1
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
2
|
Zheng 征亦诚 Y, Zhou 周信羽 X, Moseley SC, Ragsdale SM, Alday LJ, Wu 吴畏 W, Wilber AA. A Hippocampal-Parietal Network for Reference Frame Coordination. J Neurosci 2025; 45:e1782242025. [PMID: 39909564 PMCID: PMC12019118 DOI: 10.1523/jneurosci.1782-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025] Open
Abstract
Navigating space and forming memories based on spatial experience are crucial for survival, including storing memories in an allocentric (map-like) framework and conversion into egocentric (body-centered) action. The hippocampus and parietal cortex (PC) comprise a network for coordinating these reference frames, though the mechanism remains unclear. We used a task requiring remembering previous spatial locations to make correct future action and observed that hippocampus can encode the allocentric place, while PC encodes upcoming actions and relays this to hippocampus. Transformation from location to action unfolds gradually, with "Came From" signals diminishing and future action representations strengthening. PC sometimes encodes previous spatial locations in a route-based reference frame and conveys this to hippocampus. The signal for the future location appears first in PC, and then in hippocampus, in the form of an egocentric direction of future goal locations, suggesting egocentric encoding recently observed in hippocampus may originate in PC (or another "upstream" structure). Bidirectional signaling is apparent between PC and hippocampus and suggests a coordinated mechanism for integrating allocentric, route-centered, and egocentric spatial reference frames at the network level during navigation.
Collapse
Affiliation(s)
- Yicheng Zheng 征亦诚
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Xinyu Zhou 周信羽
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Shawn C Moseley
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Sydney M Ragsdale
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Leslie J Alday
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Wei Wu 吴畏
- Department of Statistics, Florida State University, Tallahassee, Florida 32306
| | - Aaron A Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
3
|
Solbi A, Earle FS. The Role of Sleep in Memory Consolidation and Reading in Dyslexia. J Cogn Neurosci 2025; 37:532-542. [PMID: 39620967 PMCID: PMC12097521 DOI: 10.1162/jocn_a_02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Dyslexia is a neurodevelopmental disorder characterized by reading difficulty, which has long been attributed to a phonological processing deficit. However, recent research suggests that general difficulties with learning and memory, but also in memory consolidation, may underlie disordered reading. This review article provides an overview of the relationship between learning and memory, memory consolidation during sleep, and reading and explores the emerging literature on consolidation during sleep in individuals with dyslexia. We consider evidence that sleep appears to be less effective for memory consolidation in children with dyslexia and how this may be related to their deficits in reading. This discussion highlights the need for further research to determine the extent to which atypical sleep patterns may contribute to learning deficits associated with disordered reading.
Collapse
|
4
|
Pedrosa R, Nazari M, Kergoat L, Bernard C, Mohajerani M, Stella F, Battaglia F. Hippocampal ripples coincide with "up-state" and spindles in retrosplenial cortex. Cereb Cortex 2024; 34:bhae083. [PMID: 38494417 DOI: 10.1093/cercor/bhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
During NREM sleep, hippocampal sharp-wave ripple (SWR) events are thought to stabilize memory traces for long-term storage in downstream neocortical structures. Within the neocortex, a set of distributed networks organized around retrosplenial cortex (RS-network) interact preferentially with the hippocampus purportedly to consolidate those traces. Transient bouts of slow oscillations and sleep spindles in this RS-network are often observed around SWRs, suggesting that these two activities are related and that their interplay possibly contributes to memory consolidation. To investigate how SWRs interact with the RS-network and spindles, we combined cortical wide-field voltage imaging, Electrocorticography, and hippocampal LFP recordings in anesthetized and sleeping mice. Here, we show that, during SWR, "up-states" and spindles reliably co-occur in a cortical subnetwork centered around the retrosplenial cortex. Furthermore, retrosplenial transient activations and spindles predict slow gamma oscillations in CA1 during SWRs. Together, our results suggest that retrosplenial-hippocampal interaction may be a critical pathway of information exchange between the cortex and hippocampus.
Collapse
Affiliation(s)
- Rafael Pedrosa
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Loig Kergoat
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Christophe Bernard
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille Université, UMR_S 1106, Marseille 13005, France
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge AB T1K 6 3M4, Canada
| | - Federico Stella
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Francesco Battaglia
- Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
5
|
Yuasa K, Hirosawa T, Soma D, Furutani N, Kameya M, Sano M, Kitamura K, Ueda M, Kikuchi M. Eyes-state-dependent alterations of magnetoencephalographic connectivity associated with delayed recall in Alzheimer's disease via graph theory approach. Front Psychiatry 2023; 14:1272120. [PMID: 37941968 PMCID: PMC10628524 DOI: 10.3389/fpsyt.2023.1272120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
IntroductionAlzheimer’s disease (AD) is a neurodegenerative disorder characterized by memory impairment and cognitive decline. Electroencephalography (EEG) and magnetoencephalography (MEG) studies using graph theory show altered “Small-Worldness (SW)” properties in AD. This study aimed to investigate whether eye-state-dependent alterations in SW differ between patients with AD and healthy controls, considering the symptoms of AD.MethodsNineteen patients with AD and 24 healthy controls underwent MEG under different conditions (eyes-open [EO] and eyes-closed [EC]) and the Wechsler Memory Scale-Revised (WMS-R) with delayed recall. After the signal sources were mapped onto the Desikan–Killiany brain atlas, the statistical connectivity of five frequency bands (delta, theta, alpha, beta, and gamma) was calculated using the phase lag index (PLI), and binary graphs for each frequency band were constructed based on the PLI. Next, we measured SW as a graph metric and evaluated three points: the impact of AD and experimental conditions on SW, the association between SW and delayed recall, and changes in SW across experimental conditions correlated with delayed recall.ResultsSW in the gamma band was significantly lower in patients with AD (z = −2.16, p = 0.031), but the experimental conditions did not exhibit a significant effect in any frequency band. Next, in the AD group, higher scores on delayed recall correlated with diminished SW across delta, alpha, and beta bands in the EO condition. Finally, delayed recall scores significantly predicted relative differences in the SW group in the alpha band (t = −2.98, p = 0.009).DiscussionGiven that network studies could corroborate the results of previous power spectrum studies, our findings contribute to a multifaceted understanding of functional brain networks in AD, emphasizing that the SW properties of these networks change according to disease status, cognitive function, and experimental conditions.
Collapse
Affiliation(s)
- Keigo Yuasa
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Daiki Soma
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Naoki Furutani
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masafumi Kameya
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masuhiko Sano
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Koji Kitamura
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Minehisa Ueda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Dahal P, Rauhala OJ, Khodagholy D, Gelinas JN. Hippocampal-cortical coupling differentiates long-term memory processes. Proc Natl Acad Sci U S A 2023; 120:e2207909120. [PMID: 36749719 PMCID: PMC9963434 DOI: 10.1073/pnas.2207909120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Reactivation of long-term memories enables experience-dependent strengthening, weakening, or updating of memory traces. Although coupling of hippocampal and cortical activity patterns facilitates initial memory consolidation, whether and how these patterns are involved in postreactivation memory processes are not known. Here, we monitored the hippocampal-cortical network as rats repetitively learned and retrieved spatial and nonspatial memories. We show that interactions between hippocampal sharp wave-ripples (SPW-R), cortical spindles (SPI), and cortical ripples (CXR) are jointly modulated in the absence of memory demand but independently recruited depending on the stage of memory and task type. Reconsolidation of memory after retrieval is associated with an increased and extended window of coupling between hippocampal SPW-Rs and CXRs compared to the initial consolidation. Hippocampal SPW-R and cortical spindle interactions are preferentially engaged during memory consolidation. These findings suggest that specific, time-limited patterns of oscillatory coupling can support the distinct memory processes required to flexibly manage long-term memories in a dynamic environment.
Collapse
Affiliation(s)
- Prawesh Dahal
- Department of Electrical Engineering, Columbia University, New York, NY10027
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
| | - Onni J. Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY10027
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY10027
| | - Jennifer N. Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY10032
- Department of Neurology, Columbia University Medical Center, New York, NY10032
| |
Collapse
|
7
|
Mizuseki K, Miyawaki H. Fast network oscillations during non-REM sleep support memory consolidation. Neurosci Res 2022; 189:3-12. [PMID: 36581177 DOI: 10.1016/j.neures.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The neocortex is disconnected from the outside world during sleep, which has been hypothesized to be relevant for synaptic reorganization involved in memory consolidation. Fast network oscillations, such as hippocampal sharp-wave ripples, cortical ripples, and amygdalar high-frequency oscillations, are prominent during non-REM sleep. Although these oscillations are thought to be generated by local circuit mechanisms, their occurrence rates and amplitudes are modulated by thalamocortical spindles and neocortical slow oscillations during non-REM sleep, suggesting that fast network oscillations and slower oscillations cooperatively work to facilitate memory consolidation. This review discusses the recent progress in understanding the generation, coordination, and functional roles of fast network oscillations. Further, it outlines how fast network oscillations in distinct brain regions synergistically support memory consolidation and retrieval by hosting cross-regional coactivation of memory-related neuronal ensembles.
