1
|
Abstract
Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.
Collapse
Affiliation(s)
- Andrea Alamia
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| | - Rufin VanRullen
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| |
Collapse
|
2
|
Fakche C, Dugué L. Perceptual Cycles Travel Across Retinotopic Space. J Cogn Neurosci 2024; 36:200-216. [PMID: 37902594 DOI: 10.1162/jocn_a_02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Visual perception waxes and wanes periodically over time at low frequencies (theta: 4-7 Hz; alpha: 8-13 Hz), creating "perceptual cycles." These perceptual cycles can be induced when stimulating the brain with a flickering visual stimulus at the theta or alpha frequency. Here, we took advantage of the well-known organization of the visual system into retinotopic maps (topographic correspondence between visual and cortical spaces) to assess the spatial organization of induced perceptual cycles. Specifically, we tested the hypothesis that they can propagate across the retinotopic space. A disk oscillating in luminance (inducer) at 4, 6, 8, or 10 Hz was presented in the periphery of the visual field to induce perceptual cycles at specific frequencies. EEG recordings verified that the brain responded at the corresponding inducer frequencies and their first harmonics. Perceptual cycles were assessed with a concurrent detection task-target stimuli were displayed at threshold contrast (50% detection) at random times during the inducer. Behavioral results confirmed that perceptual performance was modulated periodically by the inducer at each frequency. We additionally manipulated the distance between the target and the inducer (three possible positions) and showed that the optimal phase, that is, moment of highest target detection, shifted across target distance to the inducer, specifically when its flicker frequency was in the alpha range (8 and 10 Hz). These results demonstrate that induced alpha perceptual cycles travel across the retinotopic space in humans at a propagation speed of 0.3-0.5 m/sec, consistent with the speed of unmyelinated horizontal connections in the visual cortex.
Collapse
Affiliation(s)
- Camille Fakche
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Institut Universitaire de France
| |
Collapse
|
3
|
Tiselko VS, Volgushev M, Jancke D, Chizhov AV. Response retention and apparent motion effect in visual cortex models. PLoS One 2023; 18:e0293725. [PMID: 37917779 PMCID: PMC10621977 DOI: 10.1371/journal.pone.0293725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Apparent motion is a visual illusion in which stationary stimuli, flashing in distinct spatial locations at certain time intervals, are perceived as one stimulus moving between these locations. In the primary visual cortex, apparent-motion stimuli produce smooth spatio-temporal patterns of activity similar to those produced by continuously moving stimuli. An important prerequisite for producing such activity patterns is prolongation of responses to brief stimuli. Indeed, a brief stimulus can evoke in the visual cortex a long response, outlasting the stimulus by hundreds of milliseconds. Here we use firing-rate based models with simple ring structure, and biologically-detailed conductance-based refractory density (CBRD) model with retinotopic space representation to analyze the response retention and the origin of smooth profiles of activity in response to apparent-motion stimuli. We show that the strength of recurrent connectivity is the major factor that endorses neuronal networks with the ability for response retention. The same strengths of recurrent connections mediate the appearance of bump attractor in the ring models. Factors such as synaptic depression, NMDA receptor mediated currents, and conductances regulating spike adaptation influence response retention, but cannot substitute for the weakness of recurrent connections to reproduce response retention in models with weak connectivity. However, the weakness of lateral recurrent connections can be compensated by layering: in multi-layer models even with weaker connections the activity retains due to its feedforward propagation from layer to layer. Using CBRD model with retinotopic space representation we further show that smooth spatio-temporal profiles of activity in response to apparent-motion stimuli are produced in the models expressing response retention, but not in the models that fail to produce response retention. Together, these results demonstrate a link between response retention and the ability of neuronal networks to generate spatio-temporal patterns of activity, which are compatible with perception of apparent motion.
Collapse
Affiliation(s)
- Vasilii S. Tiselko
- Laboratory of Complex Networks, Center for Neurophysics and Neuromorphic Technologies, Moscow, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
| | - Maxim Volgushev
- Department of Psychological Sciences, and the Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States of America
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Bochum, Germany
| | - Anton V. Chizhov
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- MathNeuro Team, Inria Centre at Universite Cote d’Azur, Sophia Antipolis, France
| |
Collapse
|
4
|
Belloir T, Montalgo-Vargo S, Ahmed Z, Griggs DJ, Fisher S, Brown T, Chamanzar M, Yazdan-Shahmorad A. Large-scale multimodal surface neural interfaces for primates. iScience 2023; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
Affiliation(s)
- Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Sergio Montalgo-Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Shawn Fisher
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Timothy Brown
- Department of Bioethics & Humanities, University of Washington, Seattle, WA, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Le Bec B, Troncoso XG, Desbois C, Passarelli Y, Baudot P, Monier C, Pananceau M, Frégnac Y. Horizontal connectivity in V1: Prediction of coherence in contour and motion integration. PLoS One 2022; 17:e0268351. [PMID: 35802625 PMCID: PMC9269411 DOI: 10.1371/journal.pone.0268351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.
