1
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025; 26:456-475. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Ping J, Liu X, Lu Y, Quan C, Fan P, Lu H, Li Q, Wang C, Zhang Z, Liu M, Chen S, Chang L, Jiang Y, Huang Q, Liu J, Wuren T, Liu H, Hao Y, Kang L, Liu G, Lu H, Wei X, Wang Y, Li Y, Guo H, Cui Y, Zhang H, Zhang Y, Zhai Y, He Y, Zheng W, Qi X, Ouzhuluobu, Ma H, Yang L, Wang X, Jin W, Cui Y, Ge R, Wu S, Wei Y, Su B, He F, Zhang H, Zhou G. A highland-adaptation variant near MCUR1 reduces its transcription and attenuates erythrogenesis in Tibetans. CELL GENOMICS 2025; 5:100782. [PMID: 40043709 PMCID: PMC11960549 DOI: 10.1016/j.xgen.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
To identify genomic regions subject to positive selection that might contain genes involved in high-altitude adaptation (HAA), we performed a genome-wide scan by whole-genome sequencing of Tibetan highlanders and Han lowlanders. We revealed a collection of candidate genes located in 30 genomic loci under positive selection. Among them, MCUR1 at 6p23 was a novel pronounced candidate. By single-cell RNA sequencing and comprehensive functional studies, we demonstrated that MCUR1 depletion leads to impairment of erythropoiesis under hypoxia and normoxia. Mechanistically, MCUR1 knockdown reduced mitochondrial Ca2+ uptake and then concomitantly increased cytosolic Ca2+ levels, which thereby reduced erythropoiesis via the CAMKK2-AMPK-mTOR axis. Further, we revealed rs61644582 at 6p23 as an expression quantitative trait locus for MCUR1 and a functional variant that confers an allele-specific transcriptional regulation of MCUR1. Overall, MCUR1-mediated mitochondrial Ca2+ homeostasis is highlighted as a novel regulator of erythropoiesis, deepening our understanding of the genetic mechanism of HAA.
Collapse
Affiliation(s)
- Jie Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pengcheng Fan
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hao Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lingle Chang
- Medical College of Guizhou University, Guiyang City 550025, P.R. China
| | - Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Qilin Huang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Jie Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Ying Hao
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High-Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China; Key Laboratory of High-Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China
| | - Guanjun Liu
- Henan Provincial People's Hospital, Zhengzhou City 450000, P.R. China; Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Hui Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaojun Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hao Guo
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Yongquan Cui
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Haoxiang Zhang
- No. 954 Hospital of Joint Logistic Support Force of Chinese PLA, Shannan City 856000, P.R. China
| | - Yang Zhang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yujia Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Huiping Ma
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Linpeng Yang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Xin Wang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Wanjun Jin
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Rili Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Shizheng Wu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China; Medical College of Guizhou University, Guiyang City 550025, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China.
| |
Collapse
|
3
|
SO EDMUNDCHEUNG, CHOW LOUISWC, CHUANG CHINMIN, CHEN CINGYU, WU CHENGHSUN, SHIAO LIANRU, OU TINGTSZ, WONG KARLOK, LEUNG YUKMAN, HUANG YIPING. MCU-i4, a mitochondrial Ca 2+ uniporter modulator, induces breast cancer BT474 cell death by enhancing glycolysis, ATP production and reactive oxygen species (ROS) burst. Oncol Res 2025; 33:397-406. [PMID: 39866241 PMCID: PMC11753992 DOI: 10.32604/or.2024.052743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/29/2024] [Indexed: 01/28/2025] Open
Abstract
Objectives Mitochondrial Ca2+ uniporter (MCU) provides a Ca2+ influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca2+ rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca2+ uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism. Methods The effects of MCU-i4, a newly developed MCU inhibitor, on cell viability, apoptosis, cytosolic Ca2+, mitochondrial Ca2+ and potential, glycolytic rate, generation of ATP, and reactive oxygen species, were examined in breast cancer BT474 cells. Results MCU-i4 caused apoptotic cell death, and it decreased and increased, respectively, mitochondrial and cytosolic Ca2+ concentration. Inhibition of MCU by MCU-i4 revealed that cytosolic Ca2+ elevation resulted from endoplasmic reticulum (ER) Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RYR). Unexpectedly, MCU-i4 enhanced glycolysis and ATP production; it also triggered a large production of reactive oxygen species (ROS) and mitochondrial membrane potential collapse. Conclusion Cytotoxic mechanisms of MCU-i4 in cancer cells involved enhanced glycolysis and heightened formation of ATP and ROS. It is conventionally believed that cancer cell death could be caused by inhibition of glycolysis. Our observations suggest cancer cell death could also be induced by increased glycolytic metabolism.
