1
|
Baldassano JF, MacLeod KM. Electrophysiological correlates of divergent projections in the avian superior olivary nucleus. J Neurophysiol 2024; 132:1412-1425. [PMID: 39258776 PMCID: PMC11573260 DOI: 10.1152/jn.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024] Open
Abstract
The physiological diversity of inhibitory neurons provides ample opportunity to influence a wide range of computational roles through their varied activity patterns, especially via feedback loops. In the avian auditory brain stem, inhibition originates primarily from the superior olivary nucleus (SON), and so it is critical to understand the intrinsic physiological properties and processing capabilities of these neurons. Neurons in the SON receive ascending input via the cochlear nuclei: directly from the intensity-coding cochlear nucleus angularis (NA) and indirectly via the interaural timing nucleus laminaris (NL), which itself receives input from cochlear nucleus magnocellularis (NM). Two distinct populations of SON neurons provide inhibitory feedback either to ipsilateral NA, NL, and the timing cochlear nucleus NM or to the contralateral SON. To determine whether these populations correspond to distinct response types, we investigated their electrophysiology in brain stem slices, using patch-clamp electrophysiology. We identified three phenotypes: single-spiking, chattering tonic, and regular tonic neurons. The two tonic phenotypes displayed distinct firing patterns and different membrane properties. Fluctuating "noisy" currents used to probe the capability of SON neurons to encode temporal features showed that each phenotype differed in sensitivity to temporally modulated input. By using cell fills and anatomical reconstructions, we could correlate the firing phenotypes with their axonal projection patterns. We found that SON axons exited via three fiber tracts, with each tract composed of specific phenotypes. These results provide a basis for understanding the role of specific inhibitory cell types in auditory function and elucidate the organization of the SON outputs.NEW & NOTEWORTHY Inhibitory inputs for the avian brain stem originate primarily from the superior olivary nucleus (SON). We describe three intrinsic phenotypes of SON neurons and show how they differ in their temporal processing and projection patterns. We propose that the two types of tonic firing neurons (including one novel type) and the single-spiking neurons in SON comprise separate feedback circuits that may differentially influence the auditory information flowing via the cochlear nuclei and nucleus laminaris.
Collapse
Affiliation(s)
- James F Baldassano
- Department of BiologyUniversity of Maryland, College Park, Maryland, United States
| | - Katrina M MacLeod
- Department of BiologyUniversity of Maryland, College Park, Maryland, United States
| |
Collapse
|
2
|
Carr CE, Wang T, Kraemer I, Capshaw G, Ashida G, Koeppl C, Kempter R, Kuokkanen PT. Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526884. [PMID: 36778252 PMCID: PMC9915572 DOI: 10.1101/2023.02.02.526884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Barn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that had not experienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.
Collapse
|
3
|
Ordiway G, McDonnell M, Mohan S, Sanchez JT. Evaluation of Auditory Brainstem Response in Chicken Hatchlings. J Vis Exp 2022:10.3791/63477. [PMID: 35435914 PMCID: PMC9136940 DOI: 10.3791/63477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The auditory brainstem response (ABR) is an invaluable assay in clinical audiology, non-human animals, and human research. Despite the widespread use of ABRs in measuring auditory neural synchrony and estimating hearing sensitivity in other vertebrate model systems, methods for recording ABRs in the chicken have not been reported in nearly four decades. Chickens provide a robust animal research model because their auditory system is near functional maturation during late embryonic and early hatchling stages. We have demonstrated methods used to elicit one or two-channel ABR recordings using subdermal needle electrode arrays in chicken hatchlings. Regardless of electrode recording configuration (i.e., montage), ABR recordings included 3-4 positive-going peak waveforms within the first 6 ms of a suprathreshold click stimulus. Peak-to-trough waveform amplitudes ranged from 2-11 µV at high-intensity levels, with positive peaks exhibiting expected latency-intensity functions (i.e., increase in latency as a function of decreased intensity). Standardized earphone position was critical for optimal recordings as loose skin can occlude the ear canal, and animal movement can dislodge the stimulus transducer. Peak amplitudes were smaller, and latencies were longer as animal body temperature lowered, supporting the need for maintaining physiological body temperature. For young hatchlings (<3 h post-hatch day 1), thresholds were elevated by ~5 dB, peak latencies increased ~1-2 ms, and peak to trough amplitudes were decreased ~1 µV compared to older hatchlings. This suggests a potential conductive-related issue (i.e., fluid in the middle ear cavity) and should be considered for young hatchlings. Overall, the ABR methods outlined here permit accurate and reproducible recording of in-vivo auditory function in chicken hatchlings that could be applied to different stages of development. Such findings are easily compared to human and mammalian models of hearing loss, aging, or other auditory-related manipulations.
