1
|
Zhang B, Leung L, Su EJ, Lawrence DA. PA System in the Pathogenesis of Ischemic Stroke. Arterioscler Thromb Vasc Biol 2025; 45:600-608. [PMID: 40143813 PMCID: PMC12037151 DOI: 10.1161/atvbaha.125.322422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
Ischemic stroke remains a leading cause of morbidity and mortality worldwide, driven by complex pathophysiological mechanisms that make finding effective treatments challenging. PAs (plasminogen activators) play a critical role in fibrinolysis and vascular homeostasis and as such are important factors affecting stroke outcome. This review examines the complex relationships between ischemic stroke and PAs, highlighting their physiological, pathological, and therapeutic effects on ischemic stroke. We focus on recombinant tissue-type PA as the only Food and Drug Administration-approved thrombolytic agent, describing its clinical impact and associated obstacles impacting its wide-scale use, such as blood-brain barrier disruption and inflammation. Furthermore, emerging PA-based therapies and combination strategies are explored to address the limitations of recombinant tissue-type PA. By integrating mechanistic information with clinical developments, this review aims to provide insights for the advancement of PA-centered approaches to improve the safety and efficacy of stroke treatments.
Collapse
Affiliation(s)
- Boxin Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road of Kaifu District, Changsha, 410008, China
| | - Lisa Leung
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
3
|
Zhou Z, Bai Y, Gu X, Ren H, Xi W, Wang Y, Bian L, Liu X, Shen L, Xiang X, Huang W, Luo Z, Han B, Yao H. Membrane Associated RNA-Containing Vesicles Regulate Cortical Astrocytic Microdomain Calcium Transients in Awake Ischemic Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404391. [PMID: 39444078 PMCID: PMC11633488 DOI: 10.1002/advs.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Indexed: 10/25/2024]
Abstract
Astrocytic processes minutely regulate neuronal activity via tripartite synaptic structures. The precision-tuning of the function of astrocytic processes is garnering increasing attention because of its significance in promoting brain repair following ischemic stroke. Microdomain calcium (Ca2+) transients in astrocytic processes are pivotal for the functional regulation of these processes. However, the understanding of the alterations and regulatory mechanism of microdomain Ca2+ transients during stroke remains limited. In the present study, a fast high-resolution, miniaturized two-photon microscopy is used to show that the levels of astrocytic microdomain Ca2+ transients are significantly reduced in the peri-infarct area of awake ischemic stroke mice. This finding correlated with the behavioral deficits shown by these mice under freely-moving conditions. Mitochondrial Ca2+ activity is an important factor driving the microdomain Ca2+ transients. DEAD Box 1 (DDX1) bound to circSCMH1 (a circular RNA involved in vascular post-stroke repair) facilitates the formation of membrane-associated RNA-containing vesicles (MARVs) and enhances the activity of astrocytic microdomain Ca2+ transients, thereby promoting behavioral recovery. These results show that targeting astrocytic microdomain Ca2+ transients is a potential therapeutic approach in stroke intervention.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Bai
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiaochun Gu
- Jiangsu Key Laboratory of Molecular and Functional ImagingDepartment of RadiologyZhongda HospitalMedical School of Southeast UniversityNanjing210009China
| | - Hui Ren
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Wen Xi
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yu Wang
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Liang Bian
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xue Liu
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Shen
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhui Huang
- Department of Molecular PhysiologyCenter for Integrative Physiology and Molecular MedicineUniversity of Saarland66421HomburgGermany
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Bing Han
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Honghong Yao
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjing210096China
| |
Collapse
|
4
|