Collapse
Affiliation(s)
- Benoit Le Bec
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Xoana G. Troncoso
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Christophe Desbois
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Yannick Passarelli
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Pierre Baudot
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Monier
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marc Pananceau
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Yves Frégnac
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
6
|
Barthélemy FV, Fleuriet J, Perrinet LU, Masson GS. A behavioral receptive field for ocular following in monkeys: Spatial summation and its spatial frequency tuning. eNeuro 2022; 9:ENEURO.0374-21.2022. [PMID: 35760525 PMCID: PMC9275147 DOI: 10.1523/eneuro.0374-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
In human and non-human primates, reflexive tracking eye movements can be initiated at very short latency in response to a rapid shift of the image. Previous studies in humans have shown that only a part of the central visual field is optimal for driving ocular following responses. Herein, we have investigated spatial summation of motion information across a wide range of spatial frequencies and speeds of drifting gratings by recording short-latency ocular following responses in macaque monkeys. We show that optimal stimulus size for driving ocular responses cover a small (<20° diameter), central part of the visual field that shrinks with higher spatial frequency. This signature of linear motion integration remains invariant with speed and temporal frequency. For low and medium spatial frequencies, we found a strong suppressive influence from surround motion, evidenced by a decrease of response amplitude for stimulus sizes larger than optimal. Such suppression disappears with gratings at high frequencies. The contribution of peripheral motion was investigated by presenting grating annuli of increasing eccentricity. We observed an exponential decay of response amplitude with grating eccentricity, the decrease being faster for higher spatial frequencies. Weaker surround suppression can thus be explained by sparser eccentric inputs at high frequencies. A Difference-of-Gaussians model best renders the antagonistic contributions of peripheral and central motions. Its best-fit parameters coincide with several, well-known spatial properties of area MT neuronal populations. These results describe the mechanism by which central motion information is automatically integrated in a context-dependent manner to drive ocular responses.Significance statementOcular following is driven by visual motion at ultra-short latency in both humans and monkeys. Its dynamics reflect the properties of low-level motion integration. Here, we show that a strong center-surround suppression mechanism modulates initial eye velocity. Its spatial properties are dependent upon visual inputs' spatial frequency but are insensitive to either its temporal frequency or speed. These properties are best described with a Difference-of-Gaussian model of spatial integration. The model parameters reflect many spatial characteristics of motion sensitive neuronal populations in monkey area MT. Our results further outline the computational properties of the behavioral receptive field underpinning automatic, context-dependent motion integration.
Collapse
Affiliation(s)
- Frédéric V Barthélemy
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| | - Jérome Fleuriet
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone, UMR7289, CNRS & Aix-Marseille Université, 13385 Marseille, France
| |
Collapse
|
7
|
Revisiting horizontal connectivity rules in V1: from like-to-like towards like-to-all. Brain Struct Funct 2022; 227:1279-1295. [PMID: 35122520 DOI: 10.1007/s00429-022-02455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/03/2022] [Indexed: 01/15/2023]
Abstract
Horizontal connections in the primary visual cortex of carnivores, ungulates and primates organize on a near-regular lattice. Given the similar length scale for the regularity found in cortical orientation maps, the currently accepted theoretical standpoint is that these maps are underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to neurons with similar preferred orientation. However, there is reason to doubt the rule's explanatory power, since a growing number of quantitative studies show that the like-to-like connectivity preference and bias mostly observed at short-range scale, are highly variable on a neuron-to-neuron level and depend on the origin of the presynaptic neuron. Despite the wide availability of published data, the accepted model of visual processing has never been revised. Here, we review three lines of independent evidence supporting a much-needed revision of the like-to-like connectivity rule, ranging from anatomy to population functional measures, computational models and to theoretical approaches. We advocate an alternative, distance-dependent connectivity rule that is consistent with new structural and functional evidence: from like-to-like bias at short horizontal distance to like-to-all at long horizontal distance. This generic rule accounts for the observed high heterogeneity in interactions between the orientation and retinotopic domains, that we argue is necessary to process non-trivial stimuli in a task-dependent manner.
Collapse
|
8
|
Denison RN, Carrasco M, Heeger DJ. A dynamic normalization model of temporal attention. Nat Hum Behav 2021; 5:1674-1685. [PMID: 34140658 PMCID: PMC8678377 DOI: 10.1038/s41562-021-01129-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Vision is dynamic, handling a continuously changing stream of input, yet most models of visual attention are static. Here, we develop a dynamic normalization model of visual temporal attention and constrain it with new psychophysical human data. We manipulated temporal attention-the prioritization of visual information at specific points in time-to a sequence of two stimuli separated by a variable time interval. Voluntary temporal attention improved perceptual sensitivity only over a specific interval range. To explain these data, we modelled voluntary and involuntary attentional gain dynamics. Voluntary gain enhancement took the form of a limited resource over short time intervals, which recovered over time. Taken together, our theoretical and experimental results formalize and generalize the idea of limited attentional resources across space at a single moment to limited resources across time at a single location.
Collapse
Affiliation(s)
- Rachel N Denison
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
9
|
Brooks CJ, Chan YM, Fielding J, White OB, Badcock DR, McKendrick AM. Visual contrast perception in visual snow syndrome reveals abnormal neural gain but not neural noise. Brain 2021; 145:1486-1498. [PMID: 34633444 DOI: 10.1093/brain/awab383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Visual snow syndrome is a neurological condition characterised by a persistent visual disturbance, visual snow, in conjunction with additional visual symptoms. Cortical hyperexcitability is a potential pathophysiological mechanism, which could be explained by increased gain in neural responses to visual input. Alternatively, neural noise in the visual pathway could be abnormally elevated. We assessed these two potential competing neural mechanisms in our studies of visual contrast perception. Cortical hyperexcitation also occurs in migraine, which commonly co-occurs with visual snow syndrome. Therefore, to determine whether the effect of visual snow syndrome can be distinguished from interictal migraine, we recruited four participant groups: controls, migraine alone, visual snow syndrome alone, visual snow syndrome with migraine. In the first experiment, we estimated internal noise in 20 controls, 21 migraine participants, 32 visual snow syndrome participants (16 with migraine) using a luminance increment detection task. In the second experiment, we estimated neural contrast gain in 21 controls, 22 migraine participants, 35 visual snow syndrome participants (16 with migraine) using tasks assessing sensitivity to changes in contrast from a reference. Contrast gain and sensitivity were measured for the putative parvocellular and ON and OFF magnocellular pathways, respectively. We found that luminance increment thresholds and internal noise estimates were normal in both visual snow syndrome and migraine. Contrast gain measures for putative parvocellular processing and contrast sensitivity for putative OFF magnocellular processing were abnormally increased in visual snow syndrome, regardless of migraine status. Therefore, our results indicate that visual snow syndrome is characterised by increased neural contrast gain but not abnormal neural noise within the targeted pathways.