Collapse
Affiliation(s)
- George Ordiway
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University;
| | - Miranda McDonnell
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Sandesh Mohan
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University; Knowles Hearing Research Center, Northwestern University; Department of Neurobiology, Northwestern University
| |
Collapse
|
4
|
Tonotopic Specializations in Number, Size, and Reversal Potential of GABAergic Inputs Fine-Tune Temporal Coding at Avian Cochlear Nucleus. J Neurosci 2021; 41:8904-8916. [PMID: 34518306 DOI: 10.1523/jneurosci.0884-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
GABAergic inhibition in neurons plays a critical role in determining the output of neural circuits. Neurons in avian nucleus magnocellularis (NM) use several tonotopic-region-dependent specializations to relay the timing information of sound in the auditory nerve to higher auditory nuclei. Previously, we showed that feedforward GABAergic inhibition in NM has a different dependence on the level of auditory nerve activity, with the low-frequency region having a low-threshold and linear relationship, while the high-frequency region has a high-threshold and step-like relationship. However, it remains unclear how the GABAergic synapses are tonotopically regulated and interact with other specializations of NM neurons. In this study, we examined GABAergic transmission in the NM of chickens of both sexes and explored its contributions to the temporal coding of sound at each tonotopic region. We found that the number and size of unitary GABAergic currents and their reversal potential were finely tuned at each tonotopic region in the NM. At the lower-frequency region, unitary GABAergic currents were larger in number but smaller in size. In addition, their reversal potential was close to the resting potential of neurons, which enabled reliable inhibition despite the smaller potassium conductance. At the higher-frequency region, on the other hand, unitary GABAergic currents were fewer, larger, and highly depolarizing, which enabled powerful inhibition via activating the large potassium conductance. Thus, we propose that GABAergic synapses are coordinated with the characteristics of excitatory synapses and postsynaptic neurons, ensuring the temporal coding for wide frequency and intensity ranges.SIGNIFICANCE STATEMENT We found in avian cochlear nucleus that the number and size of unitary GABAergic inputs differed among tonotopic regions and correlated to respective excitatory inputs; it was larger in number but smaller in size for neurons tuned to lower-frequency sound. Furthermore, GABAergic reversal potential also differed among the regions in accordance with the size of Kv1 current; it was less depolarized in the lower-frequency neurons with smaller Kv1 current. These differentiations of GABAergic transmission maximized the effects of inhibition at each tonotopic region, ensuring precise and reliable temporal coding across frequencies and intensities. Our results emphasize the importance of optimizing characteristics of GABAergic transmission within individual neurons for proper neural circuit function.
Collapse
|
5
|
Al-Yaari M, Yamada R, Kuba H. Excitatory-Inhibitory Synaptic Coupling in Avian Nucleus Magnocellularis. J Neurosci 2020; 40:619-631. [PMID: 31727796 PMCID: PMC6961991 DOI: 10.1523/jneurosci.1124-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 01/22/2023] Open
Abstract
The activity of neurons is determined by the balance between their excitatory and inhibitory synaptic inputs. Neurons in the avian nucleus magnocellularis (NM) integrate monosynaptic excitatory and polysynaptic inhibitory inputs from the auditory nerve, and transmit phase-locked output to higher auditory centers. The excitatory input is graded tonotopically, such that neurons tuned to higher frequency receive fewer, but larger, axon terminals. However, it remains unknown how the balance between excitatory and inhibitory inputs is determined in NM. We here examined synaptic and spike responses of NM neurons during stimulation of the auditory nerve in thick brain slices of chicken of both sexes, and found that the excitatory-inhibitory balance varied according to tonotopic region, ensuring reliable spike output across frequencies. Auditory nerve stimulation elicited IPSCs in NM neurons regardless of tonotopic region, but the dependence of IPSCs on intensity varied in a systematic way. In neurons tuned to low frequency, IPSCs appeared and increased in parallel with EPSCs with elevation of intensity, which expanded dynamic range by preventing saturation of spike generation. On the other hand, in neurons tuned to higher frequency, IPSCs were smaller than EPSCs and had higher thresholds for activation, thus facilitating high-fidelity transmission. Computer simulation confirmed that these differences in inhibitory input were optimally matched to the patterns of excitatory input, and enabled appropriate level of neuronal output for wide intensity and frequency ranges of sound in the auditory system.SIGNIFICANCE STATEMENT Neurons in nucleus magnocellularis encode timing information of sound across wide intensity ranges by integrating excitatory and inhibitory synaptic inputs from the auditory nerve, but underlying synaptic mechanisms of this integration are not fully understood. We here show that the excitatory-inhibitory relationship was expressed differentially at each tonotopic region; the relationship was linear in neurons tuned to low-frequency, expanding dynamic range by preventing saturation of spike generation; by contrast inhibitory input remained much smaller than excitatory input in neurons tuned to higher frequency, thus ensuring high-fidelity transmission. The tonotopic regulation of excitatory and inhibitory input optimized the output across frequencies and intensities, playing a fundamental role in the timing coding pathway in the auditory system.
Collapse
Affiliation(s)
- Mohammed Al-Yaari
- Department of Cell Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Rei Yamada
- Department of Cell Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi Kuba
- Department of Cell Physiology, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
6
|
Kraus MS, Walker TM, Jarskog LF, Millet RA, Keefe RSE. Basic auditory processing deficits and their association with auditory emotion recognition in schizophrenia. Schizophr Res 2019; 204:155-161. [PMID: 30268821 DOI: 10.1016/j.schres.2018.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Individuals with schizophrenia are impaired in their ability to recognize emotions based on vocal cues and these impairments are associated with poor global outcome. Basic perceptual processes, such as auditory pitch processing, are impaired in schizophrenia and contribute to difficulty identifying emotions. However, previous work has focused on a relatively narrow assessment of auditory deficits and their relation to emotion recognition impairment in schizophrenia. METHODS We have assessed 87 patients with schizophrenia and 73 healthy controls on a comprehensive battery of tasks spanning the five empirically derived domains of auditory function. We also explored the relationship between basic auditory processing and auditory emotion recognition within the patient group using correlational analysis. RESULTS Patients exhibited widespread auditory impairments across multiple domains of auditory function, with mostly medium effect sizes. Performance on all of the basic auditory tests correlated with auditory emotion recognition at the p < .01 level in the patient group, with 9 out of 13 tests correlating with emotion recognition at r = 0.40 or greater. After controlling for cognition, many of the largest correlations involved spectral processing within the phase-locking range and discrimination of vocally based stimuli. CONCLUSIONS While many auditory skills contribute to this impairment, deficient formant discrimination appears to be a key skill contributing to impaired emotion recognition as this was the only basic auditory skill to enter a step-wise multiple regression after first entering a measure of cognitive impairment, and formant discrimination accounted for significant unique variance in emotion recognition performance after accounting for deficits in pitch processing.