Mujanovic A, Kurmann CC, Serrallach BL, Dobrocky T, Meinel TR, Windecker D, Grunder L, Beyeler M, Seiffge DJ, Pilgram-Pastor S, Arnold M, Piechowiak EI, Gralla J, Fischer U, Kaesmacher J. Intra-Arterial Thrombolysis is Associated with Delayed Reperfusion of Remaining Vessel Occlusions following Incomplete Thrombectomy. AJNR Am J Neuroradiol 2023; 44:1050-1056. [PMID: 37500281 PMCID: PMC10494949 DOI: 10.3174/ajnr.a7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND PURPOSE Intra-arterial thrombolytics may be used to treat distal vessel occlusions, which cause incomplete reperfusion following mechanical thrombectomy. Because immediate reperfusion after intra-arterial thrombolytics occurs rarely, the aim of this study was to assess the delayed effect of intra-arterial thrombolytics using follow-up perfusion imaging. MATERIALS AND METHODS We included patients from a prospective stroke registry (February 2015 to September 2022) who had undergone mechanical thrombectomy and had incomplete reperfusion (expanded TICI 2a-2c) and available 24 hour perfusion imaging. Perfusion imaging was rated as delayed reperfusion if time-sensitive perfusion maps did not show wedge-shaped delays suggestive of persisting occlusions corresponding to the post-mechanical thrombectomy angiographic deficit. Patients treated with intra-arterial thrombolytics were compared with controls using multivariable logistic regression and inverse probability of treatment weighting matching for baseline differences and factors associated with delayed reperfusion. RESULTS The median age of the final study population (n = 459) was 74 years (interquartile range, 63-81 years), and delayed reperfusion occurred in 61% of cases. Patients treated with additional intra-arterial thrombolytics (n = 40) were younger and had worse expanded TICI scores. After matching was performed, intra-arterial thrombolytics was associated with higher rates of delayed reperfusion (adjusted OR = 2.7; 95% CI, 1.1-6.4) and lower rates of new infarction in the residually hypoperfused territory after mechanical thrombectomy (adjusted OR = 0.3; 95% CI, 0.1-0.7). No difference was found in the rates of functional independence (90-day mRS, 0-2; adjusted OR = 1.4; 95% CI, 0.4-4.1). CONCLUSIONS Rescue intra-arterial thrombolytics is associated with delayed reperfusion of remaining vessel occlusions following incomplete mechanical thrombectomy. The value of intra-arterial thrombolytics as a potential therapy for incomplete reperfusions after mechanical thrombectomy should be assessed in the setting of randomized controlled trials.
Collapse
Affiliation(s)
- A Mujanovic
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - C C Kurmann
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Department of Diagnostic, Interventional and Pediatric Radiology (C.C.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - B L Serrallach
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - T Dobrocky
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - T R Meinel
- Department of Neurology (T.R.M., M.B., D.J.S., M.A., U.F.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - D Windecker
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - L Grunder
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - M Beyeler
- Department of Neurology (T.R.M., M.B., D.J.S., M.A., U.F.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - D J Seiffge
- Department of Neurology (T.R.M., M.B., D.J.S., M.A., U.F.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Pilgram-Pastor
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - M Arnold
- Department of Neurology (T.R.M., M.B., D.J.S., M.A., U.F.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - E I Piechowiak
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - J Gralla
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - U Fischer
- Department of Neurology (T.R.M., M.B., D.J.S., M.A., U.F.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Department of Neurology (U.F.), University Hospital Basel, University of Basel, Basel, Switzerland
| | - J Kaesmacher
- From the Department of Diagnostic and Interventional Neuroradiology (A.M., C.C.K., B.L.S., T.D., D.W., L.G., S.P.-P., E.I.P., J.G., J.K.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Functional Validation of the Putative Oncogenic Activity of PLAU. Biomedicines 2022; 11:biomedicines11010102. [PMID: 36672610 PMCID: PMC9856075 DOI: 10.3390/biomedicines11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Plasminogen activator, urokinase (PLAU) is involved in cell migration, proliferation and tissue remodeling. PLAU upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis. These clinical findings have led to the examination of PLAU as a biomarker for predicting breast cancer prognosis and therapy responses. In this study, we investigated the functional ability of PLAU to act as an oncogene in breast cancers by modulating its expression using CRISPR-deactivated Cas9 (CRISPR-dCas9) tools. Different effector domains (e.g., transcription modulators (VP64, KRAB)) alone or in combination with epigenetic writers (DNMT3A/3L, MSssI) were fused to dCas9 and targeted to the PLAU promoter. In MDA-MB-231 cells characterized by high PLAU expression downregulation of PLAU expression by CRISPR-dCas9-DNMT3A/3L-KRAB, resulted in decreased cell proliferation. Conversely, CRISPR-dCas9-VP64 induced PLAU upregulation in low PLAU expressing MCF-7 cells and significantly increased aggressiveness and invasion. In conclusion, modulation of PLAU expression affected metastatic related properties of breast cancer cells, thus further validating its oncogenic activity in breast cancer cells.
