1
|
Ide AD, Grainger S. WNT9A and WNT9B in Development and Disease. Differentiation 2025; 142:100820. [PMID: 39616032 PMCID: PMC11911101 DOI: 10.1016/j.diff.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.
Collapse
Affiliation(s)
- Amber D Ide
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
2
|
Young CA, Burt E, Munnamalai V. A cochlear progenitor pool influences patterning of the mammalian sensory epithelium via MYBL2. Development 2024; 151:dev202635. [PMID: 39254648 PMCID: PMC11423912 DOI: 10.1242/dev.202635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.
Collapse
Affiliation(s)
- Caryl A. Young
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Emily Burt
- Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Vidhya Munnamalai
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
3
|
Young CA, Burt E, Munnamalai V. Sensory progenitors influence patterning of the mammalian auditory sensory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566920. [PMID: 38014307 PMCID: PMC10680690 DOI: 10.1101/2023.11.13.566920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
During embryonic development Wnt signaling has been shown to influence proliferation and sensory formation in the cochlea. How the dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt regulated gene, Mybl2, which was already known to be important for proliferation, in influencing patterning and determining the size of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function cochleas, we show that Mybl2 simultaneously specifies the progenitor niche and the size of the sensory domain, and influences the positioning of the medial sensory domain boundary via Jag1 regulation during the mid-gestational stages. Mybl2 conditional knockout resulted in a decrease of proliferation within the progenitor niche. During the late embryonic stages, conditional knockout of Mybl2 produced a wider sensory epithelium across the radial axis with an increase in ectopic inner hair cell formation. These data suggest that Mybl2 -positive progenitors play a role in boundary formation and patterning the sensory epithelium. Summary Statement Mybl2 is a Wnt-regulated gene encoding a transcription factor that is expressed in the cochlear progenitor niche and influences the boundary formation between the niche and the sensory domain during mid-cochlear developmental stages, thereby impacting the size of the sensory epithelium.
Collapse
|
4
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
5
|
Generation of innervated cochlear organoid recapitulates early development of auditory unit. Stem Cell Reports 2022; 18:319-336. [PMID: 36584686 PMCID: PMC9860115 DOI: 10.1016/j.stemcr.2022.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Functional cochlear hair cells (HCs) innervated by spiral ganglion neurons (SGNs) are essential for hearing, whereas robust models that recapitulate the peripheral auditory circuity are still lacking. Here, we developed cochlear organoids with functional peripheral auditory circuity in a staging three-dimensional (3D) co-culture system by initially reprogramming cochlear progenitor cells (CPCs) with increased proliferative potency that could be long-term expanded, then stepwise inducing the differentiation of cochlear HCs, as well as the outgrowth of neurites from SGNs. The function of HCs and synapses within organoids was confirmed by a series of morphological and electrophysiological evaluations. Single-cell mRNA sequencing revealed the differentiation trajectories of CPCs toward the major cochlear cell types and the dynamic gene expression during organoid HC development, which resembled the pattern of native HCs. We established the cochlear organoids with functional synapses for the first time, which provides a platform for deciphering the mechanisms of sensorineural hearing loss.
Collapse
|
6
|
Woods LM, Ali FR, Gomez R, Chernukhin I, Marcos D, Parkinson LM, Tayoun ANA, Carroll JS, Philpott A. Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics 2022; 23:255. [PMID: 35366798 PMCID: PMC8977041 DOI: 10.1186/s12864-022-08495-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an “on-target” pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. Results Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. Conclusions Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08495-8.