Collapse
Affiliation(s)
- Michael S Kraus
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA.
| | - Trina M Walker
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| | - L Fredrik Jarskog
- North Carolina Psychiatric Research Center, Department of Psychiatry, University of North Carolina at Chapel Hill, 101 Manning Dr # 1, Chapel Hill, NC 27514, USA
| | - Robert A Millet
- Carolina Behavioral Care, 4102 Ben Franklin Blvd Durham, NC 27704, USA
| | - Richard S E Keefe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, 10 Duke Medicine Circle, Durham, NC 27710, USA
| |
Collapse
|
7
|
Brown DH, Hyson RL. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. J Neurophysiol 2019; 121:908-927. [PMID: 30649984 DOI: 10.1152/jn.00459.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K+ current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K+ conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K+ current, play a major role in regulating the diversity of auditory responses.
Collapse
Affiliation(s)
- David H Brown
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida
| |
Collapse
|
8
|
Carroll BJ, Bertram R, Hyson RL. Intrinsic physiology of inhibitory neurons changes over auditory development. J Neurophysiol 2017; 119:290-304. [PMID: 29046423 DOI: 10.1152/jn.00447.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During auditory development, changes in membrane properties promote the ability of excitatory neurons in the brain stem to code aspects of sound, including the level and timing of a stimulus. Some of these changes coincide with hearing onset, suggesting that sound-driven neural activity produces developmental plasticity of ion channel expression. While it is known that the coding properties of excitatory neurons are modulated by inhibition in the mature system, it is unknown whether there are also developmental changes in the membrane properties of brain stem inhibitory neurons. We investigated the primary source of inhibition in the avian auditory brain stem, the superior olivary nucleus (SON). The present studies test the hypothesis that, as in excitatory neurons, the membrane properties of these inhibitory neurons change after hearing onset. We examined SON neurons at different stages of auditory development: embryonic days 14-16 (E14-E16), a time at which cochlear ganglion neurons are just beginning to respond to sound; later embryonic stages (E18-E19); and after hatching (P0-P2). We used in vitro whole cell patch electrophysiology to explore physiological changes in SON. Age-related changes were observed at the level of a single spike and in multispiking behavior. In particular, tonic behavior, measured as a neuron's ability to sustain tonic firing over a range of current steps, became more common later in development. Voltage-clamp recordings and biophysical models were employed to examine how age-related increases in ion currents enhance excitability in SON. Our findings suggest that concurrent increases in sodium and potassium currents underlie the emergence of tonic behavior. NEW & NOTEWORTHY This article is the first to examine heterogeneity of neuronal physiology in the inhibitory nucleus of the avian auditory system and demonstrate that tonic firing here emerges over development. By pairing computer simulations with physiological data, we show that increases in both sodium and potassium channels over development are necessary for the emergence of tonic firing.
Collapse
Affiliation(s)
- Briana J Carroll
- Department of Psychology, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Richard Bertram
- Deparment of Mathematics, Florida State University , Tallahassee, Florida.,Program in Molecular Biophysics, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Richard L Hyson
- Department of Psychology, Florida State University , Tallahassee, Florida.,Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
9
|
Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus. J Neurosci 2017; 36:8500-15. [PMID: 27511020 DOI: 10.1523/jneurosci.4449-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/27/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Auditory nerve fibers reflect this tonotopy and encode temporal properties of acoustic stimuli by "locking" discharges to a particular stimulus phase. However, physiological constraints on phase-locking depend on stimulus frequency. Interestingly, low characteristic frequency (LCF) neurons in the cochlear nucleus improve phase-locking precision relative to their auditory nerve inputs. This is proposed to arise through synaptic integration, but the postsynaptic membrane's selectivity for varying levels of synaptic convergence is poorly understood. The chick cochlear nucleus, nucleus magnocellularis (NM), exhibits tonotopic distribution of both input and membrane properties. LCF neurons receive many small inputs and have low input thresholds, whereas high characteristic frequency (HCF) neurons receive few, large synapses and require larger currents to spike. NM therefore presents an opportunity to study how small membrane variations interact with a systematic topographic gradient of synaptic inputs. We investigated membrane input selectivity and observed that HCF neurons preferentially select faster input than their LCF counterparts, and that this preference is tolerant of changes to membrane voltage. We then used computational models to probe which properties are crucial to phase-locking. The model predicted that the optimal arrangement of synaptic and membrane properties for phase-locking is specific to stimulus frequency and that the tonotopic distribution of input number and membrane excitability in NM closely tracks a stimulus-defined optimum. These findings were then confirmed physiologically with dynamic-clamp simulations of inputs to NM neurons. SIGNIFICANCE STATEMENT One way that neurons represent temporal information is by phase-locking, which is discharging in response to a particular phase of the stimulus waveform. In the auditory system, central neurons are optimized to retain or improve phase-locking precision compared with input from the auditory nerve. However, the difficulty of this computation varies systematically with stimulus frequency. We examined properties that contribute to temporal processing both physiologically and in a computational model. Neurons processing low-frequency input benefit from integration of many weak inputs, whereas those processing higher frequencies progressively lose precision by integration of multiple inputs. Here, we reveal general features of input-output optimization that apply to all neurons that process time varying input.