Collapse
|
6
|
Yepes M. The uPA/uPAR system in astrocytic wound healing. Neural Regen Res 2022; 17:2404-2406. [PMID: 35535878 PMCID: PMC9120704 DOI: 10.4103/1673-5374.338991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022] Open
Abstract
The repair of injured tissue is a highly complex process that involves cell proliferation, differentiation, and migration. Cell migration requires the dismantling of intercellular contacts in the injured zone and their subsequent reconstitution in the wounded area. Urokinase-type plasminogen activator (uPA) is a serine proteinase found in multiple cell types including endothelial cells, smooth muscle cells, monocytes, and macrophages. A substantial body of experimental evidence with different cell types outside the central nervous system indicates that the binding of uPA to its receptor (uPAR) on the cell surface prompts cell migration by inducing plasmin-mediated degradation of the extracellular matrix. In contrast, although uPA and uPAR are abundantly found in astrocytes and uPA binding to uPAR triggers astrocytic activation, it is unknown if uPA also plays a role in astrocytic migration. Neuronal cadherin is a member of cell adhesion proteins pivotal for the formation of cell-cell contacts between astrocytes. More specifically, while the extracellular domain of neuronal cadherin interacts with the extracellular domain of neuronal cadherin in neighboring cells, its intracellular domain binds to β-catenin, which in turn links the complex to the actin cytoskeleton. Glycogen synthase kinase 3β is a serine-threonine kinase that prevents the cytoplasmic accumulation of β-catenin by inducing its phosphorylation at Ser33, Ser37, and Ser41, thus activating a sequence of events that lead to its proteasomal degradation. The data discussed in this perspective indicate that astrocytes release uPA following a mechanical injury, and that binding of this uPA to uPAR on the cell membrane induces the detachment of β-catenin from the intracellular domain of neuronal cadherin by triggering its extracellular signal-regulated kinase 1/2-mediated phosphorylation at Tyr650. Remarkably, this is followed by the cytoplasmic accumulation of β-catenin because uPA-induced extracellular signal-regulated kinase 1/2 activation also phosphorylates lipoprotein receptor-related protein 6 at Ser1490, which in turn, by recruiting glycogen synthase kinase 3β to its intracellular domain abrogates its effect on β-catenin. The cytoplasmic accumulation of β-catenin is followed by its nuclear translocation, where it induces the expression of uPAR, which is required for the migration of astrocytes from the injured edge into the wounded area.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
7
|
Diaz A, Martin-Jimenez C, Woo Y, Merino P, Torre E, Yepes M. Urokinase-Type Plasminogen Activator Triggers Wingless/Int1-Independent Phosphorylation of the Low-Density Lipoprotein Receptor-Related Protein-6 in Cerebral Cortical Neurons. J Alzheimers Dis 2022; 89:877-891. [PMID: 35964187 DOI: 10.3233/jad-220320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Urokinase-type plasminogen activator (uPA) is a serine proteinase found in excitatory synapses located in the II/III and V cortical layers. The synaptic release of uPA promotes the formation of synaptic contacts and the repair of synapses damaged by various forms of injury, and its abundance is decreased in the synapse of Alzheimer's disease (AD) patients. Inactivation of the Wingless/Int1 (Wnt)-β-catenin pathway plays a central role in the pathogenesis of AD. Soluble amyloid-β (Aβ) prevents the phosphorylation of the low-density lipoprotein receptor-related protein-6 (LRP6), and the resultant inactivation of the Wnt-β-catenin pathway prompts the amyloidogenic processing of the amyloid-β protein precursor (AβPP) and causes synaptic loss. OBJECTIVE To study the role of neuronal uPA in the pathogenesis of AD. METHODS We used in vitro cultures of murine cerebral cortical neurons, a murine neuroblastoma cell line transfected with the APP-695 Swedish mutation (N2asw), and mice deficient on either plasminogen, or uPA, or its receptor (uPAR). RESULTS We show that uPA activates the Wnt-β-catenin pathway in cerebral cortical neurons by triggering the phosphorylation of LRP6 via a plasmin-independent mechanism that does not require binding of Wnt ligands (Wnts). Our data indicate that uPA-induced activation of the Wnt-β-catenin pathway protects the synapse from the harmful effects of soluble Aβ and prevents the amyloidogenic processing of AβPP by inhibiting the expression of β-secretase 1 (BACE1) and the ensuing generation of Aβ 40 and Aβ 42 peptides. CONCLUSION uPA protects the synapse and antagonizes the inhibitory effect of soluble Aβ on the Wnt-β-catenin pathway by providing an alternative pathway for LRP6 phosphorylation and β-catenin stabilization.