Collapse
Affiliation(s)
- Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan.
| | - Hiroyuki Miyawaki
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
8
|
Dickey CW, Verzhbinsky IA, Jiang X, Rosen BQ, Kajfez S, Eskandar EN, Gonzalez-Martinez J, Cash SS, Halgren E. Cortical Ripples during NREM Sleep and Waking in Humans. J Neurosci 2022; 42:7931-7946. [PMID: 36041852 PMCID: PMC9617618 DOI: 10.1523/jneurosci.0742-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Hippocampal ripples index the reconstruction of spatiotemporal neuronal firing patterns essential for the consolidation of memories in the cortex during non-rapid eye movement sleep (NREM). Recently, cortical ripples in humans have been shown to enfold the replay of neuron firing patterns during cued recall. Here, using intracranial recordings from 18 patients (12 female), we show that cortical ripples also occur during NREM in humans, with similar density, oscillation frequency (∼90 Hz), duration, and amplitude to waking. Ripples occurred in all cortical regions with similar characteristics, unrelated to putative hippocampal connectivity, and were less dense and robust in higher association areas. Putative pyramidal and interneuron spiking phase-locked to cortical ripples during NREM, with phase delays consistent with ripple generation through pyramidal-interneuron feedback. Cortical ripples were smaller in amplitude than hippocampal ripples but were similar in density, frequency, and duration. Cortical ripples during NREM typically occurred just before the upstate peak, often during spindles. Upstates and spindles have previously been associated with memory consolidation, and we found that cortical ripples grouped cofiring between units within the window of spike timing-dependent plasticity. Thus, human NREM cortical ripples are as follows: ubiquitous and stereotyped with a tightly focused oscillation frequency; similar to hippocampal ripples; associated with upstates and spindles; and associated with unit cofiring. These properties are consistent with cortical ripples possibly contributing to memory consolidation and other functions during NREM in humans.SIGNIFICANCE STATEMENT In rodents, hippocampal ripples organize replay during sleep to promote memory consolidation in the cortex, where ripples also occur. However, evidence for cortical ripples in human sleep is limited, and their anatomic distribution and physiological properties are unexplored. Here, using human intracranial recordings, we demonstrate that ripples occur throughout the cortex during waking and sleep with highly stereotyped characteristics. During sleep, cortical ripples tend to occur during spindles on the down-to-upstate transition, and thus participate in a sequence of sleep waves that is important for consolidation. Furthermore, cortical ripples organize single-unit spiking with timing optimal to facilitate plasticity. Therefore, cortical ripples in humans possess essential physiological properties to support memory and other cognitive functions.
Collapse
Affiliation(s)
- Charles W Dickey
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, California 92093
| | - Ilya A Verzhbinsky
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
- Medical Scientist Training Program, University of California San Diego, La Jolla, California 92093
| | - Xi Jiang
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Burke Q Rosen
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California 92093
| | - Sophie Kajfez
- Department of Radiology, University of California San Diego, La Jolla, California 92093
| | - Emad N Eskandar
- Department of Neurological Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, California 92093
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
9
|
Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Rep 2021; 31:107581. [PMID: 32375031 PMCID: PMC7337233 DOI: 10.1016/j.celrep.2020.107581] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
The offline “replay” of neural firing patterns underlying waking experience, previously observed in non-human animals, is thought to be a mechanism for memory consolidation. Here, we test for replay in the human brain by recording spiking activity from the motor cortex of two participants who had intracortical microelectrode arrays placed chronically as part of a brain-computer interface pilot clinical trial. Participants took a nap before and after playing a neurally controlled sequence-copying game that consists of many repetitions of one “repeated” sequence sparsely interleaved with varying “control” sequences. Both participants performed repeated sequences more accurately than control sequences, consistent with learning. We compare the firing rate patterns that caused the cursor movements when performing each sequence to firing rate patterns throughout both rest periods. Correlations with repeated sequences increase more from pre- to post-task rest than do correlations with control sequences, providing direct evidence of learning-related replay in the human brain. Eichenlaub et al. show that in the motor cortex of brain-computer interface trial participants, the firing rate patterns corresponding to a previously learned motor sequence are replayed during rest. These findings provide direct evidence of memory replay in the human brain.
Collapse
|
10
|
Travelling spindles create necessary conditions for spike-timing-dependent plasticity in humans. Nat Commun 2021; 12:1027. [PMID: 33589639 PMCID: PMC7884835 DOI: 10.1038/s41467-021-21298-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep spindles facilitate memory consolidation in the cortex during mammalian non-rapid eye movement sleep. In rodents, phase-locked firing during spindles may facilitate spike-timing-dependent plasticity by grouping pre-then-post-synaptic cell firing within ~25 ms. Currently, microphysiological evidence in humans for conditions conducive for spike-timing-dependent plasticity during spindles is absent. Here, we analyze field potentials and unit firing from middle/upper layers during spindles from 10 × 10 microelectrode arrays at 400 μm pitch in humans. We report strong tonic and phase-locked increases in firing and co-firing within 25 ms during spindles, especially those co-occurring with down-to-upstate transitions. Co-firing, spindle co-occurrence, and spindle coherence are greatest within ~2 mm, and high co-firing of units on different contacts depends on high spindle coherence between those contacts. Spindles propagate at ~0.28 m/s in distinct patterns, with correlated cell co-firing sequences. Spindles hence organize spatiotemporal patterns of neuronal co-firing in ways that may provide pre-conditions for plasticity during non-rapid eye movement sleep. Sleep spindles during non-rapid eye movement are important for memory consolidation and require specific neuronal firing conditions in non-human mammals. Here, the authors show these conditions are present in humans, potentially facilitating spike-timing-dependent plasticity.
Collapse
|
11
|
Sanda P, Malerba P, Jiang X, Krishnan GP, Gonzalez-Martinez J, Halgren E, Bazhenov M. Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to Coordinated Spiking Activity During NREM Sleep. Cereb Cortex 2021; 31:324-340. [PMID: 32995860 PMCID: PMC8179633 DOI: 10.1093/cercor/bhaa228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/19/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The dialogue between cortex and hippocampus is known to be crucial for sleep-dependent memory consolidation. During slow wave sleep, memory replay depends on slow oscillation (SO) and spindles in the (neo)cortex and sharp wave-ripples (SWRs) in the hippocampus. The mechanisms underlying interaction of these rhythms are poorly understood. We examined the interaction between cortical SO and hippocampal SWRs in a model of the hippocampo-cortico-thalamic network and compared the results with human intracranial recordings during sleep. We observed that ripple occurrence peaked following the onset of an Up-state of SO and that cortical input to hippocampus was crucial to maintain this relationship. A small fraction of ripples occurred during the Down-state and controlled initiation of the next Up-state. We observed that the effect of ripple depends on its precise timing, which supports the idea that ripples occurring at different phases of SO might serve different functions, particularly in the context of encoding the new and reactivation of the old memories during memory consolidation. The study revealed complex bidirectional interaction of SWRs and SO in which early hippocampal ripples influence transitions to Up-state, while cortical Up-states control occurrence of the later ripples, which in turn influence transition to Down-state.