Collapse
|
10
|
Määttä S, Könönen M, Kallioniemi E, Lakka T, Lintu N, Lindi V, Ferreri F, Ponzo D, Säisänen L. Development of cortical motor circuits between childhood and adulthood: A navigated TMS-HdEEG study. Hum Brain Mapp 2017; 38:2599-2615. [PMID: 28218489 PMCID: PMC6866783 DOI: 10.1002/hbm.23545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS-evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp 38:2599-2615, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Määttä
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| | - Mervi Könönen
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Clinical RadiologyKuopio University HospitalKuopioFinland
| | - Elisa Kallioniemi
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
- Kuopio Research Institute of Exercise MedicineKuopioFinland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Virpi Lindi
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Florinda Ferreri
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - David Ponzo
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - Laura Säisänen
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| |
Collapse
|
11
|
Fujihira H, Shiraishi K, Remijn G. Elderly listeners with low intelligibility scores under reverberation show degraded subcortical representation of reverberant speech. Neurosci Lett 2017; 637:102-107. [DOI: 10.1016/j.neulet.2016.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
12
|
Carroll BJ, Hyson RL. A role for inhibition in deafness-induced plasticity of the avian auditory brainstem. Neuroscience 2016; 327:10-9. [PMID: 27095711 DOI: 10.1016/j.neuroscience.2016.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 01/05/2023]
Abstract
To better understand the effects of deafness on the brain, these experiments examine how disrupted balance between excitatory and inhibitory neurotransmission following the loss of excitatory input from the auditory nerve alters the central auditory system. In the avian cochlear nucleus, nucleus magnocellularis (NM), deprivation of excitatory input induced by deafness triggers neuronal death. While this neuronal death was previously accredited to the loss of excitatory drive, the present experiments examine an alternative hypothesis: that inhibitory input to NM, which may also be affected by deafness, contributes to neuronal death in NM. Using an in vitro slice preparation in which excitatory input from the auditory nerve is absent, we pharmacologically altered GABA receptor activation in NM, and assayed an early marker of neuronal health, antigenicity for the ribosomal antibody Y10B (Y10B-ir). We found that GABA decreases Y10B-ir, and that GABAA activation is necessary for the GABA-induced effect. We further found that endogenous GABAA activation similarly decreases Y10B-ir and this decrease requires extracellular Ca(2+). Our results suggest that, in the absence of excitatory input, endogenous activation of ionotropic GABAA receptors is detrimental to NM neurons.
Collapse
Affiliation(s)
- Briana J Carroll
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Richard L Hyson
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
13
|
Clinard CG, Cotter CM. Neural representation of dynamic frequency is degraded in older adults. Hear Res 2015; 323:91-8. [DOI: 10.1016/j.heares.2015.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022]
|
14
|
Obeidat AZ, Nardelli P, Powers RK, Cope TC. Modulation of motoneuron firing by recurrent inhibition in the adult rat in vivo. J Neurophysiol 2014; 112:2302-15. [PMID: 25122713 PMCID: PMC4274916 DOI: 10.1152/jn.00358.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
Recent reports show that synaptic inhibition can modulate postsynaptic spike timing without having strong effects on firing rate. Thus synaptic inhibition can achieve multiplicity in neural circuit operation through variable modulation of postsynaptic firing rate vs. timing. We tested this possibility for recurrent inhibition (RI) of spinal motoneurons. In in vivo electrophysiological studies of adult Wistar rats anesthetized by isoflurane, we examined repetitive firing of individual lumbosacral motoneurons recorded in current clamp and modulated by synchronous antidromic electrical stimulation of multiple motor axons and their centrally projecting collateral branches. Antidromic stimulation produced recurrent inhibitory postsynaptic potentials (RIPSPs) having properties similar to those detailed in the cat. Although synchronous RI produced marked short-term modulation of motoneuron spike timing and instantaneous firing rate, there was little or no suppression of average firing rate. The bias in firing modulation of timing over average rate was observed even for high-frequency RI stimulation (100 Hz), perhaps because of the brevity of RIPSPs, which were more than twofold shorter during motoneuron firing compared with rest. These findings demonstrate that RI in the mammalian spinal cord has the capacity to support and not impede heightened motor pool activity, possibly during rapid, forceful movements.
Collapse
Affiliation(s)
- Ahmed Z Obeidat
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio; and
| | - Paul Nardelli
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio; and
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Timothy C Cope
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio; and
| |
Collapse
|
15
|
Circuit models and experimental noise measurements of micropipette amplifiers for extracellular neural recordings from live animals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:135026. [PMID: 25133158 PMCID: PMC4123482 DOI: 10.1155/2014/135026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
Abstract
Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.
Collapse
|
16
|
Hamlet WR, Liu YW, Tang ZQ, Lu Y. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis. Front Neural Circuits 2014; 8:51. [PMID: 24904297 PMCID: PMC4033047 DOI: 10.3389/fncir.2014.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/24/2014] [Indexed: 11/16/2022] Open
Abstract
Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K+ (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17–E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.