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology, Emory University, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
8
|
Dzhauari S, Litvinova S, Efimenko A, Aleksandrushkina N, Basalova N, Abakumov M, Danilova N, Malkov P, Balabanyan V, Bezuglova T, Balayants V, Mnikhovich M, Gulyaev M, Skryabina M, Popov V, Stambolsky D, Voronina T, Tkachuk V, Karagyaur M. Urokinase-Type Plasminogen Activator Enhances the Neuroprotective Activity of Brain-Derived Neurotrophic Factor in a Model of Intracerebral Hemorrhage. Biomedicines 2022; 10:biomedicines10061346. [PMID: 35740368 PMCID: PMC9220139 DOI: 10.3390/biomedicines10061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a classic neuroprotective and pro-regenerative factor in peripheral and central nervous tissue. Its ability to stimulate the restoration of damaged nerve and brain tissue after ischemic stroke and intraventricular hemorrhage has been demonstrated. However, the current concept of regeneration allows us to assert that one factor, even if essential, cannot be the sole contributor to this complex biological process. We have previously shown that urokinase-type plasminogen activator (uPA) complements BDNF activity and stimulates restoration of nervous tissue. Using a model of intracerebral hemorrhage in rats, we investigated the neurotrophic and neuroprotective effect of BDNF combined with uPA. The local simultaneous administration of BDNF and uPA provided effective neuroprotection of brain tissue after intracerebral hemorrhage, promoted survival of experimental animals and their neurological recovery, and decreased lesion volume. The study of cellular mechanisms of the observed neurotrophic effect of BDNF and uPA combination revealed both known mechanisms (neuronal survival and neurite growth) and new ones (microglial activation) that had not been shown for BDNF and uPA. Our findings support the concept of using combinations of biological factors with diverse but complementary mechanisms of action as a promising regenerative approach.
Collapse
Affiliation(s)
- Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
| | - Svetlana Litvinova
- Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, 8, Baltiyskaya Str., 125315 Moscow, Russia; (S.L.); (T.V.)
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Natalia Aleksandrushkina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, National University of Science and Technology MISiS, 4, Leninskiy Ave., 119049 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 1, Ostrovityanova Str., 117997 Moscow, Russia
| | - Natalia Danilova
- Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.D.); (P.M.); (D.S.)
| | - Pavel Malkov
- Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.D.); (P.M.); (D.S.)
| | - Vadim Balabanyan
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Tatiana Bezuglova
- Research Institute of Human Morphology, 3, Tsyurupy Str., 117418 Moscow, Russia; (T.B.); (V.B.); (M.M.)
| | - Viktor Balayants
- Research Institute of Human Morphology, 3, Tsyurupy Str., 117418 Moscow, Russia; (T.B.); (V.B.); (M.M.)
| | - Maxim Mnikhovich
- Research Institute of Human Morphology, 3, Tsyurupy Str., 117418 Moscow, Russia; (T.B.); (V.B.); (M.M.)
| | - Mikhail Gulyaev
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
| | - Dmitry Stambolsky
- Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia; (N.D.); (P.M.); (D.S.)
| | - Tatiana Voronina
- Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, 8, Baltiyskaya Str., 125315 Moscow, Russia; (S.L.); (T.V.)
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia; (S.D.); (A.E.); (N.A.); (N.B.); (V.B.); (M.G.); (M.S.); (V.P.); (V.T.)