Collapse
Affiliation(s)
- Pavel Sanda
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Computer Science of the Czech Academy of Sciences, Prague 18207, Czech Republic
| | - Paola Malerba
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Department of Pediatrics and Biophysics Graduate Program, Ohio State University, Columbus, OH 43215, USA
| | - Xi Jiang
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K4G9, Canada
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Eric Halgren
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla 92093, USA
| |
Collapse
|
12
|
Deibel SH, Rota R, Steenland HW, Ali K, McNaughton BL, Tatsuno M, McDonald RJ. Assessment of Sleep, K-Complexes, and Sleep Spindles in a T21 Light-Dark Cycle. Front Neurosci 2020; 14:551843. [PMID: 33122986 PMCID: PMC7573124 DOI: 10.3389/fnins.2020.551843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythm misalignment has a deleterious impact on the brain and the body. In rats, exposure to a 21-hour day length impairs hippocampal dependent memory. Sleep, and particularly K-complexes and sleep spindles in the cortex, have been hypothesized to be involved in memory consolidation. Altered K-complexes, sleep spindles, or interaction between the cortex and hippocampus could be a mechanism for the memory consolidation failure but has yet to be assessed in any circadian misalignment paradigm. In the current study, continuous local field potential recordings from five rats were used to assess the changes in aspects of behavior and sleep, including wheel running activity, quiet wakefulness, motionless sleep, slow wave sleep, REM sleep, K-complexes and sleep spindles, in rats exposed to six consecutive days of a T21 light-dark cycle (L9:D12). Except for a temporal redistribution of sleep and activity during the T21, there were no changes in period, or total amount for any aspect of sleep or activity. These data suggest that the memory impairment elicited from 6 days of T21 exposure is likely not due to changes in sleep architecture. It remains possible that hippocampal plasticity is affected by experiencing light when subjective circadian phase is calling for dark. However, if there is a reduction in hippocampal plasticity, changes in sleep appear not to be driving this effect.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ryan Rota
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Hendrik W Steenland
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,NeuroTek Innovative Technology Inc., Toronto, ON, Canada
| | - Karim Ali
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bruce L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Masami Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
13
|
Wang Y, Zou Q, Ao Y, Liu Y, Ouyang Y, Wang X, Biswal B, Cui Q, Chen H. Frequency-dependent circuits anchored in the dorsal and ventral left anterior insula. Sci Rep 2020; 10:16394. [PMID: 33020498 PMCID: PMC7536237 DOI: 10.1038/s41598-020-73192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/08/2020] [Indexed: 11/08/2022] Open
Abstract
The hub role of the right anterior insula (AI) has been emphasized in cognitive neurosciences and been demonstrated to be frequency-dependently organized. However, the functional organization of left AI (LAI) has not been systematically investigated. Here we used 100 unrelated datasets from the Human Connectome Project to study the frequency-dependent organization of LAI along slow 6 to slow 1 bands. The broadband functional connectivity of LAI was similar to previous findings. In slow 6-slow 3 bands, both dorsal and ventral seeds in LAI were correlated to the salience network (SN) and language network (LN) and anti-correlated to the default mode network (DMN). However, these seeds were only correlated to the LAI in slow 2-slow 1 bands. These findings indicate that broadband and narrow band functional connections reflect different functional organizations of the LAI. Furthermore, the dorsal seed had a stronger connection with the LN and anti-correlation with DMN while the ventral seed had a stronger connection within the SN in slow 6-slow 3 bands. In slow 2-slow 1 bands, both seeds had stronger connections with themselves. These observations indicate distinctive functional organizations for the two parts of LAI. Significant frequency effect and frequency by seed interaction were also found, suggesting different frequency characteristics of these two seeds. The functional integration and functional segregation of LDAI and LVAI were further supported by their cognitive associations. The frequency- and seed-dependent functional organizations of LAI may enlighten future clinical and cognitive investigations.
Collapse
Affiliation(s)
- Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu, 610066, China.
| | - Qijun Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, Chengdu, 611731, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu, 610066, China
| | - Yang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu, 610066, China
| | - Yujie Ouyang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, No. 5, Jing'an Road, Chengdu, 610066, China
| | - Xinqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, Chengdu, 611731, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, Chengdu, 611731, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall,University Height, Newark, NJ, 07102, USA
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, Chengdu, 611731, China.
| |
Collapse
|
14
|
González OC, Sokolov Y, Krishnan GP, Delanois JE, Bazhenov M. Can sleep protect memories from catastrophic forgetting? eLife 2020; 9:e51005. [PMID: 32748786 PMCID: PMC7440920 DOI: 10.7554/elife.51005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/19/2020] [Indexed: 11/13/2022] Open
Abstract
Continual learning remains an unsolved problem in artificial neural networks. The brain has evolved mechanisms to prevent catastrophic forgetting of old knowledge during new training. Building upon data suggesting the importance of sleep in learning and memory, we tested a hypothesis that sleep protects old memories from being forgotten after new learning. In the thalamocortical model, training a new memory interfered with previously learned old memories leading to degradation and forgetting of the old memory traces. Simulating sleep after new learning reversed the damage and enhanced old and new memories. We found that when a new memory competed for previously allocated neuronal/synaptic resources, sleep replay changed the synaptic footprint of the old memory to allow overlapping neuronal populations to store multiple memories. Our study predicts that memory storage is dynamic, and sleep enables continual learning by combining consolidation of new memory traces with reconsolidation of old memory traces to minimize interference.
Collapse
Affiliation(s)
- Oscar C González
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Yury Sokolov
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Giri P Krishnan
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Jean Erik Delanois
- Department of Medicine, University of California, San DiegoLa JollaUnited States
- Department of Computer Science and Engineering, University of California, San DiegoLa JollaUnited States
| | - Maxim Bazhenov
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
15
|
Benthem SD, Skelin I, Moseley SC, Stimmell AC, Dixon JR, Melilli AS, Molina L, McNaughton BL, Wilber AA. Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease. Curr Biol 2020; 30:2588-2601.e5. [PMID: 32470367 PMCID: PMC7356567 DOI: 10.1016/j.cub.2020.04.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
Spatial learning is impaired in humans with preclinical Alzheimer's disease (AD). We reported similar impairments in 3xTg-AD mice learning a spatial reorientation task. Memory reactivation during sleep is critical for learning-related plasticity, and memory consolidation is correlated with hippocampal sharp wave ripple (SWR) density, cortical delta waves (DWs), cortical spindles, and the temporal coupling of these events-postulated as physiological substrates for memory consolidation. Further, hippocampal-cortical discoordination is prevalent in individuals with AD. Thus, we hypothesized that impaired memory consolidation mechanisms in hippocampal-cortical networks could account for spatial memory deficits. We assessed sleep architecture, SWR-DW dynamics, and memory reactivation in a mouse model of tauopathy and amyloidosis implanted with a recording array targeting isocortex and hippocampus. Mice underwent daily recording sessions of rest-task-rest while learning the spatial reorientation task. We assessed memory reactivation by matching activity patterns from the approach to the unmarked reward zone to patterns during slow-wave sleep (SWS). AD mice had more SWS, but reduced SWR density. The increased SWS compensated for reduced SWR density so there was no reduction in SWR number. In control mice, spindles were phase-coupled with DWs, and hippocampal SWR-cortical DW coupling was strengthened in post-task sleep and was correlated with performance on the spatial reorientation task the following day. However, in AD mice, SWR-DW and spindle-DW coupling were impaired. Thus, reduced SWR-DW coupling may cause impaired learning in AD, and spindle-DW coupling during short rest-task-rest sessions may serve as a biomarker for early AD-related changes in these brain dynamics.
Collapse
Affiliation(s)
- Sarah D Benthem
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ivan Skelin
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Shawn C Moseley
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Alina C Stimmell
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Jessica R Dixon
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Andreza S Melilli
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Leonardo Molina
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bruce L McNaughton
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Aaron A Wilber
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
16
|
Eckert MJ, McNaughton BL, Tatsuno M. Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190655. [PMID: 32248776 DOI: 10.1098/rstb.2019.0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural activity patterns of recent experiences are reactivated during sleep in structures critical for memory storage, including hippocampus and neocortex. This reactivation process is thought to aid memory consolidation. Although synaptic rearrangement dynamics following learning involve an interplay between slow-wave sleep (SWS) and rapid eye movement (REM) sleep, most physiological evidence implicates SWS directly following experience as a preferred window for reactivation. Here, we show that reactivation occurs in both REM and SWS and that coordination of REM and SWS activation on the same day is associated with rapid learning of a motor skill. We performed 6 h recordings from cells in rats' motor cortex as they were trained daily on a skilled reaching task. In addition to SWS following training, reactivation occurred in REM, primarily during the pre-task rest period, and REM and SWS reactivation occurred on the same day in rats that acquired the skill rapidly. Both pre-task REM and post-task SWS activation were coordinated with muscle activity during sleep, suggesting a functional role for reactivation in skill learning. Our results provide the first demonstration that reactivation in REM sleep occurs during motor skill learning and that coordinated reactivation in both sleep states on the same day, although at different times, is beneficial for skill learning. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- M J Eckert
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - B L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.,Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - M Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
17
|
Liu TY, Watson BO. Patterned activation of action potential patterns during offline states in the neocortex: replay and non-replay. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190233. [PMID: 32248782 PMCID: PMC7209911 DOI: 10.1098/rstb.2019.0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Action potential generation (spiking) in the neocortex is organized into repeating non-random patterns during both awake experiential states and non-engaged states ranging from inattention to sleep to anaesthesia—and even occur in slice preparations. Repeating patterns in a given population of neurons between states may imply a common means by which cortical networks can be engaged despite brain state changes, but super-imposed on this common firing is a variability that is both specific to ongoing inputs and can be re-shaped by experience. This similarity with specifically induced variance may allow for a range of processes including perception, memory consolidation and network homeostasis. Here, we review how patterned activity in neocortical populations has been studied and what it may imply for a cortex that must be both static and plastic. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Tang-Yu Liu
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Dahal P, Ghani N, Flinker A, Dugan P, Friedman D, Doyle W, Devinsky O, Khodagholy D, Gelinas JN. Interictal epileptiform discharges shape large-scale intercortical communication. Brain 2019; 142:3502-3513. [PMID: 31501850 PMCID: PMC6821283 DOI: 10.1093/brain/awz269] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
Dynamic interactions between remote but functionally specialized brain regions enable complex information processing. This intercortical communication is disrupted in the neural networks of patients with focal epilepsy, and epileptic activity can exert widespread effects within the brain. Using large-scale human intracranial electroencephalography recordings, we show that interictal epileptiform discharges (IEDs) are significantly coupled with spindles in discrete, individualized brain regions outside of the epileptic network. We found that a substantial proportion of these localized spindles travel across the cortical surface. Brain regions that participate in this IED-driven oscillatory coupling express spindles that have a broader spatial extent and higher tendency to propagate than spindles occurring in uncoupled regions. These altered spatiotemporal oscillatory properties identify areas that are shaped by epileptic activity independent of IED or seizure detection. Our findings suggest that IED-spindle coupling may be an important mechanism of interictal global network dysfunction that could be targeted to prevent disruption of normal neural activity.