Collapse
Affiliation(s)
- EDMUND CHEUNG SO
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, 709, Taiwan
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, 711301, Taiwan
| | | | - CHIN-MIN CHUANG
- Department of Emergency Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - CING YU CHEN
- Department of Cosmetic Science, Providence University, Taichung, 43301, Taiwan
- School of Pharmacy, China Medical University, Taichung, 404328, Taiwan
| | - CHENG-HSUN WU
- Department of Anatomy, China Medical University, Taichung, 404328, Taiwan
| | - LIAN-RU SHIAO
- Department of Physiology, China Medical University, Taichung, 404328, Taiwan
| | - TING-TSZ OU
- Department of Medicinal Botanicals and Healthcare, Dayeh University, Changhua, 51591, Taiwan
| | - KAR-LOK WONG
- Department of Anesthesiology, Kuang Tien General Hospital, Shalu, Taichung, 433, Taiwan
| | - YUK-MAN LEUNG
- Department of Physiology, China Medical University, Taichung, 404328, Taiwan
| | - YI-PING HUANG
- Department of Physiology, China Medical University, Taichung, 404328, Taiwan
| |
Collapse
|
4
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
5
|
Taha M, Assali EA, Ben-Kasus Nissim T, Stutzmann GE, Shirihai OS, Hershfinkel M, Sekler I. NCLX controls hepatic mitochondrial Ca 2+ extrusion and couples hormone-mediated mitochondrial Ca 2+ oscillations with gluconeogenesis. Mol Metab 2024; 87:101982. [PMID: 38960129 PMCID: PMC11325370 DOI: 10.1016/j.molmet.2024.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Hepatic Ca2+ signaling has been identified as a crucial key factor in driving gluconeogenesis. The involvement of mitochondria in hormone-induced Ca2+ signaling and their contribution to metabolic activity remain, however, poorly understood. Moreover, the molecular mechanism governing the mitochondrial Ca2+ efflux signaling remains unresolved. This study investigates the role of the Na+/Ca2+ exchanger, NCLX, in modulating hepatic mitochondrial Ca2+ efflux, and examines its physiological significance in hormonal hepatic Ca2+ signaling, gluconeogenesis, and mitochondrial bioenergetics. METHODS Primary mouse hepatocytes from both an AAV-mediated conditional hepatic-specific and a total mitochondrial Na+/Ca2+ exchanger, NCLX, knockout (KO) mouse models were employed for fluorescent monitoring of purinergic and glucagon/vasopressin-dependent mitochondrial and cytosolic hepatic Ca2+ responses in cultured hepatocytes. Isolated liver mitochondria and permeabilized primary hepatocytes were used to analyze the ion-dependence of Ca2+ efflux. Utilizing the conditional hepatic-specific NCLX KO model, the rate of gluconeogenesis was assessed by first monitoring glucose levels in fasted mice, and subsequently subjecting the mice to a pyruvate tolerance test while monitoring their blood glucose. Additionally, cultured primary hepatocytes from both genotypes were assessed in vitro for glucagon-dependent glucose production and cellular bioenergetics through glucose oxidase assay and Seahorse respirometry, respectively. RESULTS Analysis of Ca2+ responses in isolated liver mitochondria and cultured primary hepatocytes from NCLX KO versus WT mice showed that NCLX serves as the principal mechanism for mitochondrial calcium extrusion in hepatocytes. We then determined the role of NCLX in glucagon and vasopressin-induced Ca2+ oscillations. Consistent with previous studies, glucagon and vasopressin triggered Ca2+ oscillations in WT hepatocytes, however, the deletion of NCLX resulted in selective elimination of mitochondrial, but not cytosolic, Ca2+ oscillations, underscoring NCLX's pivotal role in mitochondrial Ca2+ regulation. Subsequent in vivo investigation for hepatic NCLX role in gluconeogenesis revealed that, as opposed to WT mice which maintained normoglycemic blood glucose levels when fasted, conditional hepatic-specific NCLX KO mice exhibited a faster drop in glucose levels, becoming hypoglycemic. Furthermore, KO mice showed deficient conversion of pyruvate to glucose when challenged under fasting conditions. Concurrent in vitro assessments showed impaired glucagon-dependent glucose production and compromised bioenergetics in KO hepatocytes, thereby underscoring NCLX's significant contribution to hepatic glucose metabolism. CONCLUSIONS The study findings demonstrate that NCLX acts as the primary Ca2+ efflux mechanism in hepatocytes. NCLX is indispensable for regulating hormone-induced mitochondrial Ca2+ oscillations, mitochondrial metabolism, and sustenance of hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Mahmoud Taha
- Department of Physiology and Cell Biology, Ben Gurion University, Beer-Sheva 8410501, Israel
| | - Essam A Assali
- Department of Physiology and Cell Biology, Ben Gurion University, Beer-Sheva 8410501, Israel; Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Tsipi Ben-Kasus Nissim
- Department of Physiology and Cell Biology, Ben Gurion University, Beer-Sheva 8410501, Israel
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science. North Chicago, IL 60064, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Ben Gurion University, Beer-Sheva 8410501, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Ben Gurion University, Beer-Sheva 8410501, Israel.