Collapse
Affiliation(s)
- Cassandra J Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Yu Man Chan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Camillo D, Ahmadlou M, Heimel JA. Contrast-Dependence of Temporal Frequency Tuning in Mouse V1. Front Neurosci 2020; 14:868. [PMID: 32982668 PMCID: PMC7477338 DOI: 10.3389/fnins.2020.00868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
The perception of speed is influenced by visual contrast. In primary visual cortex (V1), an early stage in the visual perception pathway, the neural tuning to speed is directly related to the neural tuning to temporal frequency of stimulus changes. The influence of contrast on speed perception can be caused by the joint dependency of neural responses in V1 on temporal frequency and contrast. Here, we investigated how tuning to contrast and temporal frequency in V1 of anesthetized mice are related. We found that temporal frequency tuning is contrast-dependent. V1 was more responsive at lower temporal frequencies than the dLGN, consistent with previous work at high contrast. The temporal frequency tuning moves toward higher temporal frequencies with increasing contrast. The low half-maximum temporal frequency does not change with contrast. The Heeger divisive normalization equation provides a good fit to many response characteristics in V1, but does not fit the dependency of temporal frequency and contrast with set of parameters for all temporal frequencies. Different mechanisms for normalization in the visual cortex may predict different relationships between temporal frequency and contrast non-linearity. Our data could help to make a model selection.
Collapse
|
11
|
Abstract
Nowadays, several techniques exist to study and better understand how the brain works (fMRI, EEG, electrophysiology, etc.). Each has its own advantages and disadvantages (spatiotemporal resolution, maximal recording depth, signal-to-noise ratio, etc.). In this article, we show that the new functional ultrasound (fUS) imaging technique is appropriate to record and map brain activity in awake primates on a scale previously unreachable. It allows distinguishing patterns similar to ocular dominance bands in the visual cortex through all layers of the cortex, which was impossible before with common techniques. This paper demonstrates the utility of fUS imaging for studying brain activity in awake primates and its interest to all neuroscientists. Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.
Collapse
|
12
|
Salelkar S, Ray S. Interaction between steady-state visually evoked potentials at nearby flicker frequencies. Sci Rep 2020; 10:5344. [PMID: 32210321 PMCID: PMC7093459 DOI: 10.1038/s41598-020-62180-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/11/2020] [Indexed: 01/20/2023] Open
Abstract
Steady-state visually evoked potential (SSVEP) studies routinely employ simultaneous presentation of two temporally modulated stimuli, with SSVEP amplitude modulations serving to index top-down cognitive processes. However, the nature of SSVEP amplitude modulations as a function of competing temporal frequency (TF) has not been systematically studied, especially in relation to the normalization framework which has been extensively used to explain visual responses to multiple stimuli. We recorded spikes and local field potential (LFP) from the primary visual cortex (V1) as well as EEG from two awake macaque monkeys while they passively fixated plaid stimuli with components counterphasing at different TFs. We observed asymmetric SSVEP response suppression by competing TFs (greater suppression for lower TFs), which further depended on the relative orientations of plaid components. A tuned normalization model, adapted to SSVEP responses, provided a good account of the suppression. Our results provide new insights into processing of temporally modulated visual stimuli.
Collapse
Affiliation(s)
- Siddhesh Salelkar
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, Bangalore, 560012, India
| | - Supratim Ray
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, Bangalore, 560012, India.
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Zhou J, Benson NC, Kay K, Winawer J. Predicting neuronal dynamics with a delayed gain control model. PLoS Comput Biol 2019; 15:e1007484. [PMID: 31747389 PMCID: PMC6892546 DOI: 10.1371/journal.pcbi.1007484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/04/2019] [Accepted: 10/10/2019] [Indexed: 11/19/2022] Open
Abstract
Visual neurons respond to static images with specific dynamics: neuronal responses sum sub-additively over time, reduce in amplitude with repeated or sustained stimuli (neuronal adaptation), and are slower at low stimulus contrast. Here, we propose a simple model that predicts these seemingly disparate response patterns observed in a diverse set of measurements-intracranial electrodes in patients, fMRI, and macaque single unit spiking. The model takes a time-varying contrast time course of a stimulus as input, and produces predicted neuronal dynamics as output. Model computation consists of linear filtering, expansive exponentiation, and a divisive gain control. The gain control signal relates to but is slower than the linear signal, and this delay is critical in giving rise to predictions matched to the observed dynamics. Our model is simpler than previously proposed related models, and fitting the model to intracranial EEG data uncovers two regularities across human visual field maps: estimated linear filters (temporal receptive fields) systematically differ across and within visual field maps, and later areas exhibit more rapid and substantial gain control. The model is further generalizable to account for dynamics of contrast-dependent spike rates in macaque V1, and amplitudes of fMRI BOLD in human V1.
Collapse
Affiliation(s)
- Jingyang Zhou
- Department of Psychology, New York University, New York City, New York, United States of America
| | - Noah C. Benson
- Department of Psychology, New York University, New York City, New York, United States of America
| | - Kendrick Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York City, New York, United States of America
- Center for Neural Science, New York University, New York City, New York, United States of America
- Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), Palo Alto, California, United States of America
| |
Collapse
|
14
|
Macknik SL, Alexander RG, Caballero O, Chanovas J, Nielsen KJ, Nishimura N, Schaffer CB, Slovin H, Babayoff A, Barak R, Tang S, Ju N, Yazdan-Shahmorad A, Alonso JM, Malinskiy E, Martinez-Conde S. Advanced Circuit and Cellular Imaging Methods in Nonhuman Primates. J Neurosci 2019; 39:8267-8274. [PMID: 31619496 PMCID: PMC6794937 DOI: 10.1523/jneurosci.1168-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Novel genetically encoded tools and advanced microscopy methods have revolutionized neural circuit analyses in insects and rodents over the last two decades. Whereas numerous technical hurdles originally barred these methodologies from success in nonhuman primates (NHPs), current research has started to overcome those barriers. In some cases, methodological advances developed with NHPs have even surpassed their precursors. One such advance includes new ultra-large imaging windows on NHP cortex, which are larger than the entire rodent brain and allow analysis unprecedented ultra-large-scale circuits. NHP imaging chambers now remain patent for periods longer than a mouse's lifespan, allowing for long-term all-optical interrogation of identified circuits and neurons over timeframes that are relevant to human cognitive development. Here we present some recent imaging advances brought forth by research teams using macaques and marmosets. These include technical developments in optogenetics; voltage-, calcium- and glutamate-sensitive dye imaging; two-photon and wide-field optical imaging; viral delivery; and genetic expression of indicators and light-activated proteins that result in the visualization of tens of thousands of identified cortical neurons in NHPs. We describe a subset of the many recent advances in circuit and cellular imaging tools in NHPs focusing here primarily on the research presented during the corresponding mini-symposium at the 2019 Society for Neuroscience annual meeting.