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
10
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Diaz A, Merino P, McCann P, Yepes MA, Quiceno LG, Torre E, Tomkins A, Zhang X, Hales CM, Tong FC, Yepes M. Urokinase-type plasminogen activator promotes N-cadherin-mediated synaptic recovery in the ischemic brain. J Cereb Blood Flow Metab 2021; 41:2381-2394. [PMID: 33757316 PMCID: PMC8393294 DOI: 10.1177/0271678x211002297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a serine proteinase that catalyzes the generation of plasmin on the cell surface and activates cell signaling pathways that promote remodeling and repair. Neuronal cadherin (NCAD) is a transmembrane protein that in the mature brain mediates the formation of synaptic contacts in the II/III and V cortical layers. Our studies show that uPA is preferentially found in the II/III and V cortical laminae of the gyrencephalic cortex of the non-human primate. Furthermore, we found that in murine cerebral cortical neurons and induced pluripotent stem cell (iPSC)-derived neurons prepared from healthy human donors, most of this uPA is associated with pre-synaptic vesicles. Our in vivo experiments revealed that in both, the gyrencephalic cortex of the non-human primate and the lissecephalic murine brain, cerebral ischemia decreases the number of intact synaptic contacts and the expression of uPA and NCAD in a band of tissue surrounding the necrotic core. Additionally, our in vitro data show that uPA induces the synthesis of NCAD in cerebral cortical neurons, and in line with these observations, intravenous treatment with recombinant uPA three hours after the onset of cerebral ischemia induces NCAD-mediated repair of synaptic contacts in the area surrounding the necrotic core.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Patrick McCann
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel A Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura G Quiceno
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Amelia Tomkins
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Xiaodong Zhang
- Imaging Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Chadwick M Hales
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Frank C Tong
- Departments of Radiology and Neurosurgery, Emory University, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Neurology & Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
12
|
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021; 69:2947-2962. [PMID: 34427356 DOI: 10.1002/glia.24080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Pitkonen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilario de Toma
- Systems Neurobiology Laboratory, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Otso Nieminen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore
| | - Tomas M Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, and MultiPark and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iryna Ethell
- Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | | | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
14
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
15
|
Yaron JR, Zhang L, Guo Q, Haydel SE, Lucas AR. Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front Cardiovasc Med 2021; 8:648947. [PMID: 33869309 PMCID: PMC8044766 DOI: 10.3389/fcvm.2021.648947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The making and breaking of clots orchestrated by the thrombotic and thrombolytic serine protease cascades are critical determinants of morbidity and mortality during infection and with vascular or tissue injury. Both the clot forming (thrombotic) and the clot dissolving (thrombolytic or fibrinolytic) cascades are composed of a highly sensitive and complex relationship of sequentially activated serine proteases and their regulatory inhibitors in the circulating blood. The proteases and inhibitors interact continuously throughout all branches of the cardiovascular system in the human body, representing one of the most abundant groups of proteins in the blood. There is an intricate interaction of the coagulation cascades with endothelial cell surface receptors lining the vascular tree, circulating immune cells, platelets and connective tissue encasing the arterial layers. Beyond their role in control of bleeding and clotting, the thrombotic and thrombolytic cascades initiate immune cell responses, representing a front line, "off-the-shelf" system for inducing inflammatory responses. These hemostatic pathways are one of the first response systems after injury with the fibrinolytic cascade being one of the earliest to evolve in primordial immune responses. An equally important contributor and parallel ancient component of these thrombotic and thrombolytic serine protease cascades are the serine protease inhibitors, termed serpins. Serpins are metastable suicide inhibitors with ubiquitous roles in coagulation and fibrinolysis as well as multiple central regulatory pathways throughout the body. Serpins are now known to also modulate the immune response, either via control of thrombotic and thrombolytic cascades or via direct effects on cellular phenotypes, among many other functions. Here we review the co-evolution of the thrombolytic cascade and the immune response in disease and in treatment. We will focus on the relevance of these recent advances in the context of the ongoing COVID-19 pandemic. SARS-CoV-2 is a "respiratory" coronavirus that causes extensive cardiovascular pathogenesis, with microthrombi throughout the vascular tree, resulting in severe and potentially fatal coagulopathies.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Shelley E. Haydel
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Diaz A, Torre E, Yepes M. Preparation of Synaptoneurosomes to Study the Synapse in the Murine Cerebral Cortex. Bio Protoc 2021; 11:e3896. [PMID: 33732785 DOI: 10.21769/bioprotoc.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/02/2022] Open
Abstract