Collapse
Affiliation(s)
- Prawesh Dahal
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Naureen Ghani
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Adeen Flinker
- Department of Neurology, NYU Langone, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone, New York, NY, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone, New York, NY, USA
| | - Daniel Friedman
- Department of Neurology, NYU Langone, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone, New York, NY, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, NYU Langone, New York, NY, USA
- Department of Neurosurgery, NYU Langone, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone, New York, NY, USA
- Comprehensive Epilepsy Center, NYU Langone, New York, NY, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
19
|
Todorova R, Zugaro M. Isolated cortical computations during delta waves support memory consolidation. Science 2019; 366:377-381. [DOI: 10.1126/science.aay0616] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/10/2019] [Indexed: 11/02/2022]
Abstract
Delta waves have been described as periods of generalized silence across the cortex, and their alternation with periods of endogenous activity results in the slow oscillation of slow-wave sleep. Despite evidence that delta waves are instrumental for memory consolidation, their specific role in reshaping cortical functional circuits remains puzzling. In a rat model, we found that delta waves are not periods of complete silence and that the residual activity is not mere neuronal noise. Instead, cortical cells involved in learning a spatial memory task subsequently formed cell assemblies during delta waves in response to transient reactivation of hippocampal ensembles during ripples. This process occurred selectively during endogenous or induced memory consolidation. Thus, delta waves represent isolated cortical computations tightly related to ongoing information processing underlying memory consolidation.
Collapse
Affiliation(s)
- Ralitsa Todorova
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
20
|
Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates. J Neurosci 2019; 39:8744-8761. [PMID: 31533977 DOI: 10.1523/jneurosci.2857-18.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/26/2019] [Accepted: 07/13/2019] [Indexed: 11/21/2022] Open
Abstract
In rodents, waking firing patterns replay in NREM sleep during hippocampal sharpwave ripples (HC-SWRs), correlated with neocortical graphoelements (NC-GEs). NC-GEs include theta bursts, spindles, downstates, and upstates. In humans, consolidation during sleep is correlated with scalp-recorded spindles and downstates/upstates, but HC-SWRs cannot be recorded noninvasively. Here we show in humans of both sexes that HC-SWRs are highly correlated with NC-GEs during NREM, with significantly more related HC-SWRs/NC-GEs for downstates or upstates than theta bursts or spindles, in N2 than N3, in posterior than anterior HC, in frontal than occipital cortex, and ipsilaterally than contralaterally. The preferences interacted (e.g., frontal spindles co-occurred frequently with posterior HC-SWRs in N2). These preferred GEs, stages, and locations for HC-SWR/NC-GE interactions may index selective consolidation activity, although that was not tested in this study. SWR recorded in different HC regions seldom co-occurred, and were related to GE in different cortical areas, showing that HC-NC interact in multiple transient, widespread but discrete, networks. NC-GEs tend to occur with consistent temporal relationships to HC-SWRs, and to each other. Cortical theta bursts usually precede HC-SWRs, where they may help define cortical input triggering HC-SWR firing. HC-SWRs often follow cortical downstate onsets, surrounded by locally decreased broadband power, suggesting a mechanism synchronizing cortical, thalamic, and hippocampal activities. Widespread cortical upstates and spindles follow HC-SWRs, consistent with the hypothesized contribution by hippocampal firing during HC-SWRs to cortical firing-patterns during upstates and spindles. Overall, our results describe how hippocampal and cortical oscillations are coordinated in humans during events that are critical for memory consolidation in rodents.SIGNIFICANCE STATEMENT Hippocampal sharpwave ripples, essential for memory consolidation, mark when hippocampal neurons replay waking firing patterns. In rodents, cortical sleep waves coordinate the transfer of temporary hippocampal to permanent cortical memories, but their relationship with human hippocampal sharpwave ripples remains unclear. We show that human hippocampal sharpwave ripples co-occur with all varieties of cortical sleep waves, in all cortical regions, and in all stages of NREM sleep, but with overall preferences for each of these. We found that sharpwave ripples in different parts of the hippocampus usually occurred independently of each other, and preferentially interacted with different cortical areas. We found that sharpwave ripples typically occur after certain types of cortical waves, and before others, suggesting how the cortico-hippocampo-cortical interaction may be organized in time and space.
Collapse
|
21
|
Ioannides AA, Liu L, Kostopoulos GK. The Emergence of Spindles and K-Complexes and the Role of the Dorsal Caudal Part of the Anterior Cingulate as the Generator of K-Complexes. Front Neurosci 2019; 13:814. [PMID: 31447635 PMCID: PMC6692490 DOI: 10.3389/fnins.2019.00814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
The large multicomponent K-complex (KC) and the rhythmic spindle are the hallmarks of non-rapid eye movement (NREM)-2 sleep stage. We studied with magnetoencephalography (MEG) the progress of light sleep (NREM-1 and NREM-2) and emergence of KCs and spindles. Seven periods of interest (POI) were analyzed: wakefulness, the two quiet "core" periods of light sleep (periods free from any prominent phasic or oscillatory events) and four periods before and during spindles and KCs. For each POI, eight 2-s (1250 time slices) segments were used. We employed magnetic field tomography (MFT) to extract an independent tomographic estimate of brain activity from each MEG data sample. The spectral power was then computed for each voxel in the brain for each segment of each POI. The sets of eight maps from two POIs were contrasted using a voxel-by-voxel t-test. Only increased spectral power was identified in the four key contrasts between POIs before and during spindles and KCs versus the NREM2 core. Common increases were identified for all four subjects, especially within and close to the anterior cingulate cortex (ACC). These common increases were widespread for low frequencies, while for higher frequencies they were focal, confined to specific brain areas. For the pre-KC POI, only one prominent increase was identified, confined to the theta/alpha bands in a small area in the dorsal caudal part of ACC (dcACC). During KCs, the activity in this area grows in intensity and extent (in space and frequency), filling the space between the areas that expanded their low frequency activity (in the delta band) during NREM2 compared to NREM1. Our main finding is that prominent spectral power increases before NREM2 graphoelements are confined to the dcACC, and only for KCs, sharing common features with changes of activity in dcACC of the well-studied error related negativity (ERN). ERN is seen in awake state, in perceptual conflict and situations where there is a difference between expected and actual environmental or internal events. These results suggest that a KC is the sleep side of the awake state ERN, both serving their putative sentinel roles in the frame of the saliency network.
Collapse
Affiliation(s)
- Andreas A. Ioannides
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - Lichan Liu
- Laboratory for Human Brain Dynamics, AAI Scientific Cultural Services Ltd., Nicosia, Cyprus
| | - George K. Kostopoulos
- Neurophysiology Unit, Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
22
|
Abstract
The mammalian hippocampus is important for normal memory function, particularly memory for places and events. Place cells, neurons within the hippocampus that have spatial receptive fields, represent information about an animal’s position. During periods of rest, but also during active task engagement, place cells spontaneously recapitulate past trajectories. Such ‘replay’ has been proposed as a mechanism necessary for a range of neurobiological functions, including systems memory consolidation, recall and spatial working memory, navigational planning, and reinforcement learning. Focusing mainly, but not exclusively, on work conducted in rodents, we describe the methodologies used to analyse replay and review evidence for its putative roles. We identify outstanding questions as well as apparent inconsistencies in existing data, making suggestions as to how these might be resolved. In particular, we find support for the involvement of replay in disparate processes, including the maintenance of hippocampal memories and decision making. We propose that the function of replay changes dynamically according to task demands placed on an organism and its current level of arousal.