| |
Collapse
|
6
|
Tan L, She H, Wang Y, Du Y, Zhang J, Du Y, Wu Y, Chen W, Huang B, Long D, Peng X, Li Q, Mao Q, Li T, Hu Y. The New Nano-Resuscitation Solution (TPP-MR) Attenuated Myocardial Injury in Hemorrhagic Shock Rats by Inhibiting Ferroptosis. Int J Nanomedicine 2024; 19:7567-7583. [PMID: 39081897 PMCID: PMC11287375 DOI: 10.2147/ijn.s463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Background Hemorrhagic shock was a leading cause of death worldwide, with myocardial injury being a primary affected organ. As commonly used solutions in fluid resuscitation, acetated Ringer's (AR) and Lactate Ringer's solution (LR) were far from perfect for their adverse reactions such as lactic acidosis and electrolyte imbalances. In previous studies, TPP@PAMAM-MR (TPP-MR), a novel nanocrystal resuscitation fluid has been found to protect against myocardial injury in septic rats. However, its role in myocardial injury in rats with hemorrhagic shock and underlying mechanism is unclear. Methods The hemorrhagic shock rats and hypoxia-treated cardiomyocytes (H9C2) were utilized to investigate the impact of TPP-MR on cardiac function, mitochondrial function, and lipid peroxidation. The expressions of ferritin-related proteins glutathione peroxidase 4 (GPX4), Acyl CoA Synthase Long Chain Family Member 4 (ACSL4), and Cyclooxygenase-2(COX2) were analyzed through Western blotting to explore the mechanism of TPP-MR on hemorrhagic myocardial injury. Results TPP-MR, a novel nanocrystalline resuscitation fluid, was synthesized using TPP@PAMAM@MA as a substitute for L-malic acid. We found that TPP-MR resuscitation significantly reduced myocardial injury reflected by enhancing cardiac output, elevating mean arterial pressure (MAP), and improving perfusion. Moreover, TPP-MR substantially prolonged hemorrhagic shock rats' survival time and survival rate. Further investigations indicated that TPP-MR improved the mitochondrial function of myocardial cells, mitigated the production of oxidative stress agents (ROS) and increased the glutathione (GSH) content. Additionally, TPP-MR inhibited the expression of the ferroptosis-associated GPX4 protein, ACSL4 and COX2, thereby enhancing the antioxidant capacity. Conclusion The results showed that TPP-MR had a protective effect on myocardial injury in rats with hemorrhagic shock, and its mechanism might be related to improving the mitochondrial function of myocardial cells and inhibiting the process of ferroptosis.