The synapse is a complex structure where the transmission of information takes place. Synaptic dysfunction is one of the earliest pathophysiological events in several diseases, such as traumatic brain injury, cerebral ischemia, and neurodegenerative diseases. Thus, a methodology to study synaptic structure and function is crucial for the development of potential strategies for the treatment of many neurological diseases. Synaptoneurosomes (SNs) are structures assembled by the sealed presynaptic bouton and the attached post-synaptic density. Despite the fact that for a long time it has been recognized that SNs are a powerful tool to study synaptic function, composition, and structure, its use has been limited by the requirement of relatively large amounts of material to successfully isolate them. Here we describe a three-step centrifugation procedure performed under hypotonic conditions to isolate SNs from small volumes of the cerebral cortex. Graphic abstract: Schematic flowchart for the preparation of synaptoneurosomes.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA; USA.,Department of Neurology, Emory University, Atlanta, GA; USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA; USA
| |
Collapse
|
17
|
Abstract
Dementia is a clinical syndrome that affects approximately 47 million people worldwide and is characterized by progressive and irreversible decline of cognitive, behavioral and sesorimotor functions. Alzheimer's disease (AD) accounts for approximately 60-80% of all cases of dementia, and neuropathologically is characterized by extracellular deposits of insoluble amyloid-β (Aβ) and intracellular aggregates of hyperphosphorylated tau. Significantly, although for a long time it was believed that the extracellular accumulation of Aβ was the culprit of the symptoms observed in these patients, more recent studies have shown that cognitive decline in people suffering this disease is associated with soluble Aβ-induced synaptic dysfunction instead of the formation of insoluble Aβ-containing extracellular plaques. These observations are translationally relevant because soluble Aβ-induced synaptic dysfunction is an early event in AD that precedes neuronal death, and thus is amenable to therapeutic interventions to prevent cognitive decline before the progression to irreversible brain damage. The plasminogen activating (PA) system is an enzymatic cascade that triggers the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Experimental evidence reported over the last three decades has shown that tPA and uPA play a role in the pathogenesis of AD. However, these studies have focused on the ability of these plasminogen activators to trigger plasmin-induced cleavage of insoluble Aβ-containing extracellular plaques. In contrast, recent evidence indicates that activity-dependent release of uPA from the presynaptic terminal of cerebral cortical neurons protects the synapse from the deleterious effects of soluble Aβ via a mechanism that does not require plasmin generation or the cleavage of Aβ fibrils. Below we discuss the role of the PA system in the pathogenesis of AD and the translational relevance of data published to this date.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology, Emory University School of Medicine; Department of Neurology, Veterans Affairs Medical Center; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| |
Collapse
|
18
|
Huang J, Liu Y, Cheng L, Li J, Zhang T, Zhao G, Zhang H. Glucagon-like peptide-1 cleavage product GLP-1(9-36) reduces neuroinflammation from stroke via the activation of insulin-like growth factor 1 receptor in astrocytes. Eur J Pharmacol 2020; 887:173581. [PMID: 32949596 DOI: 10.1016/j.ejphar.2020.173581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an endogenous gut hormone and a key regulator in maintaining glucose homeostasis by stimulating insulin secretion. Its natural cleavage product GLP-1 (9-36), which was formerly considered a "bio-inactive" metabolite mainly due to its low affinity for GLP-1 receptor, possesses unique properties such as cardiovascular protection. Little is known about the effects and mechanisms of GLP-1 (9-36) in cerebral ischemia and reperfusion injury. Here, we report that systemic application of GLP-1 (9-36) in adult mice facilitated functional recovery and reduced infarct volume, astrogliosis, and neuronal apoptosis following middle cerebral artery occlusion and reperfusion. Interestingly, these effects were still observed in GLP-1 receptor knockout (Glp-1rKO) mice but were partially reversed in insulin-like growth factor 1 (IGF-1) receptor knockdown (Igf-1rKD) mice. Primary astrocytes were cultured and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R), and enzyme-linked immunosorbent assay indicated that GLP-1 (9-36) pretreatment reduces tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels. This effect was not diminished in Glp-1rKO astrocytes but was reversed in Igf-1rKO astrocytes, emphasizing that the anti-inflammatory effect of GLP-1 (9-36) in astrocytes is independent of GLP-1 receptor signaling and is instead mediated by IGF-1 receptor. Immunoprecipitation experiments showed that GLP-1 (9-36) directly interacts with IGF-1 receptor in astrocytes. Western blot data indicated that GLP-1 (9-36) activates IGF-1 receptor and downstream PI3K-AKT pathway in astrocytes upon OGD/R injury, which was abrogated by preincubation with IGF-1 receptor autophosphorylation inhibitor picropodophyllin. Thus, our findings suggest that GLP-1 (9-36) improved stroke outcome by reducing inflammation in astrocytes via interaction with IGF-1 receptor.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China; Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunhan Liu
- Department of Neurology Impatient, Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liusiyuan Cheng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Jihong Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Tangrui Zhang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Huinan Zhang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Xi'an, China.