Collapse
|
7
|
Transcriptome-Guided Identification of Drugs for Repurposing to Treat Age-Related Hearing Loss. Biomolecules 2022; 12:biom12040498. [PMID: 35454087 PMCID: PMC9028743 DOI: 10.3390/biom12040498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related hearing loss (ARHL) or presbycusis is a prevalent condition associated with social isolation, cognitive impairment, and dementia. Age-related changes in the cochlea, the auditory portion of the inner ear, are the primary cause of ARHL. Unfortunately, there are currently no pharmaceutical approaches to treat ARHL. To examine the biological processes underlying age-related changes in the cochlea and identify candidate drugs for rapid repurposing to treat ARHL, we utilized bulk RNA sequencing to obtain transcriptomes from the functional substructures of the cochlea—the sensorineural structures, including the organ of Corti and spiral ganglion neurons (OC/SGN) and the stria vascularis and spiral ligament (SV/SL)—in young (6-week-old) and old (2-year-old) C57BL/6 mice. Transcriptomic analyses revealed both overlapping and unique patterns of gene expression and gene enrichment between substructures and with ageing. Based on these age-related transcriptional changes, we queried the protein products of genes differentially expressed with ageing in DrugBank and identified 27 FDA/EMA-approved drugs that are suitable to be repurposed to treat ARHL. These drugs target the protein products of genes that are differentially expressed with ageing uniquely in either the OC/SGN or SV/SL and that interrelate diverse biological processes. Further transcriptomic analyses revealed that most genes differentially expressed with ageing in both substructures encode protein products that are promising drug target candidates but are, nevertheless, not yet linked to approved drugs. Thus, with this study, we apply a novel approach to characterize the druggable genetic landscape for ARHL and propose a list of drugs to test in pre-clinical studies as potential treatment options for ARHL.
Collapse
|
8
|
Oliver BL, Young CA, Munnamalai V. Spatial and temporal expression of PORCN is highly dynamic in the developing mouse cochlea. Gene Expr Patterns 2021; 42:119214. [PMID: 34547456 DOI: 10.1016/j.gep.2021.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The mammalian organ of Corti is a highly specialized sensory organ of the cochlea with a fine-grained pattern that is essential for auditory function. The sensory epithelium, the organ of Corti consists of a single row of inner hair cells and three rows of outer hair cells that are intercalated by support cells in a mosaic pattern. Previous studies show that the Wnt pathway regulates proliferation, promotes medial compartment formation in the cochlea, differentiation of the mechanosensory hair cells and axon guidance of Type II afferent neurons. WNT ligand expressions are highly dynamic throughout development but are insufficient to explain the roles of the Wnt pathway. We address a potential way for how WNTs specify the medial compartment by characterizing the expression of Porcupine (PORCN), an O-acyltransferase that is required for WNT secretion. We show PORCN expression across embryonic ages (E)12.5 - E14.5, E16.5, and postnatal day (P)1. Our results showed enriched PORCN in the medial domains during early stages of development, indicating that WNTs have a stronger influence on patterning of the medial compartment. PORCN was rapidly downregulated after E14.5, following the onset of sensory cell differentiation; residual expression remained in some hair cells and supporting cells. On E14.5 and E16.5, we also examined the spatial expression of Gsk3β, an inhibitor of canonical Wnt signaling to determine its potential role in radial patterning of the cochlea. Gsk3β was broadly expressed across the radial axis of the epithelium; therefore, unlikely to control WNT-mediated medial specification. In conclusion, the spatial expression of PORCN enriches WNT secretion from the medial domains of the cochlea to influence the specification of cell fates in the medial sensory domain.
Collapse
Affiliation(s)
| | - Caryl A Young
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States
| | - Vidhya Munnamalai
- The Jackson Laboratory, Bar Harbor, ME, 04609, United States; The University of Maine, Graduate School of Biomedical Sciences and Engineering, Orono, ME, 04469, United States.
| |
Collapse
|
9
|
Caus Capdevila MQ, Sienknecht UJ, Köppl C. Developmental maturation of presynaptic ribbon numbers in chicken basilar-papilla hair cells and its perturbation by long-term overexpression of Wnt9a. Dev Neurobiol 2021; 81:817-832. [PMID: 34309221 DOI: 10.1002/dneu.22845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/20/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
The avian basilar papilla is a valuable model system for exploring the developmental determination and differentiation of sensory hair cells and their innervation. In the mature basilar papilla, hair cells form a well-known continuum between two extreme types-tall and short hair cells-that differ strikingly in their innervation. Previous work identified Wnt9a as a crucial factor in this differentiation. Here, we quantified the number and volume of immunolabelled presynaptic ribbons in tall and short hair cells of chickens, from developmental stages shortly after ribbons first appear to the mature posthatching condition. Two longitudinal locations were sampled, responding to best frequencies of approximately 1 kHz and approximately 5.5 kHz when mature. We found significant reductions of ribbon number during normal development in the tall-hair-cell domains, but stable, low numbers in the short-hair-cell domains. Exposing developing hair cells to continuous, excessive Wnt9a levels (through virus-mediated overexpression) led to transiently abnormal high numbers of ribbons and a delayed reduction of ribbon numbers at all sampled locations. Thus, (normally) short-hair-cell domains also showed tall-hair-cell like behaviour, confirming previous findings (Munnamalai et al., 2017). However, at 3 weeks posthatching, ribbon numbers had decreased to the location-specific typical values of control hair cells at all sampled locations. Furthermore, as shown previously, mature hair cells at the basal, high-frequency location harboured larger ribbons than more apically located hair cells. This was true for both normal and Wnt9a-overexposed basilar papillae.