Collapse
Affiliation(s)
- Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Bingqiang Huang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Duanyang Long
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
7
|
Jimenez-Blasco D, Agulla J, Lapresa R, Garcia-Macia M, Bobo-Jimenez V, Garcia-Rodriguez D, Manjarres-Raza I, Fernandez E, Jeanson Y, Khoury S, Portais JC, Padro D, Ramos-Cabrer P, Carmeliet P, Almeida A, Bolaños JP. Weak neuronal glycolysis sustains cognition and organismal fitness. Nat Metab 2024; 6:1253-1267. [PMID: 38789798 PMCID: PMC11272580 DOI: 10.1038/s42255-024-01049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
The energy cost of neuronal activity is mainly sustained by glucose1,2. However, in an apparent paradox, neurons modestly metabolize glucose through glycolysis3-6, a circumstance that can be accounted for by the constant degradation of 6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase-3 (PFKFB3)3,7,8, a key glycolysis-promoting enzyme. To evaluate the in vivo physiological importance of this hypoglycolytic metabolism, here we genetically engineered mice with their neurons transformed into active glycolytic cells through Pfkfb3 expression. In vivo molecular, biochemical and metabolic flux analyses of these neurons revealed an accumulation of anomalous mitochondria, complex I disassembly, bioenergetic deficiency and mitochondrial redox stress. Notably, glycolysis-mediated nicotinamide adenine dinucleotide (NAD+) reduction impaired sirtuin-dependent autophagy. Furthermore, these mice displayed cognitive decline and a metabolic syndrome that was mimicked by confining Pfkfb3 expression to hypothalamic neurons. Neuron-specific genetic ablation of mitochondrial redox stress or brain NAD+ restoration corrected these behavioural alterations. Thus, the weak glycolytic nature of neurons is required to sustain higher-order organismal functions.
Collapse
Affiliation(s)
- Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Dario Garcia-Rodriguez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Israel Manjarres-Raza
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Yannick Jeanson
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
| | - Spiro Khoury
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Charles Portais
- RESTORE, University of Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnology Institute, INSA de Toulouse INSA/CNRS 5504, UMR INSA/INRA 792, Toulouse, France
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain.
| |
Collapse
|
8
|
Pardo B. Neuronal hypoglycolysis sustains body health. Nat Metab 2024; 6:1197-1199. [PMID: 38789797 DOI: 10.1038/s42255-024-01055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Affiliation(s)
- Beatriz Pardo
- Instituto Universitario de Biología Molecular-UAM (IUBM-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid- Consejo Superior de Investigaciones Científicas (UAM-CSIC), Madrid, Spain.
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), UAM, Madrid, Spain.
| |
Collapse
|
9
|
Tian J, Jia K, Wang T, Guo L, Xuan Z, Michaelis EK, Swerdlow RH, Du H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer's disease. Transl Psychiatry 2024; 14:250. [PMID: 38858380 PMCID: PMC11164935 DOI: 10.1038/s41398-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Elias K Michaelis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
10
|
Wu J, Shindo Y, Hotta K, Vu CQ, Lu K, Wazawa T, Nagai T, Oka K. Calcium-induced upregulation of energy metabolism heats neurons during neural activity. Biochem Biophys Res Commun 2024; 708:149799. [PMID: 38522401 DOI: 10.1016/j.bbrc.2024.149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Cellular temperature affects every biochemical reaction, underscoring its critical role in cellular functions. In neurons, temperature not only modulates neurotransmission but is also a key determinant of neurodegenerative diseases. Considering that the brain consumes a disproportionately high amount of energy relative to its weight, neural circuits likely generate a lot of heat, which can increase cytosolic temperature. However, the changes in temperature within neurons and the mechanisms of heat generation during neural excitation remain unclear. In this study, we achieved simultaneous imaging of Ca2+ and temperature using the genetically encoded indicators, B-GECO and B-gTEMP. We then compared the spatiotemporal distributions of Ca2+ responses and temperature. Following neural excitation induced by veratridine, an activator of the voltage-gated Na+ channel, we observed an approximately 2 °C increase in cytosolic temperature occurring 30 s after the Ca2+ response. The temperature elevation was observed in the non-nuclear region, while Ca2+ increased throughout the cell body. Moreover, this temperature increase was suppressed under Ca2+-free conditions and by inhibitors of ATP synthesis. These results indicate that Ca2+-induced upregulation of energy metabolism serves as the heat source during neural excitation.