Collapse
Affiliation(s)
- Stephen L Macknik
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203,
| | - Robert G Alexander
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Olivya Caballero
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Jordi Chanovas
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| | - Kristina J Nielsen
- Zanvyl Krieger Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Amit Babayoff
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ravid Barak
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Shiming Tang
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, and Peking University-International Data Group-McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Niansheng Ju
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, and Peking University-International Data Group-McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195
| | - Jose-Manuel Alonso
- State University of New York, College of Optometry, New York, New York 10036, and
| | | | - Susana Martinez-Conde
- State University of New York Downstate Medical Center, Health Science Center at Brooklyn, New York 11203
| |
Collapse
|
15
|
Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate. J Neurosci 2019; 39:4282-4298. [PMID: 30886010 DOI: 10.1523/jneurosci.2792-18.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
How does the brain link visual stimuli across space and time? Visual illusions provide an experimental paradigm to study these processes. When two stationary dots are flashed in close spatial and temporal succession, human observers experience a percept of apparent motion. Large spatiotemporal separation challenges the visual system to keep track of object identity along the apparent motion path, the so-called "correspondence problem." Here, we use voltage-sensitive dye imaging in primary visual cortex (V1) of awake monkeys to show that intracortical connections within V1 can solve this issue by shaping cortical dynamics to represent the illusory motion. We find that the appearance of the second stimulus in V1 creates a systematic suppressive wave traveling toward the retinotopic representation of the first. Using a computational model, we show that the suppressive wave is the emergent property of a recurrent gain control fed by the intracortical network. This suppressive wave acts to explain away ambiguous correspondence problems and contributes to precisely encode the expected motion velocity at the surface of V1. Together, these results demonstrate that the nonlinear dynamics within retinotopic maps can shape cortical representations of illusory motion. Understanding these dynamics will shed light on how the brain links sensory stimuli across space and time, by preformatting population responses for a straightforward read-out by downstream areas.SIGNIFICANCE STATEMENT Traveling waves have recently been observed in different animal species, brain areas, and behavioral states. However, it is still unclear what are their functional roles. In the case of cortical visual processing, waves propagate across retinotopic maps and can hereby generate interactions between spatially and temporally separated instances of feedforward driven activity. Such interactions could participate in processing long-range apparent motion stimuli, an illusion for which no clear neuronal mechanisms have yet been proposed. Using this paradigm in awake monkeys, we show that suppressive traveling waves produce a spatiotemporal normalization of apparent motion stimuli. Our study suggests that cortical waves shape the representation of illusory moving stimulus within retinotopic maps for a straightforward read-out by downstream areas.
Collapse
|
16
|
Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model. J Neurosci 2018; 38:10069-10079. [PMID: 30282725 DOI: 10.1523/jneurosci.0246-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/01/2018] [Accepted: 09/22/2018] [Indexed: 11/21/2022] Open
Abstract
How do cortical responses to local image elements combine to form a spatial pattern of population activity in primate V1? Here, we used voltage-sensitive dye imaging, which measures summed membrane potential activity, to examine the rules that govern lateral interactions between the representations of two small local-oriented elements in macaque (Macaca mulatta) V1. We find strong subadditive and mostly orientation-independent interactions for nearby elements [2-4 mm interelement cortical distance (IED)] that gradually become linear at larger separations (>6 mm IED). These results are consistent with a population gain control model describing nonlinear V1 population responses to single oriented elements. However, because of the membrane potential-to-spiking accelerating nonlinearity, the model predicts supra-additive lateral interactions of spiking responses for intermediate separations at a range of locations between the two elements, consistent with some prior facilitatory effects observed in electrophysiology and psychophysics. Overall, our results suggest that population-level lateral interactions in V1 are primarily explained by a simple orientation-independent contrast gain control mechanism.SIGNIFICANCE STATEMENT Interactions between representations of simple visual elements such as oriented edges in primary visual cortex (V1) are thought to contribute to our ability to easily integrate contours and segment surfaces, but the mechanisms that govern these interactions are primarily unknown. Our study provides novel evidence that lateral interactions at the population level are governed by a simple contrast gain-control mechanism, and we show how this divisive gain-control mechanism can give rise to apparently facilitatory spiking responses.
Collapse
|
17
|
Having More Choices Changes How Human Observers Weight Stable Sensory Evidence. J Neurosci 2018; 38:8635-8649. [PMID: 30143576 DOI: 10.1523/jneurosci.0440-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 02/04/2023] Open
Abstract
Decision-making becomes slower when more choices are available. Existing models attribute this slowing to poor sensory processing, to attenuated rates of sensory evidence accumulation, or to increases in the amount of evidence required before committing to a decision (a higher decision threshold). However, studies have not isolated the effects of having more choices on sensory and decision-related processes from changes in task difficulty and divided attention. Here, we controlled task difficulty while independently manipulating the distribution of attention and the number of choices available to male and female human observers. We used EEG to measure steady-state visually evoked potentials (SSVEPs) and a frontal late positive deflection (LPD), EEG markers of sensory and postsensory decision-related processes, respectively. We found that dividing attention decreased SSVEP and LPD amplitudes, consistent with dampened sensory responses and slower rates of evidence accumulation, respectively. In contrast, having more choices did not alter SSVEP amplitude and led to a larger LPD. These results suggest that having more options largely spares early sensory processing and slows down decision-making via a selective increase in decision thresholds.SIGNIFICANCE STATEMENT When more choices are available, decision-making becomes slower. We tested whether this phenomenon is due to poor sensory processing, to reduced rates of evidence accumulation, or to increases in the amount of evidence required before committing to a decision (a higher decision threshold). We measured choice modulations of sensory and decision-related neural responses using EEG. We also minimized potential confounds from changes in the distribution of attention and task difficulty, which often covary with having more choices. Dividing attention reduced the activity levels of both sensory and decision-related responses. However, having more choices did not change sensory processing and led to larger decision-related responses. These results suggest that having more choices spares sensory processing and selectively increases decision thresholds.