Collapse
Affiliation(s)
- H Freyja Ólafsdóttir
- Research Department of Cell and Developmental Biology, UCL, Gower Street, London, WC1E 6BT, UK.
| | - Daniel Bush
- UCL Institute of Cognitive Neuroscience and UCL Institute of Neurology, 17 Queen Square, London, WC1N 3AZ, UK
| | - Caswell Barry
- Research Department of Cell and Developmental Biology, UCL, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
23
|
Inferring the direction of rhythmic neural transmission via inter-regional phase-amplitude coupling (ir-PAC). Sci Rep 2019; 9:6933. [PMID: 31061409 PMCID: PMC6502832 DOI: 10.1038/s41598-019-43272-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Phase-amplitude coupling (PAC) estimates the statistical dependence between the phase of a low-frequency component and the amplitude of a high-frequency component of local field potentials (LFP). To date PAC has been mainly applied to one signal. In this work, we introduce a new application of PAC to two LFPs and suggest that it can be used to infer the direction and strength of rhythmic neural transmission between distinct brain networks. This hypothesis is based on the accumulating evidence that transmembrane currents related to action potentials contribute a broad-band component to LFP in the high-gamma band, and PAC calculated between the amplitude of high-gamma (>60 Hz) in one LFP and the phase of a low-frequency oscillation (e.g., theta) in another would therefore relate the output (spiking) of one area to the input (somatic/dendritic postsynaptic potentials) of the other. We tested the hypothesis on theta-band long range communications between hippocampus and prefrontal cortex (PFC) and theta-band short range communications between dentate gyrus (DG) and the Ammon’s horn (CA1) within the hippocampus. The ground truth was provided by the known anatomical connections predicting hippocampus → PFC and DG → CA1, i.e., theta transmission is unidirectional in both cases: from hippocampus to PFC and from DG to CA1 along the tri-synaptic pathway within hippocampus. We found that (1) hippocampal high-gamma amplitude was significantly coupled to PFC theta phase, but not vice versa; (2) similarly, DG high-gamma amplitude was significantly coupled to CA1 theta phase, but not vice versa, and (3) the DG high-gamma-CA1 theta PAC was significantly correlated with DG → CA1 Granger causality, a well-established analytical measure of directional neural transmission. These results support the hypothesis that inter-regional PAC (ir-PAC) can be used to relate the output of a rhythmic “driver” network (i.e., high gamma) to the input of a rhythmic “receiver” network (i.e., theta) and thereby establish the direction and strength of rhythmic neural transmission.
Collapse
|
24
|
Skelin I, Kilianski S, McNaughton BL. Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiol Learn Mem 2019; 160:21-31. [DOI: 10.1016/j.nlm.2018.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
25
|
Fang Z, Ray LB, Owen AM, Fogel SM. Brain Activation Time-Locked to Sleep Spindles Associated With Human Cognitive Abilities. Front Neurosci 2019; 13:46. [PMID: 30787863 PMCID: PMC6372948 DOI: 10.3389/fnins.2019.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Simultaneous electroencephalography and functional magnetic resonance imaging (EEG–fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with “Reasoning” abilities (i.e., “fluid intelligence”; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG–fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning.
Collapse
Affiliation(s)
- Zhuo Fang
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Laura B Ray
- Brain and Mind Institute, Western University, London, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Stuart M Fogel
- Brain and Mind Institute, Western University, London, ON, Canada.,School of Psychology, University of Ottawa, Ottawa, ON, Canada.,Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.,Department of Psychology, Western University, London, ON, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
26
|
Hippocampal Reactivation Extends for Several Hours Following Novel Experience. J Neurosci 2018; 39:866-875. [PMID: 30530857 DOI: 10.1523/jneurosci.1950-18.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
New memories are believed to be consolidated over several hours of post-task sleep. The reactivation or "replay" of hippocampal cell assemblies has been proposed to provide a key mechanism for this process. However, previous studies have indicated that such replay is restricted to the first 10-30 min of post-task sleep, suggesting that it has a limited role in memory consolidation. We performed long-duration recordings in sleeping and behaving male rats and applied methods for evaluating the reactivation of neurons in pairs as well as in larger ensembles while controlling for the continued activation of ensembles already present during pre-task sleep ("preplay"). We found that cell assemblies reactivate for up to 10 h, with a half-maximum timescale of ∼6 h, in sleep following novel experience, even when corrected for preplay. We further confirmed similarly prolonged reactivation in post-task sleep of rats in other datasets that used behavior in novel environments. In contrast, we saw limited reactivation in sleep following behavior in familiar environments. Overall, our findings reconcile the duration of replay with the timescale attributed to cellular memory consolidation and provide strong support for an integral role of replay in memory.SIGNIFICANCE STATEMENT Neurons that are active during an experience reactivate again afterward during rest and sleep. This replay of ensembles of neurons has been proposed to help strengthen memories, but it has also been reported that replay occurs only in the first 10-30 min of sleep, suggesting a circumscribed role. We performed long-duration recordings in the hippocampus of rats and found that replay persists for several hours in sleep following novel experience, far beyond the limits found in previous reports based on shorter recordings. These findings reconcile the duration of replay with the hours-long timescales attributed to memory consolidation.
Collapse
|
27
|
Tripathi S, Taneja P, Jha SK. Training on an Appetitive (Delay)-Conditioning Task Enhances Oscillatory Waves During Sleep in the Cortical and Amygdalar Network. Front Behav Neurosci 2018; 12:260. [PMID: 30464744 PMCID: PMC6234907 DOI: 10.3389/fnbeh.2018.00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Oscillating waves during sleep play an essential role in memory consolidation. The cortical slow wave activity (SWA) and sigma waves during NREM sleep and theta waves during REM sleep increase after a variety of memory tasks including declarative, procedural and associative learning tasks. These oscillatory waves during sleep help to promote neural dialog between circuitries, which possibly plays a causal role in memory consolidation. However, the role of sleep-associated oscillating waves in a complex appetitive-conditioning paradigm is not clear. The parietal cortex and amygdala are involved in the cognitive evaluation of the environmental stimuli, and appetitive conditioning. Here, we have studied the changes in sleep architecture and oscillatory waves during NREM and REM sleep in the parietal cortices and amygdalar-local field potential (A-LFP) after appetitive-conditioning in the rat. We observed that REM sleep increased significantly after appetitive conditioning, which significantly positively correlated with performance on the appetitive-conditioning task. Further, the cortical SWA (0.1-4.5 Hz), and sigma (12-14.25 Hz) waves during NREM sleep, theta (6-9 Hz) waves during REM sleep, the amygdalar SWA (0.1-3.75 Hz) during NREM sleep and theta (6-8.25 Hz) waves during REM sleep significantly increased after appetitive conditioning. Interestingly, the augmented oscillatory waves significantly positively correlated with the performances on the appetitive-conditioning task. Our results suggest that the augmented REM sleep after conditioning may be required for the consolidation of appetitive-conditioned memory. Further, a significant correlation between augmented power in oscillatory waves during sleep and performance suggesting that these waves may be playing a crucial role in the consolidation of appetitive-conditioned memory.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus. J Neurosci 2018; 39:434-444. [PMID: 30459228 DOI: 10.1523/jneurosci.2107-18.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions. The MD may thus modulate functional connectivity between the hippocampus and the mPFC at different stages of information processing. Here, we characterized, in freely behaving Sprague Dawley male rats, the MD neural activity around hippocampal ripples, indicators of memory replay and hippocampal-cortical information transfer. Overall, the MD firing rate was transiently (0.76 ± 0.06 s) decreased around ripples, with the MD activity suppression preceding the ripple onset for 0.41 ± 0.04 s (range, 0.01-0.95 s). The degree of MD modulation correlated with ripple amplitude, differed across behavioral states, and also depended on the dynamics of hippocampal-cortical population activity. The MD suppression was the strongest and the most consistent during awake ripples. During non-rapid eye movement sleep, MD firing rate decreased around spindle-uncoupled ripples, but increased around spindle-coupled ripples. Our results suggest a competitive interaction between the thalamocortical and hippocampal-cortical networks supporting "on-line" and "off-line" information processing, respectively. We hypothesize that thalamic activity suppression during spindle-uncoupled ripples is favorable for memory replay, as it reduces interference from sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer. Both predictions need to be tested in future experiments.SIGNIFICANCE STATEMENT Systems mechanisms of declarative memory consolidation beyond the hippocampal-prefrontal interactions remain largely unexplored. The connectivity of the mediodorsal thalamic nucleus (MD) with extrahippocampal regions and with medial prefrontal cortex underlies its role in execution of diverse cognitive functions. However, little is known about the MD involvement in "off-line" consolidation. We found that MD neural activity was transiently suppressed around hippocampal ripples, except for ripples co-occurring with sleep spindles, when the MD activity was elevated. The thalamic activity suppression at times of spindle-uncoupled ripples may be favorable for memory replay, as it reduces interference with sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer.