Collapse
Affiliation(s)
- Jiayang Wu
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan; School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Cong Quang Vu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kai Lu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan; School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
11
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
12
|
Agrawal B, Boulos S, Khatib S, Feuermann Y, Panov J, Kaphzan H. Molecular Insights into Transcranial Direct Current Stimulation Effects: Metabolomics and Transcriptomics Analyses. Cells 2024; 13:205. [PMID: 38334596 PMCID: PMC10854682 DOI: 10.3390/cells13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is an evolving non-invasive neurostimulation technique. Despite multiple studies, its underlying molecular mechanisms are still unclear. Several previous human studies of the effect of tDCS suggest that it generates metabolic effects. The induction of metabolic effects by tDCS could provide an explanation for how it generates its long-term beneficial clinical outcome. AIM Given these hints of tDCS metabolic effects, we aimed to delineate the metabolic pathways involved in its mode of action. METHODS To accomplish this, we utilized a broad analytical approach of co-analyzing metabolomics and transcriptomic data generated from anodal tDCS in rat models. Since no metabolomic dataset was available, we performed a tDCS experiment of bilateral anodal stimulation of 200 µA for 20 min and for 5 consecutive days, followed by harvesting the brain tissue below the stimulating electrode and generating a metabolomics dataset using LC-MS/MS. The analysis of the transcriptomic dataset was based on a publicly available dataset. RESULTS Our analyses revealed that tDCS alters the metabolic profile of brain tissue, affecting bioenergetic-related pathways, such as glycolysis and mitochondrial functioning. In addition, we found changes in calcium-related signaling. CONCLUSIONS We conclude that tDCS affects metabolism by modulating energy production-related processes. Given our findings concerning calcium-related signaling, we suggest that the immediate effects of tDCS on calcium dynamics drive modifications in distinct metabolic pathways. A thorough understanding of the underlying molecular mechanisms of tDCS has the potential to revolutionize its applicability, enabling the generation of personalized medicine in the field of neurostimulation and thus contributing to its optimization.
Collapse
Affiliation(s)
- Bhanumita Agrawal
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soad Boulos
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee 1220800, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| | - Julia Panov
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
- Tauber Bioinformatics Research Center, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
13
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
14
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
15
|
Fernandez Garcia E, Paudel U, Noji MC, Bowman CE, Rustgi AK, Pitarresi JR, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. Front Cell Dev Biol 2023; 11:1082213. [PMID: 37363724 PMCID: PMC10285664 DOI: 10.3389/fcell.2023.1082213] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The mitochondrial uniporter (MCU) Ca2+ ion channel represents the primary means for Ca2+ uptake by mitochondria. Mitochondrial matrix Ca2+ plays critical roles in mitochondrial bioenergetics by impinging upon respiration, energy production and flux of biochemical intermediates through the TCA cycle. Inhibition of MCU in oncogenic cell lines results in an energetic crisis and reduced cell proliferation unless media is supplemented with nucleosides, pyruvate or α-KG. Nevertheless, the roles of MCU-mediated Ca2+ influx in cancer cells remain unclear, in part because of a lack of genetic models. Methods: MCU was genetically deleted in transformed murine fibroblasts for study in vitro and in vivo. Tumor formation and growth were studied in murine xenograft models. Proliferation, cell invasion, spheroid formation and cell cycle progression were measured in vitro. The effects of MCU deletion on survival and cell-death were determined by probing for live/death markers. Mitochondrial bioenergetics were studied by measuring mitochondrial matrix Ca2+ concentration, membrane potential, global dehydrogenase activity, respiration, ROS production and inactivating-phosphorylation of pyruvate dehydrogenase. The effects of MCU rescue on metabolism were examined by tracing of glucose and glutamine utilization for fueling of mitochondrial respiration. Results: Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced MCU-mediated Ca2+ uptake, altered mitochondrial matrix Ca2+ concentration responses to agonist stimulation, suppression of inactivating-phosphorylation of pyruvate dehydrogenase and a modest increase of mitochondrial respiration. Genetic MCU deletion inhibited growth of HEK293T cells and transformed fibroblasts in mouse xenograft models, associated with reduced proliferation and delayed cell-cycle progression. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro, both predictors of metastatic potential. Surprisingly, mitochondrial matrix [Ca2+], membrane potential, global dehydrogenase activity, respiration and ROS production were unaffected. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca2+ signals. Conclusion: Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on MCU for cell metabolism and Ca2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Emily Fernandez Garcia
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Usha Paudel
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Noji
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Caitlyn E. Bowman
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Jason R. Pitarresi
- Division of Hematology/Oncology, Departments of Medicine and Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zolt Arany
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jillian S. Weissenrieder
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J. Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. RESEARCH SQUARE 2023:rs.3.rs-2859584. [PMID: 37292715 PMCID: PMC10246254 DOI: 10.21203/rs.3.rs-2859584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
|
17
|
García EF, Paudel U, Noji MC, Bowman CE, Pitarresi JR, Rustgi AK, Wellen KE, Arany Z, Weissenrieder JS, Foskett JK. The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538295. [PMID: 37163088 PMCID: PMC10168388 DOI: 10.1101/2023.04.26.538295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.