Collapse
Affiliation(s)
- M Queralt Caus Capdevila
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulrike J Sienknecht
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Żak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 2021; 10:59540. [PMID: 33704062 PMCID: PMC7993990 DOI: 10.7554/elife.59540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory and vestibular organs of the inner ear and the neurons that innervate them originate from Sox2-positive and Notch-active neurosensory domains specified at early stages of otic development. Sox2 is initially present throughout the otic placode and otocyst, and then it becomes progressively restricted to a ventro-medial domain. Using gain- and loss-of-function approaches in the chicken otocyst, we show that these early changes in Sox2 expression are regulated in a dose-dependent manner by Wnt/beta-catenin signalling. Both high and very low levels of Wnt activity repress Sox2 and neurosensory competence. However, intermediate levels allow the maintenance of Sox2 expression and sensory organ formation. We propose that a dorso-ventral (high-to-low) gradient and wave of Wnt activity initiated at the dorsal rim of the otic placode progressively restricts Sox2 and Notch activity to the ventral half of the otocyst, thereby positioning the neurosensory competent domains in the inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Matsunaga M, Kita T, Yamamoto R, Yamamoto N, Okano T, Omori K, Sakamoto S, Nakagawa T. Initiation of Supporting Cell Activation for Hair Cell Regeneration in the Avian Auditory Epithelium: An Explant Culture Model. Front Cell Neurosci 2020; 14:583994. [PMID: 33281558 PMCID: PMC7688741 DOI: 10.3389/fncel.2020.583994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sensorineural hearing loss is a common disability often caused by the loss of sensory hair cells in the cochlea. Hair cell (HCs) regeneration has long been the main target for the development of novel therapeutics for sensorineural hearing loss. In the mammalian cochlea, hair cell regeneration is limited, but the auditory epithelia of non-mammalian organisms retain the capacity for hair cell regeneration. In the avian basilar papilla (BP), supporting cells (SCs), which give rise to regenerated hair cells, are usually quiescent. Hair cell loss induces both direct transdifferentiation and mitotic division of supporting cells. Here, we established an explant culture model for hair cell regeneration in chick basilar papillae and validated it for investigating the initial phase of hair cell regeneration. The histological assessment demonstrated hair cell regeneration via direct transdifferentiation of supporting cells. Labeling with 5-ethynyl-2′-deoxyuridine (EdU) revealed the occurrence of mitotic division in the supporting cells at specific locations in the basilar papillae, while no EdU labeling was observed in newly generated hair cells. RNA sequencing indicated alterations in known signaling pathways associated with hair cell regeneration, consistent with previous findings. Also, unbiased analyses of RNA sequencing data revealed novel genes and signaling pathways that may be related to the induction of supporting cell activation in the chick basilar papillae. These results indicate the advantages of our explant culture model of the chick basilar papillae for exploring the molecular mechanisms of hair cell regeneration.