Collapse
|
29
|
Duszkiewicz AJ, McNamara CG, Takeuchi T, Genzel L. Novelty and Dopaminergic Modulation of Memory Persistence: A Tale of Two Systems. Trends Neurosci 2018; 42:102-114. [PMID: 30455050 PMCID: PMC6352318 DOI: 10.1016/j.tins.2018.10.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022]
Abstract
Adaptation to the ever-changing world is critical for survival, and our brains are particularly tuned to remember events that differ from previous experiences. Novel experiences induce dopamine release in the hippocampus, a process which promotes memory persistence. While axons from the ventral tegmental area (VTA) were generally thought to be the exclusive source of hippocampal dopamine, recent studies have demonstrated that noradrenergic neurons in the locus coeruleus (LC) corelease noradrenaline and dopamine in the hippocampus and that their dopamine release boosts memory retention as well. In this opinion article, we propose that the projections originating from the VTA and the LC belong to two distinct systems that enhance memory of novel events. Novel experiences that share some commonality with past ones (‘common novelty’) activate the VTA and promote semantic memory formation via systems memory consolidation. By contrast, experiences that bear only a minimal relationship to past experiences (‘distinct novelty’) activate the LC to trigger strong initial memory consolidation in the hippocampus, resulting in vivid and long-lasting episodic memories. Novelty induces dopamine release in the hippocampus, triggering memory consolidation to boost memory persistence. Two dopaminergic systems (the ventral tegmental area- and locus coeruleus-hippocampus systems) can stabilise memory through novelty-induced dopamine release in the hippocampus. Novel experiences can be viewed as a spectrum, from experiences that, while clearly novel, share some commonality with past experiences (‘common novelty’), to more fundamentally distinct experiences that bear minimal relationships to past experiences (‘distinct novelty’). We propose that events characterised by ‘common novelty’ boost memory retention via activation of the ventral tegmental area-hippocampus system, resulting in initial consolidation followed by systems consolidation to create neocortical, semantic, long-term memories. We further propose that events characterised by ‘distinct novelty’ lead to the boost of detailed hippocampal, episodic, long-term memory via activation of the locus coeruleus-hippocampus system through strong upregulation of the synaptic tagging and capture mechanism.
Collapse
Affiliation(s)
- Adrian J Duszkiewicz
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Colin G McNamara
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University and Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
30
|
Gonzalez CE, Mak-McCully RA, Rosen BQ, Cash SS, Chauvel PY, Bastuji H, Rey M, Halgren E. Theta Bursts Precede, and Spindles Follow, Cortical and Thalamic Downstates in Human NREM Sleep. J Neurosci 2018; 38:9989-10001. [PMID: 30242045 PMCID: PMC6234298 DOI: 10.1523/jneurosci.0476-18.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023] Open
Abstract
Since their discovery, slow oscillations have been observed to group spindles during non-REM sleep. Previous studies assert that the slow-oscillation downstate (DS) is preceded by slow spindles (10-12 Hz) and followed by fast spindles (12-16 Hz). Here, using both direct transcortical recordings in patients with intractable epilepsy (n = 10, 8 female), as well as scalp EEG recordings from a healthy cohort (n = 3, 1 female), we find in multiple cortical areas that both slow and fast spindles follow the DS. Although discrete oscillations do precede DSs, they are theta bursts (TBs) centered at 5-8 Hz. TBs were more pronounced for DSs in NREM stage 2 (N2) sleep compared with N3. TB with similar properties occur in the thalamus, but unlike spindles they have no clear temporal relationship with cortical TB. These differences in corticothalamic dynamics, as well as differences between spindles and theta in coupling high-frequency content, are consistent with NREM theta having separate generative mechanisms from spindles. The final inhibitory cycle of the TB coincides with the DS peak, suggesting that in N2, TB may help trigger the DS. Since the transition to N1 is marked by the appearance of theta, and the transition to N2 by the appearance of DS and thus spindles, a role of TB in triggering DS could help explain the sequence of electrophysiological events characterizing sleep. Finally, the coordinated appearance of spindles and DSs are implicated in memory consolidation processes, and the current findings redefine their temporal coupling with theta during NREM sleep.SIGNIFICANCE STATEMENT Sleep is characterized by large slow waves which modulate brain activity. Prominent among these are downstates (DSs), periods of a few tenths of a second when most cells stop firing, and spindles, oscillations at ∼12 times a second lasting for ∼a second. In this study, we provide the first detailed description of another kind of sleep wave: theta bursts (TBs), a brief oscillation at ∼six cycles per second. We show, recording during natural sleep directly from the human cortex and thalamus, as well as on the scalp, that TBs precede, and spindles follow DSs. TBs may help trigger DSs in some circumstances, and could organize cortical and thalamic activity so that memories can be consolidated during sleep.
Collapse
Affiliation(s)
- Christopher E Gonzalez
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093,
| | | | - Burke Q Rosen
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts 02114
| | | | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, Université Claude Bernard, Lyon, Bron, France, and
| | - Marc Rey
- Aix-Marseille Université, Marseille 13385, France
| | - Eric Halgren
- Departments of Radiology and Neurosciences, University of California, San Diego, California 92093
| |
Collapse
|
31
|
Watson BO. Cognitive and Physiologic Impacts of the Infraslow Oscillation. Front Syst Neurosci 2018; 12:44. [PMID: 30386218 PMCID: PMC6198276 DOI: 10.3389/fnsys.2018.00044] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022] Open
Abstract
Brain states are traditionally recognized via sleep-wake cycles, but modern neuroscience is beginning to identify many sub-states within these larger arousal types. Multiple lines of converging evidence now point to the infraslow oscillation (ISO) as a mediator of brain sub-states, with impacts ranging from the creation of resting state networks (RSNs) in awake subjects to interruptions in neural activity during sleep. This review will explore first the basic characteristics of the ISO in human subjects before reviewing findings in sleep and in animals. Networks of consistently correlated brain regions known as RSNs seen in human functional neuroimaging studies oscillate together at infraslow frequencies. The infraslow rhythm subdivides nonREM in a manner that may correlate with plasticity. The mechanism of this oscillation may be found in the thalamus and may ultimately come from glial cells. Finally, I review the functional impacts of ISOs on brain phenomena ranging from higher frequency oscillations, to brain networks, to information representation and cognitive performance. ISOs represent a relatively understudied phenomenon with wide effects on the brain and behavior.
Collapse
Affiliation(s)
- Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
32
|
Schreiner T, Doeller CF, Jensen O, Rasch B, Staudigl T. Theta Phase-Coordinated Memory Reactivation Reoccurs in a Slow-Oscillatory Rhythm during NREM Sleep. Cell Rep 2018; 25:296-301. [PMID: 30304670 PMCID: PMC6198287 DOI: 10.1016/j.celrep.2018.09.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that sleep's contribution to memory consolidation is to reactivate prior encoded information. To elucidate the neural mechanisms carrying reactivation-related mnemonic information, we investigated whether content-specific memory signatures associated with memory reactivation during wakefulness reoccur during subsequent sleep. We show that theta oscillations orchestrate the reactivation of memories during both wakefulness and sleep. Reactivation patterns during sleep autonomously re-emerged at a rate of ∼1 Hz, indicating a coordination by slow oscillatory activity.
Collapse
Affiliation(s)
- Thomas Schreiner
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, NTNU, Trondheim, Norway; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Tobias Staudigl
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
34
|
Lazic K, Ciric J, Saponjic J. Sleep spindle dynamics during NREM and REM sleep following distinct general anaesthesia in control rats and in a rat model of Parkinson's disease cholinopathy. J Sleep Res 2018; 28:e12758. [PMID: 30136327 DOI: 10.1111/jsr.12758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/30/2022]
Abstract
On the basis of our previous studies and the important role of the thalamo-cortical network in states of unconsciousness, such as anaesthesia and sleep, and in sleep spindles generation, we investigated sleep spindles (SS) and high-voltage sleep spindle (HVS) dynamics during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep following different types of general anaesthesia in both physiological controls and in a rat model of Parkinson's disease (PD) cholinopathy, to follow the impact of anaesthesia on post-anaesthesia sleep at the thalamo-cortical level through an altered sleep spindle dynamics. We recorded 6 hr of spontaneous sleep in all rats, both before and 48 hr after ketamine/diazepam or pentobarbital anaesthesia, and we used 1 hr of NREM or REM sleep from each to validate visually the automatically detected SS or HVS for their extraction and analysis. In the controls, SS occurred mainly during NREM, whereas HVS occurred only during REM sleep. Ketamine/diazepam anaesthesia promoted HVS, prolonged SS during NREM, induced HVS of increased frequency during REM, and increased SS/HVS densities during REM versus NREM sleep. Pentobarbital anaesthesia decreased the frequency of SS during NREM and the HVS density during REM sleep. Although the pedunculopontine tegmental nucleus lesion prolonged SS only during NREM sleep, in these rats, ketamine/diazepam anaesthesia suppressed HVS during both sleep states, whereas pentobarbital anaesthesia promoted HVS during REM sleep. The different impacts of two anaesthetic regimens on the thalamo-cortical regulatory network are expressed through their distinct sleep spindle generation and dynamics that are dependent on the NREM and REM state regulatory neuronal substrate.
Collapse
Affiliation(s)
- Katarina Lazic
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research - Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Abstract
Study Objectives: To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call “LOW” activity sleep. Methods: We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260–360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2 Results: LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of “LOW-active” cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. Conclusions: We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI.,Current address: Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yazan N Billeh
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA
| | - Kamran Diba
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI
| |
Collapse
|
36
|
Heterogeneous Origins of Human Sleep Spindles in Different Cortical Layers. J Neurosci 2018; 38:3013-3025. [PMID: 29449429 DOI: 10.1523/jneurosci.2241-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation.