Collapse
|
18
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
19
|
del Arco A, González-Moreno L, Pérez-Liébana I, Juaristi I, González-Sánchez P, Contreras L, Pardo B, Satrústegui J. Regulation of neuronal energy metabolism by calcium: Role of MCU and Aralar/malate-aspartate shuttle. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119468. [PMID: 36997074 DOI: 10.1016/j.bbamcr.2023.119468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or β-hydroxybutyrate as substrates.
Collapse
|
20
|
Tan L, She H, Zheng J, Peng X, Guo N, Zhang B, Sun Y, Ma C, Xu S, Bao D, Zhou Y, Li Q, Mao Q, Liu L, Hu Y, Li T. Effects of Malate Ringer's solution on myocardial injury in sepsis and enforcement effects of TPP@PAMAM-MR. J Transl Med 2022; 20:591. [PMID: 36514103 PMCID: PMC9746071 DOI: 10.1186/s12967-022-03811-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myocardial dysfunction played a vital role in organ damage after sepsis. Fluid resuscitation was the essential treatment in which Lactate Ringer's solution (LR) was commonly used. Since LR easily led to hyperlactatemia, its resuscitation effect was limited. Malate Ringer's solution (MR) was a new resuscitation crystal liquid. Whether MR had a protective effect on myocardial injury in sepsis and the relevant mechanism need to be studied. METHODS The cecal ligation and puncture (CLP) inducing septic model and lipopolysaccharide (LPS) stimulating cardiomyocytes were used, and the cardiac function, the morphology and function of mitochondria were observed. The protective mechanism of MR on myocardial injury was explored by proteomics. Then the effects of TPP@PAMAM-MR, which consisted of the mitochondria- targeting polymer embodied malic acid, was further observed. RESULTS Compared with LR, MR resuscitation significantly prolonged survival time, improved the cardiac function, alleviated the damages of liver, kidney and lung following sepsis in rats. The proteomics of myocardial tissue showed that differently expressed proteins between MR and LR infusion involved oxidative phosphorylation, apoptosis. Further study found that MR decreased ROS, improved the mitochondrial morphology and function, and ultimately enhanced mitochondrial respiration and promoted ATP production. Moreover, MR infusion decreased the expression of apoptosis-related proteins and increased the expression of anti-apoptotic proteins. TPP@PAMAM@MA was a polymer formed by wrapping L-malic acid with poly amido amine (PAMAM) modified triphenylphosphine material. TPP@PAMAM-MR (TPP-MR), which was synthesized by replacing the L-malic acid of MR with TPP@PAMAM@MA, was more efficient in targeting myocardial mitochondria and was superior to MR in protecting the sepsis-inducing myocardial injury. CONCLUSION MR was suitable for protecting myocardial injury after sepsis. The mechanism was related to MR improving the function and morphology of cardiomyocyte mitochondria and inhibiting cardiomyocyte apoptosis. The protective effect of TPP-MR was superior to MR.
Collapse
Affiliation(s)
- Lei Tan
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China ,grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Han She
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China ,grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Jie Zheng
- grid.190737.b0000 0001 0154 0904School of Medicine, Chongqing University, Chongqing, 400044 China
| | - Xiaoyong Peng
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Ningke Guo
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Bindan Zhang
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yue Sun
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Chunhua Ma
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Shenglian Xu
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Daiqin Bao
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yuanqun Zhou
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qinghui Li
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Qingxiang Mao
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Liangming Liu
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Yi Hu
- grid.414048.d0000 0004 1799 2720Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042 China
| | - Tao Li
- grid.414048.d0000 0004 1799 2720State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042 China
| |
Collapse
|
21
|