| |
Collapse
|
19
|
Yepes M. The Plasminogen Activation System Promotes Neurorepair in the Ischemic Brain. Curr Drug Targets 2020; 20:953-959. [PMID: 30539695 PMCID: PMC6700753 DOI: 10.2174/1389450120666181211144550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
The plasminogen activation (PA) system was originally thought to exclusively promote the degradation of fibrin by catalyzing the conversion of plasminogen into plasmin via two serine proteinases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). However, experimental evidence accumulated over the last 30 years indicates that tPA and uPA are also found in the central nervous system (CNS), where they have a plethora of functions that not always require plasmin generation or fibrin degradation. For example, plasminogen-dependent and - independent effects of tPA and uPA play a central role in the pathophysiological events that underlie one of the leading causes of mortality and disability in the world: cerebral ischemia. Indeed, recent work indicates that while the rapid release of tPA from the presynaptic compartment following the onset of cerebral ischemia protects the synapse from the deleterious effects of the ischemic injury, the secretion of uPA and its binding to its receptor (uPAR) during the recovery phase promotes the repair of synapses that have been lost to the acute ischemic insult. This restorative role of uPA has high translational significance because to this date there is no effective approach to induce neurorepair in the ischemic brain. Here we will discuss recent evidence that bridges the gap between basic research in the field of the PA system and the bedside of ischemic stroke patients, indicating that uPA and uPAR are potential targets for the development of therapeutic strategies to promote neurological recovery among ischemic stroke survivors.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Atlanta, GA, United States.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine; Atlanta, GA, United States.,Department of Neurology, Veterans Affairs Medical Center; Atlanta, GA, United States
| |
Collapse
|
20
|
Urokinase-Type Plasminogen Activator Protects Cerebral Cortical Neurons from Soluble Aβ-Induced Synaptic Damage. J Neurosci 2020; 40:4251-4263. [PMID: 32332118 DOI: 10.1523/jneurosci.2804-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022] Open
Abstract
Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of Alzheimer's disease (AD) that precedes the deposition of insoluble Aβ and correlates with the development of cognitive deficits better than the number of plaques. The mammalian plasminogen activation (PA) system catalyzes the generation of plasmin via two activators: tissue-type (tPA) and urokinase-type (uPA). A dysfunctional tPA-plasmin system causes defective proteolytic degradation of Aβ plaques in advanced stages of AD. In contrast, it is unknown whether uPA and its receptor (uPAR) contribute to the pathogenesis of this disease. Neuronal cadherin (NCAD) plays a pivotal role in the formation of synapses and dendritic branches, and Aβ decreases its expression in cerebral cortical neurons. Here we show that neuronal uPA protects the synapse from the harmful effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α halts the transcription of uPA mRNA, leaving unopposed the deleterious effects of Aβ on the synapse. In line with these observations, the synaptic abundance of uPA, but not uPAR, is decreased in the frontal cortex of AD patients and 5xFAD mice, and in cerebral cortical neurons incubated with soluble Aβ. We found that uPA treatment increases the synaptic expression of NCAD by a uPAR-mediated plasmin-independent mechanism, and that uPA-induced formation of NCAD dimers protects the synapse from the harmful effects of soluble Aβ oligomers. These data indicate that Aβ-induced decrease in the synaptic abundance of uPA contributes to the development of synaptic damage in the early stages of AD.SIGNIFICANCE STATEMENT Soluble amyloid β (Aβ)-induced synaptic dysfunction is an early event in the pathogenesis of cognitive deficits in Alzheimer's disease (AD). We found that neuronal urokinase-type (uPA) protects the synapse from the deleterious effects of soluble Aβ. However, Aβ-induced inactivation of the eukaryotic initiation factor 2α decreases the synaptic abundance of uPA, leaving unopposed the harmful effects of Aβ on the synapse. In line with these observations, the synaptic expression of uPA is decreased in the frontal cortex of AD brains and 5xFAD mice, and uPA treatment abrogates the deleterious effects of Aβ on the synapse. These results unveil a novel mechanism of Aβ-induced synaptic dysfunction in AD patients, and indicate that recombinant uPA is a potential therapeutic strategy to protect the synapse before the development of irreversible brain damage.