Collapse
Affiliation(s)
- William R Hamlet
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA ; School of Biomedical Sciences, Kent State University Kent, OH, USA
| | - Yu-Wei Liu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Zheng-Quan Tang
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA ; School of Biomedical Sciences, Kent State University Kent, OH, USA
| |
Collapse
|
17
|
Fischl MJ, Burger RM. Glycinergic transmission modulates GABAergic inhibition in the avian auditory pathway. Front Neural Circuits 2014; 8:19. [PMID: 24672432 PMCID: PMC3954080 DOI: 10.3389/fncir.2014.00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/22/2014] [Indexed: 11/23/2022] Open
Abstract
For all neurons, a proper balance of synaptic excitation and inhibition is crucial to effect computational precision. Achievement of this balance is remarkable when one considers factors that modulate synaptic strength operate on multiple overlapping time scales and affect both pre- and postsynaptic elements. Recent studies have shown that inhibitory transmitters, glycine and GABA, are co-released in auditory nuclei involved in the computation of interaural time disparities (ITDs), a cue used to process sound source location. The co-release expressed at these synapses is heavily activity dependent, and generally occurs when input rates are high. This circuitry, in both birds and mammals, relies on inhibitory input to maintain the temporal precision necessary for ITD encoding. Studies of co-release in other brain regions suggest that GABA and glycine receptors (GlyRs) interact via cross-suppressive modulation of receptor conductance. We performed in vitro whole-cell recordings in several nuclei of the chicken brainstem auditory circuit to assess whether this cross-suppressive phenomenon was evident in the avian brainstem. We evaluated the effect of pressure-puff applied glycine on synaptically evoked inhibitory currents in nucleus magnocellularis (NM) and the superior olivary nucleus (SON). Glycine pre-application reduced the amplitude of inhibitory postsynaptic currents (IPSCs) evoked during a 100 Hz train stimulus in both nuclei. This apparent glycinergic modulation was blocked in the presence of strychnine. Further experiments showed that this modulation did not depend on postsynaptic biochemical interactions such as phosphatase activity, or direct interactions between GABA and GlyR proteins. Rather, voltage clamp experiments in which we manipulated Cl− flux during agonist application suggest that activation of one receptor will modulate the conductance of the other via local changes in Cl− ion concentration within microdomains of the postsynaptic membrane.
Collapse
Affiliation(s)
- Matthew J Fischl
- Department of Biological Sciences, Lehigh University Bethlehem, PA, USA
| | - R Michael Burger
- Department of Biological Sciences, Lehigh University Bethlehem, PA, USA
| |
Collapse
|
18
|
Caras ML. Estrogenic modulation of auditory processing: a vertebrate comparison. Front Neuroendocrinol 2013; 34:285-99. [PMID: 23911849 PMCID: PMC3788044 DOI: 10.1016/j.yfrne.2013.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/18/2013] [Accepted: 07/21/2013] [Indexed: 11/30/2022]
Abstract
Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and mayprovide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances.
Collapse
Affiliation(s)
- Melissa L Caras
- Neurobiology and Behavior Graduate Program, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA; Virginia Merrill Bloedel Hearing Research Center, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA.
| |
Collapse
|
19
|
The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris. J Neurosci 2013; 33:3927-38. [PMID: 23447603 DOI: 10.1523/jneurosci.2377-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the nucleus laminaris (NL) of birds detect the coincidence of binaural excitatory inputs from the nucleus magnocellularis (NM) on both sides and process the interaural time differences (ITDs) for sound localization. Sustained inhibition from the superior olivary nucleus is known to control the gain of coincidence detection, which allows the sensitivity of NL neurons to ITD tolerate strong-intensity sound. Here, we found a phasic inhibition in chicken brain slices that follows the ipsilateral NM inputs after a short time delay, sharpens coincidence detection, and may enhance ITD sensitivity in low-frequency NL neurons. GABA-positive small neurons are distributed in and near the NL. These neurons generate IPSCs in NL neurons when photoactivated by a caged glutamate compound, suggesting that these GABAergic neurons are interneurons that mediate phasic inhibition. These IPSCs have fast decay kinetics that is attributable to the α1-subunit of the GABAA receptor, the expression of which dominates in the low-frequency region of the NL. Model simulations demonstrate that phasic IPSCs narrow the time window of coincidence detection and increase the contrast of ITD-tuning during low-level, low-frequency excitatory input. Furthermore, cooperation of the phasic and sustained inhibitions effectively increases the contrast of ITD-tuning over a wide range of excitatory input levels. We propose that the complementary interaction between phasic and sustained inhibitions is the neural mechanism that regulates ITD sensitivity for low-frequency sound in the NL.
Collapse
|
20
|
Dondzillo A, Thornton JL, Tollin DJ, Klug A. Manufacturing and using piggy-back multibarrel electrodes for in vivo pharmacological manipulations of neural responses. J Vis Exp 2013:e4358. [PMID: 23354055 PMCID: PMC3582659 DOI: 10.3791/4358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo recordings from single neurons allow an investigator to examine the firing properties of neurons, for example in response to sensory stimuli. Neurons typically receive multiple excitatory and inhibitory afferent and/or efferent inputs that integrate with each other, and the ultimate measured response properties of the neuron are driven by the neural integrations of these inputs. To study information processing in neural systems, it is necessary to understand the various inputs to a neuron or neural system, and the specific properties of these inputs. A powerful and technically relatively simple method to assess the functional role of certain inputs that a given neuron is receiving is to dynamically and reversibly suppress or eliminate these inputs, and measure the changes in the neuron's output caused by this manipulation. This can be accomplished by pharmacologically altering the neuron's immediate environment with piggy-back multibarrel electrodes. These electrodes consist of a single barrel recording electrode and a multibarrel drug electrode that can carry up to 4 different synaptic agonists or antagonists. The pharmacological agents can be applied iontophoretically at desired times during the experiment, allowing for time-controlled delivery and reversible reconfiguration of synaptic inputs. As such, pharmacological manipulation of the microenvironment represents a powerful and unparalleled method to test specific hypotheses about neural circuit function. Here we describe how piggy-back electrodes are manufactured, and how they are used during in vivo experiments. The piggy-back system allows an investigator to combine a single barrel recording electrode of any arbitrary property (resistance, tip size, shape etc) with a multibarrel drug electrode. This is a major advantage over standard multi-electrodes, where all barrels have more or less similar shapes and properties. Multibarrel electrodes were first introduced over 40 years ago 1-3, and have undergone a number of design improvements 2,3 until the piggy-back type was introduced in the 1980s 4,5. Here we present a set of important improvements in the laboratory production of piggy-back electrodes that allow for deep brain penetration in intact in vivo animal preparations due to a relatively thin electrode shaft that causes minimal damage. Furthermore these electrodes are characterized by low noise recordings, and have low resistance drug barrels for very effective iontophoresis of the desired pharmacological agents.