Dhoundiyal A, Goeschl V, Boehm S, Kubista H, Hotka M. Glycerol-3-Phosphate Shuttle Is a Backup System Securing Metabolic Flexibility in Neurons. J Neurosci 2022; 42:7339-7354. [PMID: 35999055 PMCID: PMC9525167 DOI: 10.1523/jneurosci.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Electrical activity in neurons is highly energy demanding and accompanied by rises in cytosolic Ca2+ Cytosolic Ca2+, in turn, secures energy supply by pushing mitochondrial metabolism either through augmented NADH (nicotinamide adenine dinucleotide) transfer into mitochondria via the malate-aspartate shuttle (MAS) or via direct activation of dehydrogenases of the TCA cycle after passing into the matrix through the mitochondrial Ca2+ uniporter (MCU). Another Ca2+-sensitive booster of mitochondrial ATP synthesis is the glycerol-3-phosphate shuttle (G3PS), whose role in neuronal energy supply has remained elusive. Essential components of G3PS are expressed in hippocampal neurons. Single neuron metabolic measurements in primary hippocampal cultures derived from rat pups of either sex reveal only moderate, if any, constitutive activity of G3PS. However, during electrical activity neurons fully rely on G3PS when MAS and MCU are unavailable. Under these conditions, G3PS is required for appropriate action potential firing. Accordingly, G3PS safeguards metabolic flexibility of neurons to cope with energy demands of electrical signaling.SIGNIFICANCE STATEMENT Ca2+ ions are known to provide a link between the energy-demanding electrical activity and an adequate ATP supply in neurons. To do so, Ca2+ acts both from outside and inside of the mitochondrial inner membrane. Neuronal function critically depends on this regulation, and its defects are often found in various neurologic disorders. Although interest in neuronal metabolism has increased, many aspects thereof have remained unresolved. In particular, a Ca2+-sensitive NADH (nicotinamide adenine dinucleotide) shuttling system, the glycerol-3-phosphate shuttle, has been largely ignored with respect to its function in neurons. Our results demonstrate that this shuttle is functional in hippocampal neurons and safeguards ATP supply and appropriate action potential firing when malate aspartate shuttle and mitochondrial Ca2+ uniporter are unavailable, thereby ensuring neuronal metabolic flexibility.
Collapse
Affiliation(s)
- Ankit Dhoundiyal
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vanessa Goeschl
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Zhang Z, Pan J, Cheng D, Shi Y, Wang L, Mi Z, Fu J, Tao H, Fan H. Expression of lactate-related signatures correlates with immunosuppressive microenvironment and prognostic prediction in ewing sarcoma. Front Genet 2022; 13:965126. [PMID: 36092937 PMCID: PMC9448906 DOI: 10.3389/fgene.2022.965126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: Ewing sarcoma (EWS) is an aggressive tumor of bone and soft tissue. Growing evidence indicated lactate as a pivotal mediator of crosstalk between tumor energy metabolism and microenvironmental regulation. However, the contribution of lactate-related genes (LRGs) in EWS is still unclear.Methods: We obtained the transcriptional data of EWS patients from the GEO database and identified differentially expressed-LRGs (DE-LRGs) between EWS patient samples and normal tissues. Unsupervised cluster analysis was utilized to recognize lactate modulation patterns based on the expression profile of DE-LRGs. Functional enrichment including GSEA and GSVA analysis was conducted to identify molecular signaling enriched in different subtypes. ESTIMATE, MCP and CIBERSORT algorithm was used to explore tumor immune microenvironment (TIME) between subtypes with different lactate modulation patterns. Then, lactate prognostic risk signature was built via univariate, LASSO and multivariate Cox analysis. Finally, we performed qPCR analysis to validate candidate gene expression.Result: A total of 35 DE-LRGs were identified and functional enrichment analysis indicated that these LRGs were involved in mitochondrial function. Unsupervised cluster analysis divided EWS patients into two lactate modulation patterns and we revealed that patients with Cluster 1 pattern were linked to poor prognosis and high lactate secretion status. Moreover, TIME analysis indicated that the abundance of multiple immune infiltrating cells were dramatically elevated in Cluster 1 to Cluster 2, including CAFs, endothelial cells, Macrophages M2, etc., which might contribute to immunosuppressive microenvironment. We also noticed that expression of several immune checkpoint proteins were clearly increased in Cluster 1 to Cluster 2. Subsequently, seven genes were screened to construct LRGs prognostic signature and the performance of the resulting signature was validated in the validation cohort. Furthermore, a nomogram integrating LRGs signature and clinical characteristics was developed to predict effectively the 4, 6, and 8-year prognosis of EWS patients.Conclusion: Our study revealed the role of LRGs in immunosuppressive microenvironment and predicting prognosis in EWS and provided a robust tool to predict the prognosis of EWS patients.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jingxin Pan
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Debin Cheng
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yubo Shi
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhenzhou Mi
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jun Fu
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huiren Tao
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen, China
| | - Hongbin Fan
- Department of Orthopaedic Surgery, Xi-jing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Hongbin Fan,
| |
Collapse
|