Collapse
|
18
|
Muller L, Chavane F, Reynolds J, Sejnowski TJ. Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 2018; 19:255-268. [PMID: 29563572 DOI: 10.1038/nrn.2018.20] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.
Collapse
Affiliation(s)
- Lyle Muller
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| | - John Reynolds
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Terrence J Sejnowski
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Division of Biological Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
19
|
Chadnova E, Reynaud A, Clavagnier S, Baker D, Baillet S, Hess R. Interocular interaction of contrast and luminance signals in human primary visual cortex. Neuroimage 2018; 167:23-30. [DOI: 10.1016/j.neuroimage.2017.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022] Open
|
20
|
Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. J Comput Neurosci 2017; 44:45-61. [DOI: 10.1007/s10827-017-0668-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 11/26/2022]
|
21
|
Reynaud A, Hess RF. Interocular contrast difference drives illusory 3D percept. Sci Rep 2017; 7:5587. [PMID: 28717190 PMCID: PMC5514099 DOI: 10.1038/s41598-017-06151-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/09/2017] [Indexed: 01/08/2023] Open
Abstract
Any processing delay between the two eyes can result in illusory 3D percepts for moving objects because of either changes in the pure disparities over time for disparity sensors or by changes to sensors that encode motion/disparity conjointly. This is demonstrated by viewing a fronto-parallel pendulum through a neutral density (ND) filter placed over one eye, resulting in the illusory 3D percept of the pendulum following an elliptical orbit in depth, the so-called Pulfrich phenomenon. Here we use a paradigm where a cylinder rotating in depth, defined by moving Gabor patches is presented at different interocular phases, generating strong to ambiguous depth percepts. This paradigm allows one to manipulate independently the contrast and the luminance of the patches to determine their influence on perceived motion-in-depth. Thus we show psychophysically that an interocular contrast difference can itself result in a similar illusory 3D percept of motion-in-depth. We argue that contrast, like luminance (ND filter) can modify the dynamics of visual neurons resulting in an interocular processing delay or an interocular velocity difference.
Collapse
Affiliation(s)
- Alexandre Reynaud
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, QC, Canada
| | - Robert F Hess
- McGill Vision Research, Dept. Ophthalmology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Jancke D. Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. NEUROPHOTONICS 2017; 4:031206. [PMID: 28217713 PMCID: PMC5301132 DOI: 10.1117/1.nph.4.3.031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.
Collapse
Affiliation(s)
- Dirk Jancke
- Ruhr University Bochum, Optical Imaging Group, Institut für Neuroinformatik, Bochum, Germany
| |
Collapse
|
23
|
Chemla S, Muller L, Reynaud A, Takerkart S, Destexhe A, Chavane F. Improving voltage-sensitive dye imaging: with a little help from computational approaches. NEUROPHOTONICS 2017; 4:031215. [PMID: 28573154 PMCID: PMC5438098 DOI: 10.1117/1.nph.4.3.031215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 05/29/2023]
Abstract
Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community. However, this unprecedented technique remains largely under-utilized, and many future possibilities await for VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recurrent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger development of interdisciplinary approaches can bridge micro- to macroscales.
Collapse
Affiliation(s)
- Sandrine Chemla
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Lyle Muller
- Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California, United States
| | - Alexandre Reynaud
- McGill University, McGill Vision Research, Department of Ophthalmology, Montreal, Quebec, Canada
| | - Sylvain Takerkart
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Alain Destexhe
- Unit for Neurosciences, Information and Complexity (UNIC), Centre National de la Recherche Scientifique (CNRS), UPR-3293, Gif-sur-Yvette, France
- The European Institute for Theoretical Neuroscience (EITN), Paris, France
| | - Frédéric Chavane
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
24
|
Chalk M, Masset P, Deneve S, Gutkin B. Sensory noise predicts divisive reshaping of receptive fields. PLoS Comput Biol 2017; 13:e1005582. [PMID: 28622330 PMCID: PMC5509365 DOI: 10.1371/journal.pcbi.1005582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/13/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
Collapse
Affiliation(s)
- Matthew Chalk
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Paul Masset
- Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Sophie Deneve
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
| | - Boris Gutkin
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
- Group for Neural Theory, LNC INSERM U960, Departement d’Etudes Cognitive, Ecole Normale Superieure PSL* University, Paris, France
| |
Collapse
|
25
|
Pei F, Baldassi S, Tsai JJ, Gerhard HE, Norcia AM. Development of contrast normalization mechanisms during childhood and adolescence. Vision Res 2017; 133:12-20. [PMID: 27826013 DOI: 10.1016/j.visres.2016.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 01/15/2023]
Abstract
Contrast sensitivity is regulated by neural mechanisms that flexibly adjust responsiveness to optimize stimulus encoding across different environments. Here we studied the developmental status of gain control mechanisms in school-age children (5-17years) and adults using a visual masking paradigm. A variable contrast, spatially random 2-D noise test pattern was masked by the presence of a superimposed independent noise pattern presented at 0, 12 and 40% contrast. Frequency-tagged steady state visual evoked potentials were used to separately record responses to the test (5.14Hz) and the mask (7.2Hz). By incrementally increasing the test contrast we measured contrast response functions for each mask contrast. The unmasked contrast response functions were largely similar in shape across age, but peak amplitude was higher in the children. Masking shifted the contrast response function rightward on the contrast axis in both the adults and older children, elevating contrast thresholds by a similar factor across age. However, in younger children, masking resulted in a change in the slope of the contrast response function. These findings suggest that immaturity in the contrast normalization process persists until approximately 11years of age.