Collapse
Affiliation(s)
- Anna Dondzillo
- Department of Physiology & Biophysics, University of Colorado Medical Campus, USA
| | | | | | | |
Collapse
|
21
|
Korn MJ, Koppel SJ, Li LH, Mehta D, Mehta SB, Seidl AH, Cramer KS. Astrocyte-secreted factors modulate the developmental distribution of inhibitory synapses in nucleus laminaris of the avian auditory brainstem. J Comp Neurol 2012; 520:1262-77. [PMID: 22020566 DOI: 10.1002/cne.22786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nucleus laminaris (NL) neurons in the avian auditory brainstem are coincidence detectors necessary for the computation of interaural time differences used in sound localization. In addition to their excitatory inputs from nucleus magnocellularis, NL neurons receive inhibitory inputs from the superior olivary nucleus (SON) that greatly improve coincidence detection in mature animals. The mechanisms that establish mature distributions of inhibitory inputs to NL are not known. We used the vesicular GABA transporter (VGAT) as a marker for inhibitory presynaptic terminals to study the development of inhibitory inputs to NL between embryonic day 9 (E9) and E17. VGAT immunofluorescent puncta were first seen sparsely in NL at E9. The density of VGAT puncta increased with development, first within the ventral NL neuropil region and subsequently throughout both the ventral and dorsal dendritic neuropil, with significantly fewer terminals in the cell body region. A large increase in density occurred between E13–15 and E16–17, at a developmental stage when astrocytes that express glial fibrillary acidic protein (GFAP) become mature. We cultured E13 brainstem slices together with astrocyte-conditioned medium (ACM) obtained from E16 brainstems and found that ACM, but not control medium, increased the density of VGAT puncta. This increase was similar to that observed during normal development. Astrocyte-secreted factors interact with the terminal ends of SON axons to increase the number of GABAergic terminals. These data suggest that factors secreted from GFAP-positive astrocytes promote maturation of inhibitory pathways in the auditory brainstem.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behavior, University of California at Irvine, Irvine, California 92697-4550, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Tabor KM, Coleman WL, Rubel EW, Burger RM. Tonotopic organization of the superior olivary nucleus in the chicken auditory brainstem. J Comp Neurol 2012; 520:1493-508. [PMID: 22102107 DOI: 10.1002/cne.22807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Topographic maps are salient features of neuronal organization in sensory systems. Inhibitory components of neuronal circuitry are often embedded within this organization, making them difficult to isolate experimentally. The auditory system provides opportunities to study the topographic organization of inhibitory long-range projection nuclei, such as the superior olivary nucleus (SON). We analyzed the topographic organization of response features of neurons in the SON of chickens. Quantitative methods were developed to assess and communicate this organization. These analyses led to three main conclusions: 1) sound frequency is linearly arranged from dorsal (low frequencies) to ventral (high frequencies) in SON; 2) this tonotopic organization is less precise than the organization of the excitatory nuclei in the chicken auditory brainstem; and 3) neurons with different response patterns to pure tone stimuli are interspersed throughout the SON and show similar tonotopic organizations. This work provides a predictive model to determine the optimal stimulus frequency for a neuron from its spatial location in the SON.
Collapse
Affiliation(s)
- Kathryn M Tabor
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery and Neurobiology and Behavior Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells with BDs and temporal response bandwidths that mirror the range of species-specific vocalizations. Neural tuning to stimulus duration appears to be universal among hearing vertebrates. Herein, we test the hypothesis that neural mechanisms underlying duration selectivity may be similar across vertebrates. We instantiated theoretical mechanisms of duration tuning in computational models to systematically explore the roles of excitatory and inhibitory receptor strengths, input latencies, and membrane time constant on duration tuning response profiles. We demonstrate that models of duration tuning with similar neural circuitry can be tuned with species-specific parameters to reproduce the responses of in vivo DTNs from the auditory midbrain. To relate and validate model output to in vivo responses, we collected electrophysiological data from the inferior colliculus of the awake big brown bat, Eptesicus fuscus, and present similar in vivo data from the published literature on DTNs in rats, mice, and frogs. Our results support the hypothesis that neural mechanisms of duration tuning may be shared across vertebrates despite species-specific differences in duration selectivity. Finally, we discuss how the underlying mechanisms of duration selectivity relate to other auditory feature detectors arising from the interaction of neural excitation and inhibition.