Collapse
Affiliation(s)
- Mami Matsunaga
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Kita
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Okano
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Najarro EH, Huang J, Jacobo A, Quiruz LA, Grillet N, Cheng AG. Dual regulation of planar polarization by secreted Wnts and Vangl2 in the developing mouse cochlea. Development 2020; 147:dev.191981. [PMID: 32907846 DOI: 10.1242/dev.191981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins localize asymmetrically to instruct cell polarity within the tissue plane, with defects leading to deformities of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily conserved polarity cues, yet Wnt mutants display variable PCP defects; thus, how Wnts regulate PCP remains unresolved. Here, we have used the developing cochlea as a model system to show that secreted Wnts regulate PCP through polarizing a specific subset of PCP proteins. Conditional deletion of Wntless or porcupine, both of which are essential for secretion of Wnts, caused misrotated sensory cells and shortened cochlea - both hallmarks of PCP defects. Wntless-deficient cochleae lacked the polarized PCP components dishevelled 1/2 and frizzled 3/6, while other PCP proteins (Vangl1/2, Celsr1 and dishevelled 3) remained localized. We identified seven Wnt paralogues, including the major PCP regulator Wnt5a, which was, surprisingly, dispensable for planar polarization in the cochlea. Finally, Vangl2 haploinsufficiency markedly accentuated sensory cell polarization defects in Wntless-deficient cochlea. Together, our study indicates that secreted Wnts and Vangl2 coordinate to ensure proper tissue polarization during development.
Collapse
Affiliation(s)
- Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Huang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adrian Jacobo
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lee A Quiruz
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Miao N, Lai X, Zeng Z, Cai W, Chen W, Sun T. Differential expression of microRNAs in the human fetal left and right cerebral cortex. Mol Biol Rep 2020; 47:6573-6586. [PMID: 32808117 DOI: 10.1007/s11033-020-05708-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022]
Abstract
Human brain is anatomically and functionally asymmetric. How brain asymmetry is initiated and established during fetal development is poorly understood. Accumulating evidence has shown that microRNAs (miRNAs) play crucial roles in brain development and function. In this study, we investigate miRNA expression profiles in left and right hemispheres of human fetal brains at 12 weeks post conception (PC), and identify 42 miRNAs showing differential expression between two hemispheres using Affymetrix microarray analyses. Target genes for left- and right-biased miRNAs are largely involved in developmental and functional regulations in the cortex such as axon guidance, GABAergic synapse and dopaminergic synapse pathways. Moreover, we find that predicted targets associated with canonical and non-canonical WNT signaling pathway show variations and differential expression between two hemispheres in response to left- and right-biased miRNAs. Our results highlight a potential role of miRNAs in regulating asymmetric development of human fetal brains.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China
| | - Xiaodong Lai
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China.
| |
Collapse
|
14
|
Munnamalai V, Fekete DM. The acquisition of positional information across the radial axis of the cochlea. Dev Dyn 2019; 249:281-297. [PMID: 31566832 DOI: 10.1002/dvdy.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory Bar Harbor Maine
- Graduate Program of Biomedical Sciences and EngineeringUniversity of Maine Orono Maine
- The Neuroscience ProgramSackler School of Biomedical Sciences, Tufts University Boston Massachusetts
| | - Donna M. Fekete
- Department of Biological SciencesPurdue University West Lafayette Indiana
- Purdue Institute for Integrative Neuroscience West Lafayette Indiana
- Purdue Center for Cancer Research West Lafayette Indiana
| |
Collapse
|
15
|
Coate TM, Scott MK, Gurjar MC. Current concepts in cochlear ribbon synapse formation. Synapse 2019; 73:e22087. [PMID: 30592086 PMCID: PMC6573016 DOI: 10.1002/syn.22087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated "sensorineural" structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon-type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed "synaptopathy") as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.
Collapse
Affiliation(s)
- Thomas M. Coate
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| | - M. Katie Scott
- Department of Biological Sciences and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907. USA
| | - Mansa C. Gurjar
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| |
Collapse
|
16
|
Scott MK, Yue J, Biesemeier DJ, Lee JW, Fekete DM. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear. J Comp Neurol 2019; 527:1196-1209. [PMID: 30520042 PMCID: PMC6401314 DOI: 10.1002/cne.24595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Class III Semaphorin (Sema) secreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used in situ hybridization or immunohistochemistry to map the expression of Sema3D, Sema3F, Nrp1, Nrp2, and PlxnA1 in the chicken (Gallus gallus) inner ear from embryonic day (E)5-E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. Sema3D expression flanking the sensory tissue in vestibular organs suggests that it may repel Nrp2- and PlxnA1-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5-E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8-E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, Sema3D in the future tegmentum vasculosum opposes Nrp1 and PlxnA1 in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. Sema3D immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.
Collapse
Affiliation(s)
- M. Katie Scott
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Jia Yue
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | - Joo Won Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|