Collapse
Affiliation(s)
- Francesca Pei
- Department of Psychology, Stanford University, Stanford, CA, United States; Stanford Autism Center at Packard Children's Hospital, Department of Psychiatry, School of Medicine, Stanford University, Stanford, CA, United States.
| | - Stefano Baldassi
- Department of Psychology, Stanford University, Stanford, CA, United States; Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Italy
| | - Jeffrey J Tsai
- Department of Neurology, University of Washington, Seattle, WA, United States
| | - Holly E Gerhard
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Anthony M Norcia
- Department of Psychology, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Chemla S, Chavane F. Effects of GABAA kinetics on cortical population activity: computational studies and physiological confirmations. J Neurophysiol 2016; 115:2867-79. [PMID: 26912588 DOI: 10.1152/jn.00352.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye (VSD) imaging produces an unprecedented real-time and high-resolution mesoscopic signal to measure the cortical population activity. We have previously shown that the neuronal compartments contributions to the signal are dynamic and stimulus-dependent (Chemla S, Chavane F. Neuroimage 53: 420-438, 2010). Moreover, the VSD signal can also be strongly affected by the network state, such as in anesthetized vs. awake preparations. Here, we investigated the impact of the network state, through GABAA receptors modulation, on the VSD signal using a computational approach. We therefore systematically measured the effect of the GABAA-mediated inhibitory postsynaptic potentials (IPSPs) decay time constant (τG) on our modeled VSD response to an input stimulus of increasing strength. Our simulations suggest that τG strongly modulates the dynamics of the VSD signal, affecting the amplitude, input response function, and the transient balance of excitation and inhibition. We confirmed these predictions experimentally on awake and anesthetized monkeys, comparing VSD responses to drifting gratings stimuli of various contrasts. Lastly, one in vitro study has suggested that GABAA receptors may also be directly affected by the VSDs themselves (Mennerick S, Chisari M, Shu H, Taylor A, Vasek M, Eisenman L, Zorumski C. J Neurosci 30: 2871-2879, 2010). Our modeling approach suggests that the type of modulation described in this study would actually have a negligible influence on the population response. This study highlights that functional results acquired with different techniques and network states must be compared with caution. Biophysical models are proposed here as an adequate tool to delineate the domain of VSD data interpretation.
Collapse
Affiliation(s)
- Sandrine Chemla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada; and
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| |
Collapse
|
27
|
Abstract
UNLABELLED The neuronal mechanism underlying the representation of color surfaces in primary visual cortex (V1) is not well understood. We tested on color surfaces the previously proposed hypothesis that visual perception of uniform surfaces is mediated by an isomorphic, filled-in representation in V1. We used voltage-sensitive-dye imaging in fixating macaque monkeys to measure V1 population responses to spatially uniform chromatic (red, green, or blue) and achromatic (black or white) squares of different sizes (0.5°-8°) presented for 300 ms. Responses to both color and luminance squares early after stimulus onset were similarly edge-enhanced: for squares 1° and larger, regions corresponding to edges were activated much more than those corresponding to the center. At later times after stimulus onset, responses to achromatic squares' centers increased, partially "filling-in" the V1 representation of the center. The rising phase of the center response was slower for larger squares. Surprisingly, the responses to color squares behaved differently. For color squares of all sizes, responses remained edge-enhanced throughout the stimulus. There was no filling-in of the center. Our results imply that uniform filled-in representations of surfaces in V1 are not required for the perception of uniform surfaces and that chromatic and achromatic squares are represented differently in V1. SIGNIFICANCE STATEMENT We used voltage-sensitive dye imaging from V1 of behaving monkeys to test the hypothesis that visual perception of uniform surfaces is mediated by an isomorphic, filled-in representation. We found that the early population responses to chromatic and achromatic surfaces are edge enhanced, emphasizing the importance of edges in surface processing. Next, we show for color surfaces that responses remained edge-enhanced throughout the stimulus presentation whereas response to luminance surfaces showed a slow neuronal 'filling-in' of the center. Our results suggest that isomorphic representation is not a general code for uniform surfaces in V1.
Collapse
|
28
|
Input and output gain modulation by the lateral interhemispheric network in early visual cortex. J Neurosci 2015; 35:7682-94. [PMID: 25995459 DOI: 10.1523/jneurosci.4154-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurons in the cerebral cortex are constantly integrating different types of inputs. Dependent on their origin, these inputs can be modulatory in many ways and, for example, change the neuron's responsiveness, sensitivity, or selectivity. To investigate the modulatory role of lateral input from the same level of cortical hierarchy, we recorded in the primary visual cortex of cats while controlling synaptic input from the corresponding contralateral hemisphere by reversible deactivation. Most neurons showed a pronounced decrease in their response to a visual stimulus of different contrasts and orientations. This indicates that the lateral network acts via an unspecific gain-setting mechanism, scaling the output of a neuron. However, the interhemispheric input also changed the contrast sensitivity of many neurons, thereby acting on the input. Such a contrast gain mechanism has important implications because it extends the role of the lateral network from pure response amplification to the modulation of a specific feature. Interestingly, for many neurons, we found a mixture of input and output gain modulation. Based on these findings and the known physiology of callosal connections in the visual system, we developed a simple model of lateral interhemispheric interactions. We conclude that the lateral network can act directly on its target, leading to a sensitivity change of a specific feature, while at the same time it also can act indirectly, leading to an unspecific gain setting. The relative contribution of these direct and indirect network effects determines the outcome for a particular neuron.