Collapse
|
24
|
Fischl MJ, Combs TD, Klug A, Grothe B, Burger RM. Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location. J Physiol 2012; 590:3047-66. [PMID: 22473782 DOI: 10.1113/jphysiol.2011.226233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interaural time disparities (ITDs) are the primary cues for localisation of low-frequency sound stimuli. ITDs are computed by coincidence-detecting neurones in the medial superior olive (MSO) in mammals. Several previous studies suggest that control of synaptic gain is essential for maintaining ITD selectivity as stimulus intensity increases. Using acute brain slices from postnatal day 7 to 24 (P7–P24) Mongolian gerbils, we confirm that activation of GABAB receptors reduces the amplitude of excitatory and inhibitory synaptic currents to the MSO and, moreover, show that the decay kinetics of IPSCs are slowed in mature animals. During repetitive stimuli, activation of GABAB receptors reduced the amount of depression observed, while PSC suppression and the slowed kinetics were maintained. Additionally, we used physiological and modelling approaches to test the potential impact of GABAB activation on ITD encoding in MSO neurones. Current clamp recordings from MSO neurones were made while pharmacologically isolated excitatory inputs were bilaterally stimulated using pulse trains that simulate ITDs in vitro. MSO neurones showed strong selectivity for bilateral delays. Application of both GABAB agonists and antagonists demonstrate that GABAB modulation of synaptic input can sharpen ITD selectivity. We confirmed and extended these results in a computational model that allowed for independent manipulation of each GABAB-dependent effect. Modelling suggests that modulation of both amplitude and kinetics of synaptic inputs by GABAB receptors can improve precision of ITD computation. Our studies suggest that in vivo modulation of synaptic input by GABAB receptors may act to preserve ITD selectivity across various stimulus conditions.
Collapse
Affiliation(s)
- Matthew J Fischl
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
25
|
Song N, Shi H, Li C, Yin S. Differences in developmental changes in GABAergic response between bushy and stellate cells in the rat anteroventral cochlear nucleus. Int J Dev Neurosci 2012; 30:397-403. [DOI: 10.1016/j.ijdevneu.2012.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/08/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ning‐ying Song
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Hai‐bo Shi
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Chun‐yan Li
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| | - Shan‐kai Yin
- Department of OtorhinolaryngologyAffiliated Sixth People's Hospital of Shanghai Jiaotong University600 Yishan RoadShanghai200233China
| |
Collapse
|
26
|
Brette R. Spiking models for level-invariant encoding. Front Comput Neurosci 2012; 5:63. [PMID: 22291634 PMCID: PMC3254166 DOI: 10.3389/fncom.2011.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/25/2011] [Indexed: 11/28/2022] Open
Abstract
Levels of ecological sounds vary over several orders of magnitude, but the firing rate and membrane potential of a neuron are much more limited in range. In binaural neurons of the barn owl, tuning to interaural delays is independent of level differences. Yet a monaural neuron with a fixed threshold should fire earlier in response to louder sounds, which would disrupt the tuning of these neurons. How could spike timing be independent of input level? Here I derive theoretical conditions for a spiking model to be insensitive to input level. The key property is a dynamic change in spike threshold. I then show how level invariance can be physiologically implemented, with specific ionic channel properties. It appears that these ingredients are indeed present in monaural neurons of the sound localization pathway of birds and mammals.
Collapse
Affiliation(s)
- Romain Brette
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes Paris, France
| |
Collapse
|
27
|
Ashida G, Carr CE. Sound localization: Jeffress and beyond. Curr Opin Neurobiol 2011; 21:745-51. [PMID: 21646012 PMCID: PMC3192259 DOI: 10.1016/j.conb.2011.05.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/05/2011] [Accepted: 05/11/2011] [Indexed: 12/01/2022]
Abstract
Many animals use the interaural time differences (ITDs) to locate the source of low frequency sounds. The place coding theory proposed by Jeffress has long been a dominant model to account for the neural mechanisms of ITD detection. Recent research, however, suggests a wider range of strategies for ITD coding in the binaural auditory brainstem. We discuss how ITD is coded in avian, mammalian, and reptilian nervous systems, and review underlying synaptic and cellular properties that enable precise temporal computation. The latest advances in recording and analysis techniques provide powerful tools for both overcoming and utilizing the large field potentials in these nuclei.
Collapse
Affiliation(s)
- Go Ashida
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Catherine E. Carr
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
28
|
Chanda S, Xu-Friedman MA. Excitatory modulation in the cochlear nucleus through group I metabotropic glutamate receptor activation. J Neurosci 2011; 31:7450-5. [PMID: 21593328 PMCID: PMC3104504 DOI: 10.1523/jneurosci.1193-11.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 02/06/2023] Open
Abstract
Activation of group I metabotropic glutamate receptors (mGluRs) has been suggested to modulate development of auditory neurons. However, the acute effects of mGluR activation on physiological response properties are unclear. To address this, we studied the effects of mGluRs in bushy cells (BCs) of the mammalian anteroventral cochlear nucleus (AVCN). Activation of mGluRs with dihydroxyphenylglycine (DHPG) caused depolarization of BCs in mice as old as P42, but did not affect neurotransmitter release by presynaptic auditory nerve (AN) fibers. Application of mGluR antagonists indicated that mGluRs are tonically active, and are highly sensitive to small elevations in ambient glutamate by the glutamate reuptake blocker threo-β-benzyloxyaspartic acid (TBOA). mGluR-mediated depolarization enhanced the firing probability in response to AN stimulation, and reduced the latency and jitter. Furthermore, excitation through postsynaptic mGluRs can significantly counterbalance the inhibitory effects of presynaptic GABA(B) receptors. Thus, interaction between these two modulatory pathways may provide additional flexibility for fine-tuning the BC relay.