Collapse
|
37
|
Up-Down-Like Background Spiking Can Enhance Neural Information Transmission. eNeuro 2018; 4:eN-TNC-0282-17. [PMID: 29354678 PMCID: PMC5773284 DOI: 10.1523/eneuro.0282-17.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/23/2022] Open
Abstract
How neurons transmit information about sensory or internal signals is strongly influenced by ongoing internal activity. Depending on brain state, this background spiking can occur asynchronously or clustered in up states, periods of collective firing that are interspersed by silent down states. Here, we study which effect such up-down (UD) transitions have on signal transmission. In a simple model, we obtain numerical and analytical results for information theoretic measures. We find that, surprisingly, an UD background can benefit information transmission: when background activity is sparse, it is advantageous to distribute spikes into up states rather than uniformly in time. We reproduce the same effect in a more realistic recurrent network and show that signal transmission is further improved by incorporating that up states propagate across cortex as traveling waves. We propose that traveling UD activity might represent a compromise between reducing metabolic strain and maintaining information transmission capabilities.
Collapse
|
38
|
Jiang X, Shamie I, K Doyle W, Friedman D, Dugan P, Devinsky O, Eskandar E, Cash SS, Thesen T, Halgren E. Replay of large-scale spatio-temporal patterns from waking during subsequent NREM sleep in human cortex. Sci Rep 2017; 7:17380. [PMID: 29234075 PMCID: PMC5727134 DOI: 10.1038/s41598-017-17469-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023] Open
Abstract
Animal studies support the hypothesis that in slow-wave sleep, replay of waking neocortical activity under hippocampal guidance leads to memory consolidation. However, no intracranial electrophysiological evidence for replay exists in humans. We identified consistent sequences of population firing peaks across widespread cortical regions during complete waking periods. The occurrence of these “Motifs” were compared between sleeps preceding the waking period (“Sleep-Pre”) when the Motifs were identified, and those following (“Sleep-Post”). In all subjects, the majority of waking Motifs (most of which were novel) had more matches in Sleep-Post than in Sleep-Pre. In rodents, hippocampal replay occurs during local sharp-wave ripples, and the associated neocortical replay tends to occur during local sleep spindles and down-to-up transitions. These waves may facilitate consolidation by sequencing cell-firing and encouraging plasticity. Similarly, we found that Motifs were coupled to neocortical spindles, down-to-up transitions, theta bursts, and hippocampal sharp-wave ripples. While Motifs occurring during cognitive task performance were more likely to have more matches in subsequent sleep, our studies provide no direct demonstration that the replay of Motifs contributes to consolidation. Nonetheless, these results confirm a core prediction of the dominant neurobiological theory of human memory consolidation.
Collapse
Affiliation(s)
- Xi Jiang
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Isaac Shamie
- Department of Radiology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Werner K Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Patricia Dugan
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, St George's, NY, 10016, USA.,Department of Physiology & Neuroscience, St. George's University, West Indies, Grenada
| | - Eric Halgren
- Department of Radiology, University of California at San Diego, La Jolla, CA, 92093, USA. .,Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
39
|
Liu ZX, Grady C, Moscovitch M. The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. Neuroimage 2017; 167:211-223. [PMID: 29158201 DOI: 10.1016/j.neuroimage.2017.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023] Open
Abstract
It is known that prior knowledge can facilitate memory acquisition. It is unclear, however, whether prior knowledge can affect post-encoding brain activity to facilitate memory consolidation. In this fMRI study, we asked participants to associate novel houses with famous/nonfamous faces and investigated how associative-encoding tasks with/without prior knowledge differentially affected post-encoding brain connectivity during rest. Besides memory advantages in the famous condition, we found that post-encoding hippocampal connectivity with the fusiform face area (FFA) and ventral-medial-prefrontal cortex (vmPFC) was stronger following encoding of associations with famous than non-famous faces. Importantly, post-encoding functional connectivity between the hippocampus (HPC) and FFA, and between the anterior temporal pole region (aTPL) and posterior perceptual regions (i.e., FFA and the parahippocampal place area), together predicted a large proportion of the variance in subsequent memory performance. This prediction was specific for face-house associative memory, not face/house item memory, and only in the famous condition where prior knowledge was involved. These results support the idea that when prior knowledge is involved, the HPC, vmPFC, and aTPL, which support prior episodic, social-evaluative/schematic, and semantic memories, respectively, continue to interact with each other and posterior perceptual brain regions during the post-encoding rest to facilitate off-line processing of the newly formed memory, and enhance memory consolidation.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada.
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada
| |
Collapse
|
40
|
Ólafsdóttir HF, Carpenter F, Barry C. Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay. Neuron 2017; 96:925-935.e6. [PMID: 29056296 PMCID: PMC5697915 DOI: 10.1016/j.neuron.2017.09.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023]
Abstract
Reactivation of hippocampal place cell sequences during behavioral immobility and rest has been linked with both memory consolidation and navigational planning. Yet it remains to be investigated whether these functions are temporally segregated, occurring during different behavioral states. During a self-paced spatial task, awake hippocampal replay occurring either immediately before movement toward a reward location or just after arrival at a reward location preferentially involved cells consistent with the current trajectory. In contrast, during periods of extended immobility, no such biases were evident. Notably, the occurrence of task-focused reactivations predicted the accuracy of subsequent spatial decisions. Additionally, during immobility, but not periods preceding or succeeding movement, grid cells in deep layers of the entorhinal cortex replayed coherently with the hippocampus. Thus, hippocampal reactivations dynamically and abruptly switch between operational modes in response to task demands, plausibly moving from a state favoring navigational planning to one geared toward memory consolidation.
Collapse
Affiliation(s)
- H Freyja Ólafsdóttir
- Research Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK.
| | - Francis Carpenter
- Research Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Institute of Neurology, UCL, Queen Square, London WC1N 3BQ, UK
| | - Caswell Barry
- Research Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Wilber AA, Skelin I, Wu W, McNaughton BL. Laminar Organization of Encoding and Memory Reactivation in the Parietal Cortex. Neuron 2017; 95:1406-1419.e5. [PMID: 28910623 PMCID: PMC5679317 DOI: 10.1016/j.neuron.2017.08.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/23/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Egocentric neural coding has been observed in parietal cortex (PC), but its topographical and laminar organization is not well characterized. We used multi-site recording to look for evidence of local clustering and laminar consistency of linear and angular velocity encoding in multi-neuronal spiking activity (MUA) and in the high-frequency (300-900 Hz) component of the local field potential (HF-LFP), believed to reflect local spiking activity. Rats were trained to run many trials on a large circular platform, either to LED-cued goal locations or as a spatial sequence from memory. Tuning to specific self-motion states was observed and exhibited distinct cortical depth-invariant coding properties. These patterns of collective local and laminar activation during behavior were reactivated in compressed form during post-experience sleep and temporally coupled to cortical delta waves and hippocampal sharp-wave ripples. Thus, PC neuron motion encoding is consistent across cortical laminae, and this consistency is maintained during memory reactivation.
Collapse
Affiliation(s)
- Aaron A Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ivan Skelin
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | - Wei Wu
- Department of Statistics, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
42
|
Jercog D, Roxin A, Barthó P, Luczak A, Compte A, de la Rocha J. UP-DOWN cortical dynamics reflect state transitions in a bistable network. eLife 2017; 6:22425. [PMID: 28826485 PMCID: PMC5582872 DOI: 10.7554/elife.22425] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/21/2017] [Indexed: 11/21/2022] Open
Abstract
In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.
Collapse
Affiliation(s)
- Daniel Jercog
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Peter Barthó
- MTA TTK NAP B Research Group of Sleep Oscillations, Budapest, Hungary
| | - Artur Luczak
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jaime de la Rocha
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
43
|
Mak-McCully RA, Rolland M, Sargsyan A, Gonzalez C, Magnin M, Chauvel P, Rey M, Bastuji H, Halgren E. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat Commun 2017; 8:15499. [PMID: 28541306 PMCID: PMC5458505 DOI: 10.1038/ncomms15499] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/29/2017] [Indexed: 11/21/2022] Open
Abstract
Every night, the human brain produces thousands of downstates and spindles during non-REM sleep. Previous studies indicate that spindles originate thalamically and downstates cortically, loosely grouping spindle occurrence. However, the mechanisms whereby the thalamus and cortex interact in generating these sleep phenomena remain poorly understood. Using bipolar depth recordings, we report here a sequence wherein: (1) convergent cortical downstates lead thalamic downstates; (2) thalamic downstates hyperpolarize thalamic cells, thus triggering spindles; and (3) thalamic spindles are focally projected back to cortex, arriving during the down-to-upstate transition when the cortex replays memories. Thalamic intrinsic currents, therefore, may not be continuously available during non-REM sleep, permitting the cortex to control thalamic spindling by inducing downstates. This archetypical cortico-thalamo-cortical sequence could provide the global physiological context for memory consolidation during non-REM sleep. During non-REM sleep, the thalamus produces spindles and the cortex produces downstates, but the interaction between these two areas in these sleep phenomena is not understood. Here, authors describe the dynamic loop between the thalamus and cortex that organizes the production of spindles and downstates in the human brain.