Collapse
|
29
|
Niu X, Shi L, Wan H, Wang Z, Shang Z, Li Z. Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex. Brain Res Bull 2015; 117:45-53. [DOI: 10.1016/j.brainresbull.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
30
|
Itthipuripat S, Cha K, Rangsipat N, Serences JT. Value-based attentional capture influences context-dependent decision-making. J Neurophysiol 2015; 114:560-9. [PMID: 25995350 DOI: 10.1152/jn.00343.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022] Open
Abstract
Normative theories posit that value-based decision-making is context independent. However, decisions between two high-value options can be suboptimally biased by the introduction of a third low-value option. This context-dependent modulation is consistent with the divisive normalization of the value of each stimulus by the total value of all stimuli. In addition, an independent line of research demonstrates that pairing a stimulus with a high-value outcome can lead to attentional capture that can mediate the efficiency of visual information processing. Here we tested the hypothesis that value-based attentional capture interacts with value-based normalization to influence the optimality of decision-making. We used a binary-choice paradigm in which observers selected between two targets and the color of each target indicated the magnitude of their reward potential. Observers also had to simultaneously ignore a task-irrelevant distractor rendered in a color that was previously associated with a specific reward magnitude. When the color of the task-irrelevant distractor was previously associated with a high reward, observers responded more slowly and less optimally. Moreover, as the learned value of the distractor increased, electrophysiological data revealed an attenuation of the lateralized N1 and N2Pc responses evoked by the relevant choice stimuli and an attenuation of the late positive deflection (LPD). Collectively, these behavioral and electrophysiological data suggest that value-based attentional capture and value-based normalization jointly mediate the influence of context on free-choice decision-making.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California; and
| | - Kexin Cha
- Department of Psychology, University of California, San Diego, La Jolla, California
| | - Napat Rangsipat
- Department of Psychology, University of California, San Diego, La Jolla, California
| | - John T Serences
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California; and Department of Psychology, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Dynamic divisive normalization predicts time-varying value coding in decision-related circuits. J Neurosci 2015; 34:16046-57. [PMID: 25429145 DOI: 10.1523/jneurosci.2851-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding.
Collapse
|
32
|
Ashaber M, Pálfi E, Friedman RM, Palmer C, Jákli B, Chen LM, Kántor O, Roe AW, Négyessy L. Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J Comp Neurol 2014; 522:1769-85. [PMID: 24214200 DOI: 10.1002/cne.23499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/08/2022]
Abstract
Converging evidence shows that interaction of digit-specific input, which is required to form global tactile percepts, begins as early as area 3b in the primary somatosensory cortex with the involvement of intrinsic lateral connections. How tactile processing is further elaborated in area 1, the next stage of the somatosensory cortical hierarchy, is less understood. This question was investigated by studying the tangential distribution of intrinsic and interareal connections of finger representations of area 1. Retrogradely labeled cell densities and anterogradely labeled fibers and terminal patches were plotted and quantified with respect to the hand representation by combining tract tracing with electrophysiological mapping and intrinsic signal optical imaging in somatosensory areas. Intrinsic connections of distal finger pad representations of area 1 spanned the representation of multiple digits indicating strong cross-digit connectivity. Area 1 distal finger pad regions also established high-density connections with homotopic regions of areas 3b and 2. Although similar to area 3b, connections of area 1 distributed more widely and covered a larger somatotopic representation including more proximal parts of the finger representations. The lateral connectivity pattern of area 1 is a suitable anatomical substrate of the emergence of multifinger receptive fields, complex feature selectivity, and invariant stimulus properties of the neurons.
Collapse
Affiliation(s)
- Mária Ashaber
- Complex Systems and Computational Neuroscience Group, Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, H-1121, Hungary; Department of Anatomy, Histology, and Embryology, Semmelweis University Medical School, Budapest, H-1094, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
We investigated the cortical mechanisms underlying the visual perception of luminance-defined surfaces and the preference for black over white stimuli in the macaque primary visual cortex, V1. We measured V1 population responses with voltage-sensitive dye imaging in fixating monkeys that were presented with white or black squares of equal contrast around a mid-gray. Regions corresponding to the squares' edges exhibited higher activity than those corresponding to the center. Responses to black were higher than to white, surprisingly to a much greater extent in the representation of the square's center. Additionally, the square-evoked activation patterns exhibited spatial modulations along the edges and corners. A model comprised of neural mechanisms that compute local contrast, local luminance temporal modulations in the black and white directions, and cortical center-surround interactions, could explain the observed population activity patterns in detail. The model captured the weaker contribution of V1 neurons that respond to positive (white) and negative (black) luminance surfaces, and the stronger contribution of V1 neurons that respond to edge contrast. Also, the model demonstrated how the response preference for black could be explained in terms of stronger surface-related activation to negative luminance modulation. The spatial modulations along the edges were accounted for by surround suppression. Overall the results reveal the relative strength of edge contrast and surface signals in the V1 response to visual objects.
Collapse
|
34
|
Yang Z, Heeger DJ, Blake R, Seidemann E. Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys. J Neurophysiol 2014; 113:277-94. [PMID: 25343785 DOI: 10.1152/jn.00610.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traveling waves of cortical activity, in which local stimulation triggers lateral spread of activity to distal locations, have been hypothesized to play an important role in cortical function. However, there is conflicting physiological evidence for the existence of spreading traveling waves of neural activity triggered locally. Dichoptic stimulation, in which the two eyes view dissimilar monocular patterns, can lead to dynamic wave-like fluctuations in visual perception and therefore, provides a promising means for identifying and studying cortical traveling waves. Here, we used voltage-sensitive dye imaging to test for the existence of traveling waves of activity in the primary visual cortex of awake, fixating monkeys viewing dichoptic stimuli. We find clear traveling waves that are initiated by brief, localized contrast increments in one of the monocular patterns and then, propagate at speeds of ∼ 30 mm/s. These results demonstrate that under an appropriate visual context, circuitry in visual cortex in alert animals is capable of supporting long-range traveling waves triggered by local stimulation.
Collapse
Affiliation(s)
- Zhiyong Yang
- Brain and Behavior Discovery Institute, James and Jean Culver Vision Discovery Institute, and Department of Ophthalmology, Georgia Regents University, Augusta, Georgia
| | - David J Heeger
- Department of Psychology and Center for Neural Sciences, New York University, New York, New York
| | - Randolph Blake
- Vanderbilt Vision Research Center and Department of Psychology, Vanderbilt University, Nashville, Tennessee; Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea; and
| | - Eyal Seidemann
- Center for Perceptual Systems and Departments of Psychology and Neuroscience, University of Texas, Austin, Texas
| |
Collapse
|
35
|
Nassi JJ, Gómez-Laberge C, Kreiman G, Born RT. Corticocortical feedback increases the spatial extent of normalization. Front Syst Neurosci 2014; 8:105. [PMID: 24910596 PMCID: PMC4039070 DOI: 10.3389/fnsys.2014.00105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Camille Gómez-Laberge
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Boston Children's Hospital Boston, MA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Boston Children's Hospital Boston, MA, USA ; Swartz Center for Theoretical Neuroscience, Harvard University Cambridge, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| |
Collapse
|
36
|
Roland PE, Hilgetag CC, Deco G. Cortico-cortical communication dynamics. Front Syst Neurosci 2014; 8:19. [PMID: 24847217 PMCID: PMC4017159 DOI: 10.3389/fnsys.2014.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/25/2014] [Indexed: 11/13/2022] Open
Abstract
In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.