Collapse
Affiliation(s)
- Soham Chanda
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Matthew A. Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
29
|
Burger RM, Fukui I, Ohmori H, Rubel EW. Inhibition in the balance: binaurally coupled inhibitory feedback in sound localization circuitry. J Neurophysiol 2011; 106:4-14. [PMID: 21525367 DOI: 10.1152/jn.00205.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaural time differences (ITDs) are the primary cue animals, including humans, use to localize low-frequency sounds. In vertebrate auditory systems, dedicated ITD processing neural circuitry performs an exacting task, the discrimination of microsecond differences in stimulus arrival time at the two ears by coincidence-detecting neurons. These neurons modulate responses over their entire dynamic range to sounds differing in ITD by mere hundreds of microseconds. The well-understood function of this circuitry in birds has provided a fruitful system to investigate how inhibition contributes to neural computation at the synaptic, cellular, and systems level. Our recent studies in the chicken have made significant progress in bringing together many of these findings to provide a cohesive picture of inhibitory function.
Collapse
Affiliation(s)
- R Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA.
| | | | | | | |
Collapse
|
30
|
Grothe B, Koch U. Dynamics of binaural processing in the mammalian sound localization pathway--the role of GABA(B) receptors. Hear Res 2011; 279:43-50. [PMID: 21447375 DOI: 10.1016/j.heares.2011.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 01/01/2023]
Abstract
The initial binaural processing in the superior olive represents the fastest computation known in the entire mammalian brain. Although the binaural system has to perform under very different and often highly dynamic acoustic conditions, the integration of binaural information in the superior olivary complex (SOC) has not been considered to be adaptive or dynamic itself. Recent evidence, however, shows that the initial processing of interaural level and interaural time differences relies on well-adjusted interactions of both the excitatory and the inhibitory projections, respectively. Under static conditions, these inputs seem to be tightly balanced, but may also require dynamic adjustment for proper function when the acoustic environment changes. GABA(B) receptors are at least one mechanism rendering the system more dynamic than considered so far. A comprehensive description of how binaural processing in the SOC is dynamically regulated by GABA(B) receptors in adults and in early development is important for understanding how spatial auditory processing changes with acoustic context.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Großhaderner Str. 2-4, D-82152 Martinsried-Planegg, Germany.
| | | |
Collapse
|
31
|
Coleman WL, Fischl MJ, Weimann SR, Burger RM. GABAergic and glycinergic inhibition modulate monaural auditory response properties in the avian superior olivary nucleus. J Neurophysiol 2011; 105:2405-20. [PMID: 21368002 DOI: 10.1152/jn.01088.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superior olivary nucleus (SON) is the primary source of inhibition in the avian auditory brainstem. While much is known about the role of inhibition at the SON's target nuclei, little is known about how the SON itself processes auditory information or how inhibition modulates these properties. Additionally, the synaptic physiology of inhibitory inputs within the SON has not been described. We investigated these questions using in vivo and in vitro electrophysiological techniques in combination with immunohistochemistry in the chicken, an organism for which the auditory brainstem has otherwise been well characterized. We provide a thorough characterization of monaural response properties in the SON and the influence of inhibitory input in shaping these features. We found that the SON contains a heterogeneous mixture of response patterns to acoustic stimulation and that in most neurons these responses are modulated by both GABAergic and glycinergic inhibitory inputs. Interestingly, many SON neurons tuned to low frequencies have robust phase-locking capability and the precision of this phase locking is enhanced by inhibitory inputs. On the synaptic level, we found that evoked and spontaneous inhibitory postsynaptic currents (IPSCs) within the SON are also mediated by both GABAergic and glycinergic inhibition in all neurons tested. Analysis of spontaneous IPSCs suggests that most SON cells receive a mixture of both purely GABAergic terminals, as well as terminals from which GABA and glycine are coreleased. Evidence for glycinergic signaling within the SON is a novel result that has important implications for understanding inhibitory function in the auditory brainstem.
Collapse
Affiliation(s)
- W L Coleman
- Dept. of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA 18015, USA
| | | | | | | |
Collapse
|
32
|
Howard MA, Rubel EW. Dynamic spike thresholds during synaptic integration preserve and enhance temporal response properties in the avian cochlear nucleus. J Neurosci 2010; 30:12063-74. [PMID: 20826669 PMCID: PMC3390778 DOI: 10.1523/jneurosci.1840-10.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/24/2010] [Accepted: 07/18/2010] [Indexed: 11/21/2022] Open
Abstract
Neurons of the cochlear nuclei are anatomically and physiologically specialized to optimally encode temporal and spectral information about sound stimuli, in part for binaural auditory processing. The avian cochlear nucleus magnocellularis (NM) integrates excitatory eighth nerve inputs and depolarizing GABAergic inhibition such that temporal fidelity is enhanced across the synapse. The biophysical mechanisms of this depolarizing inhibition, and its role in temporal processing, are not fully understood. We used whole-cell electrophysiology and computational modeling to examine how subthreshold excitatory inputs are integrated and how depolarizing IPSPs affect spike thresholds and synaptic integration by chick NM neurons. We found that both depolarizing inhibition and subthreshold excitatory inputs cause voltage threshold accommodation, nonlinear temporal summation, and shunting. Inhibition caused such large changes in threshold that subthreshold excitatory inputs were followed by a refractory period. We hypothesize that these large shifts in threshold eliminate spikes to asynchronous inputs, providing a mechanism for the enhanced temporal fidelity seen across the eighth nerve/cochlear nucleus synapse. Thus, depolarizing inhibition and threshold shifting hone the temporal response properties of this system so as to enhance the temporal fidelity that is essential for auditory perception.
Collapse
Affiliation(s)
- MacKenzie A. Howard
- Department of Physiology and Biophysics and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195
| | - Edwin W Rubel
- Department of Physiology and Biophysics and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|