Collapse
Affiliation(s)
- Rachel A Mak-McCully
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Matthieu Rolland
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Anna Sargsyan
- Department of Radiology, University of California, San Diego, California 92093, USA
| | - Chris Gonzalez
- Department of Neurosciences, University of California, San Diego, California 92093, USA
| | - Michel Magnin
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France
| | - Patrick Chauvel
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Marc Rey
- Aix-Marseille Université, 13385 Marseille, France.,INSERM, Institut de Neurosciences des Systèmes UMR 1106, 13005 Marseille, France.,APHM (Assistance Publique-Hôpitaux de Marseille), Timone Hospital, 13005 Marseille, France
| | - Hélène Bastuji
- Central Integration of Pain, Lyon Neuroscience Research Center, INSERM, U1028; CNRS, UMR5292; Université Claude Bernard, Lyon, Bron, France.,Unité d'Hypnologie, Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique, Hospices Civils de Lyon, Bron 69002, France
| | - Eric Halgren
- Department of Neurosciences, University of California, San Diego, California 92093, USA.,Department of Radiology, University of California, San Diego, California 92093, USA.,Department of Psychiatry, University of California, San Diego, California 92093, USA
| |
Collapse
|
44
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|
45
|
McVea DA, Murphy TH, Mohajerani MH. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity. Front Neural Circuits 2016; 10:103. [PMID: 28066190 PMCID: PMC5174115 DOI: 10.3389/fncir.2016.00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Cortical sensory systems are active with rich patterns of activity during sleep and under light anesthesia. Remarkably, this activity shares many characteristics with those present when the awake brain responds to sensory stimuli. We review two specific forms of such activity: slow-wave activity (SWA) in the adult brain and spindle bursts in developing brain. SWA is composed of 0.5-4 Hz resting potential fluctuations. Although these fluctuations synchronize wide regions of cortex, recent large-scale imaging has shown spatial details of their distribution that reflect underlying cortical structural projections and networks. These networks are regulated, as prior awake experiences alter both the spatial and temporal features of SWA in subsequent sleep. Activity patterns of the immature brain, however, are very different from those of the adult. SWA is absent, and the dominant pattern is spindle bursts, intermittent high frequency oscillations superimposed on slower depolarizations within sensory cortices. These bursts are driven by intrinsic brain activity, which act to generate peripheral inputs, for example via limb twitches. They are present within developing sensory cortex before they are mature enough to exhibit directed movements and respond to external stimuli. Like in the adult, these patterns resemble those evoked by sensory stimulation when awake. It is suggested that spindle-burst activity is generated purposefully by the developing nervous system as a proxy for true external stimuli. While the sleep-related functions of both slow-wave and spindle-burst activity may not be entirely clear, they reflect robust regulated phenomena which can engage select wide-spread cortical circuits. These circuits are similar to those activated during sensory processing and volitional events. We highlight these two patterns of brain activity because both are prominent and well-studied forms of spontaneous activity that will yield valuable insights into brain function in the coming years.
Collapse
Affiliation(s)
- David A. McVea
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Timothy H. Murphy
- Department of Psychiatry, University of British ColumbiaVancouver, BC, Canada
- Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| | - Majid H. Mohajerani
- Canadian Center for Behavioural Neuroscience, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|
46
|
Gretenkord S, Rees A, Whittington MA, Gartside SE, LeBeau FEN. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat. J Neurophysiol 2016; 117:1126-1142. [PMID: 28003411 PMCID: PMC5340880 DOI: 10.1152/jn.00762.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions. Cortical slow oscillations (0.1–1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2–4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6–15 Hz)-, beta (20–30 Hz), gamma (30–80 Hz)-, and high-gamma (80–150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions. NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions.
Collapse
Affiliation(s)
- Sabine Gretenkord
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom.,Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Adrian Rees
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom
| | - Miles A Whittington
- York-Hull Medical School, F1-Department of Biology, York University, Heslington, United Kingdom
| | - Sarah E Gartside
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom
| | - Fiona E N LeBeau
- Institute of Neuroscience, Newcastle University, Medical School, Newcastle-upon-Tyne, United Kingdom;
| |
Collapse
|
47
|
Headley DB, Kanta V, Paré D. Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes. J Neurophysiol 2016; 117:556-565. [PMID: 27832604 DOI: 10.1152/jn.00644.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/04/2016] [Indexed: 12/29/2022] Open
Abstract
The hippocampus generates population events termed sharp-wave ripples (SWRs) and dentate spikes (DSs). While little is known about DSs, SWR-related hippocampal discharges during sleep are thought to replay prior waking activity, reactivating the cortical networks that encoded the initial experience. During slow-wave sleep, such reactivations likely occur during up-states, when most cortical neurons are depolarized. However, most studies have examined the relationship between SWRs and up-states measured in single neocortical regions. As a result, it is currently unclear whether SWRs are associated with particular patterns of widely distributed cortical activity. Additionally, no such investigation has been carried out for DSs. The present study addressed these questions by recording SWRs and DSs from the dorsal hippocampus simultaneously with prefrontal, sensory (visual and auditory), perirhinal, and entorhinal cortices in naturally sleeping rats. We found that SWRs and DSs were associated with up-states in all cortical regions. Up-states coinciding with DSs and SWRs exhibited increased unit activity, power in the gamma band, and intraregional gamma coherence. Unexpectedly, interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Whereas the increase in gamma coherence was time locked to DSs, that seen in relation to SWRs was not. These observations suggest that SWRs are related to the strength of up-state activation within individual regions throughout the neocortex but not so much to gamma coherence between different regions. Perhaps more importantly, DSs coincided with stronger periods of interregional gamma coherence, suggesting that they play a more important role than previously assumed. NEW & NOTEWORTHY Off-line cortico-hippocampal interactions are thought to support memory consolidation. We surveyed the relationship between hippocampal sharp-wave ripples (SWRs) and dentate spikes (DSs) with up-states across multiple cortical regions. SWRs and DSs were associated with increased cortical gamma oscillations. Interregional gamma coherence rose much more strongly in relation to DSs than to SWRs. Moreover, it was time locked to DSs but not SWRs. These results have important implications for current theories of systems memory consolidation during sleep.
Collapse
Affiliation(s)
- Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Vasiliki Kanta
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
48
|
Jing W, Wang Y, Fang G, Chen M, Xue M, Guo D, Yao D, Xia Y. EEG Bands of Wakeful Rest, Slow-Wave and Rapid-Eye-Movement Sleep at Different Brain Areas in Rats. Front Comput Neurosci 2016; 10:79. [PMID: 27536231 PMCID: PMC4971061 DOI: 10.3389/fncom.2016.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence reveals that neuronal oscillations with various frequency bands in the brain have different physiological functions. However, the frequency band divisions in rats were typically based on empirical spectral distribution from limited channels information. In the present study, functionally relevant frequency bands across vigilance states and brain regions were identified using factor analysis based on 9 channels EEG signals recorded from multiple brain areas in rats. We found that frequency band divisions varied both across vigilance states and brain regions. In particular, theta oscillations during REM sleep were subdivided into two bands, 5–7 and 8–11 Hz corresponding to the tonic and phasic stages, respectively. The spindle activities of SWS were different along the anterior-posterior axis, lower oscillations (~16 Hz) in frontal regions and higher in parietal (~21 Hz). The delta and theta activities co-varied in the visual and auditory cortex during wakeful rest. In addition, power spectra of beta oscillations were significantly decreased in association cortex during REM sleep compared with wakeful rest. These results provide us some new insights into understand the brain oscillations across vigilance states, and also indicate that the spatial factor should not be ignored when considering the frequency band divisions in rats.
Collapse
Affiliation(s)
- Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yanran Wang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu, China
| | - Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Miaomiao Xue
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
49
|
Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci 2016; 19:959-64. [PMID: 27182818 DOI: 10.1038/nn.4304] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/14/2016] [Indexed: 02/08/2023]
Abstract
Memory consolidation is thought to involve a hippocampo-cortical dialog during sleep to stabilize labile memory traces for long-term storage. However, direct evidence supporting this hypothesis is lacking. We dynamically manipulated the temporal coordination between the two structures during sleep following training on a spatial memory task specifically designed to trigger encoding, but not memory consolidation. Reinforcing the endogenous coordination between hippocampal sharp wave-ripples, cortical delta waves and spindles by timed electrical stimulation resulted in a reorganization of prefrontal cortical networks, along with subsequent increased prefrontal responsivity to the task and high recall performance on the next day, contrary to control rats, which performed at chance levels. Our results provide, to the best of our knowledge, the first direct evidence for a causal role of a hippocampo-cortical dialog during sleep in memory consolidation, and indicate that the underlying mechanism involves a fine-tuned coordination between sharp wave-ripples, delta waves and spindles.
Collapse
|
50
|
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 2016; 22:641-8. [PMID: 27111281 PMCID: PMC4899094 DOI: 10.1038/nm.4084] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Thomas Thesen
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA.,Center for Neural Science, New York University, School of Medicine, New York, New York, USA
| |
Collapse
|