Collapse
Affiliation(s)
- Per E Roland
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Health Sciences, Boston University Boston, MA, USA
| | - Gustavo Deco
- Department of Technology, University of Pompeu Fabra Barcelona, Spain
| |
Collapse
|
37
|
Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun 2014; 5:3675. [PMID: 24770473 PMCID: PMC4015334 DOI: 10.1038/ncomms4675] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/17/2014] [Indexed: 11/23/2022] Open
Abstract
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions. Propagating waves of cortical neuronal activity are implicated in various cognitive processes and have been observed in anaesthetised animals. Here, the authors demonstrate the existence of propagating waves in awake monkeys during visual stimulation, and show that they are mediated by horizontal fibres in the cortex.
Collapse
Affiliation(s)
- Lyle Muller
- 1] Unité des Neurosciences, Information et Complexité (UNIC), UPR-3293, CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France [2]
| | - Alexandre Reynaud
- 1] Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, UMR 7289, Campus Santé Timone, 27 boulevard Jean Moulin, Marseille 13005, France [2]
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, UMR 7289, Campus Santé Timone, 27 boulevard Jean Moulin, Marseille 13005, France
| | - Alain Destexhe
- Unité des Neurosciences, Information et Complexité (UNIC), UPR-3293, CNRS, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
38
|
Takerkart S, Katz P, Garcia F, Roux S, Reynaud A, Chavane F. Vobi One: a data processing software package for functional optical imaging. Front Neurosci 2014; 8:2. [PMID: 24478623 PMCID: PMC3901006 DOI: 10.3389/fnins.2014.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/04/2014] [Indexed: 11/13/2022] Open
Abstract
Optical imaging is the only technique that allows to record the activity of a neuronal population at the mesoscopic scale. A large region of the cortex (10-20 mm diameter) is directly imaged with a CCD camera while the animal performs a behavioral task, producing spatio-temporal data with an unprecedented combination of spatial and temporal resolutions (respectively, tens of micrometers and milliseconds). However, researchers who have developed and used this technique have relied on heterogeneous software and methods to analyze their data. In this paper, we introduce Vobi One, a software package entirely dedicated to the processing of functional optical imaging data. It has been designed to facilitate the processing of data and the comparison of different analysis methods. Moreover, it should help bring good analysis practices to the community because it relies on a database and a standard format for data handling and it provides tools that allow producing reproducible research. Vobi One is an extension of the BrainVISA software platform, entirely written with the Python programming language, open source and freely available for download at https://trac.int.univ-amu.fr/vobi_one.
Collapse
Affiliation(s)
- Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Philippe Katz
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France ; LabISEN, Vision Department, Institut Supérieur de lElectronique et du Numérique Brest, France
| | - Flavien Garcia
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Sébastien Roux
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophtalmology, McGill University Montréal, QC, Canada
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone UMR 7289, CNRS - Aix Marseille Université Marseille, France
| |
Collapse
|
39
|
Khoei MA, Masson GS, Perrinet LU. Motion-based prediction explains the role of tracking in motion extrapolation. ACTA ACUST UNITED AC 2013; 107:409-20. [PMID: 24036184 DOI: 10.1016/j.jphysparis.2013.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/02/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for motion extrapolation, this calls for further experimental work exploring the role of noise in motion extrapolation.
Collapse
Affiliation(s)
- Mina A Khoei
- Institut de Neurosciences de la Timone, UMR 7289, CNRS/Aix-Marseille Université, 27, Bd. Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | |
Collapse
|
40
|
Muller LE, Reynaud A, Chavane F, Destexhe A. Propagating waves structure spatiotemporal activity in visual cortex of the awake monkey. BMC Neurosci 2013. [PMCID: PMC3704421 DOI: 10.1186/1471-2202-14-s1-o8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Vaiceliunaite A, Erisken S, Franzen F, Katzner S, Busse L. Spatial integration in mouse primary visual cortex. J Neurophysiol 2013; 110:964-72. [PMID: 23719206 DOI: 10.1152/jn.00138.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.
Collapse
Affiliation(s)
- Agne Vaiceliunaite
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Penacchio O, Otazu X, Dempere-Marco L. A neurodynamical model of brightness induction in v1. PLoS One 2013; 8:e64086. [PMID: 23717536 PMCID: PMC3661450 DOI: 10.1371/journal.pone.0064086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/10/2013] [Indexed: 01/16/2023] Open
Abstract
Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.
Collapse
Affiliation(s)
- Olivier Penacchio
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
43
|
Simoncini C, Perrinet LU, Montagnini A, Mamassian P, Masson GS. More is not always better: adaptive gain control explains dissociation between perception and action. Nat Neurosci 2012; 15:1596-603. [PMID: 23023292 DOI: 10.1038/nn.3229] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
Abstract
Moving objects generate motion information at different scales, which are processed in the visual system with a bank of spatiotemporal frequency channels. It is not known how the brain pools this information to reconstruct object speed and whether this pooling is generic or adaptive; that is, dependent on the behavioral task. We used rich textured motion stimuli of varying bandwidths to decipher how the human visual motion system computes object speed in different behavioral contexts. We found that, although a simple visuomotor behavior such as short-latency ocular following responses takes advantage of the full distribution of motion signals, perceptual speed discrimination is impaired for stimuli with large bandwidths. Such opposite dependencies can be explained by an adaptive gain control mechanism in which the divisive normalization pool is adjusted to meet the different constraints of perception and action.
Collapse
Affiliation(s)
- Claudio Simoncini
- Team InViBe, Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | | | | | | | | |
Collapse
|