating, and communication. Recent work has begun to reveal the logic of odor transformations that occur throughout the olfactory system to form the odor percept. In this review, we describe the coding principles and mechanisms by which the piriform cortex and other olfactory areas encode three key odor features: odor identity, intensity, and valence. We argue that the piriform cortex produces a multiplexed odor code that allows non-interfering representations of distinct features of the odor stimulus to facilitate odor recognition and learning, which ultimately drives behavior.
Collapse
Affiliation(s)
- Robin M Blazing
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, NC, 27705, United States.
| |
Collapse
|
12
|
Liu X, Li X, Zhao G, Wang F, Wang L. Sexual dimorphic distribution of cannabinoid 1 receptor mRNA in adult C57BL/6J mice. J Comp Neurol 2020; 528:1986-1999. [DOI: 10.1002/cne.24868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Xulin Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China
| | - Gaoyang Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen China
| |
Collapse
|
13
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|