Collapse
|
21
|
Kadir RRA, Bayraktutan U. Urokinase Plasminogen Activator: A Potential Thrombolytic Agent for Ischaemic Stroke. Cell Mol Neurobiol 2020; 40:347-355. [PMID: 31552559 PMCID: PMC11448917 DOI: 10.1007/s10571-019-00737-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Stroke continues to be one of the leading causes of mortality and morbidity worldwide. Restoration of cerebral blood flow by recombinant plasminogen activator (rtPA) with or without mechanical thrombectomy is considered the most effective therapy for rescuing brain tissue from ischaemic damage, but this requires advanced facilities and highly skilled professionals, entailing high costs, thus in resource-limited contexts urokinase plasminogen activator (uPA) is commonly used as an alternative. This literature review summarises the existing studies relating to the potential clinical application of uPA in ischaemic stroke patients. In translational studies of ischaemic stroke, uPA has been shown to promote nerve regeneration and reduce infarct volume and neurological deficits. Clinical trials employing uPA as a thrombolytic agent have replicated these favourable outcomes and reported consistent increases in recanalisation, functional improvement and cerebral haemorrhage rates, similar to those observed with rtPA. Single-chain zymogen pro-urokinase (pro-uPA) and rtPA appear to be complementary and synergistic in their action, suggesting that their co-administration may improve the efficacy of thrombolysis without affecting the overall risk of haemorrhage. Large clinical trials examining the efficacy of uPA or the combination of pro-uPA and rtPA are desperately required to unravel whether either therapeutic approach may be a safe first-line treatment option for patients with ischaemic stroke. In light of the existing limited data, thrombolysis with uPA appears to be a potential alternative to rtPA-mediated reperfusive treatment due to its beneficial effects on the promotion of revascularisation and nerve regeneration.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
22
|
Yepes M. Urokinase-type plasminogen activator is a modulator of synaptic plasticity in the central nervous system: implications for neurorepair in the ischemic brain. Neural Regen Res 2020; 15:620-624. [PMID: 31638083 PMCID: PMC6975136 DOI: 10.4103/1673-5374.266904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The last two decades have witnessed a rapid decrease in mortality due to acute cerebral ischemia that paradoxically has led to a rapid increase in the number of patients that survive an acute ischemic stroke with various degrees of disability. Unfortunately, the lack of an effective therapeutic strategy to promote neurological recovery among stroke survivors has led to a rapidly growing population of disabled patients. Thus, understanding the mechanisms of neurorepair in the ischemic brain is a priority with wide scientific, social and economic implications. Cerebral ischemia has a harmful effect on synaptic structure associated with the development of functional impairment. In agreement with these observations, experimental evidence indicates that synaptic repair underlies the recovery of neurological function following an ischemic stroke. Furthermore, it has become evident that synaptic plasticity is crucial not only during development and learning, but also for synaptic repair after an ischemic insult. The plasminogen activating system is assembled by a cascade of enzymes and their inhibitors initially thought to be solely involved in the generation of plasmin. However, recent work has shown that in the brain this system has an important function regulating the development of synaptic plasticity via mechanisms that not always require plasmin generation. Urokinase-type plasminogen activator (uPA) is a serine proteinase and one of the plasminogen activators, that upon binding to its receptor (uPAR) not only catalyzes the conversion of plasminogen into plasmin on the cell surface, but also activates cell signaling pathways that promote cell migration, proliferation and survival. The role of uPA is the brain is not fully understood. However, it has been reported while uPA and uPAR are abundantly found in the developing central nervous system, in the mature brain their expression is restricted to a limited group of cells. Remarkably, following an ischemic injury to the mature brain the expression of uPA and uPAR increases to levels comparable to those observed during development. More specifically, neurons release uPA during the recovery phase from an ischemic injury, and astrocytes, axonal boutons and dendritic spines recruit uPAR to their plasma membrane. Here we will review recent evidence indicating that binding of uPA to uPAR promotes the repair of synapses damaged by an ischemic injury, with the resultant recovery of neurological function. Furthermore, we will discuss data indicating that treatment with recombinant uPA is a potential therapeutic strategy to promote neurological recovery among ischemic stroke survivors.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Department of Neurology, Emory University School of Medicine; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
23
|
Merino P, Diaz A, Torre ER, Yepes M. Urokinase-type plasminogen activator (uPA) regulates the expression and function of growth-associated protein 43 (GAP-43) in the synapse. J Biol Chem 2019; 295:619-630. [PMID: 31819012 DOI: 10.1074/jbc.ra119.010644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.
Collapse
Affiliation(s)
- Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Enrique R Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208; Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-0001; Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033-4004.
| |
Collapse
|
24
|
Pontecorvi P, Banki MA, Zampieri C, Zalfa C, Azmoon P, Kounnas MZ, Marchese C, Gonias SL, Mantuano E. Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines. J Neuroinflammation 2019; 16:257. [PMID: 31810478 PMCID: PMC6896679 DOI: 10.1186/s12974-019-1657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Background Astrocytes contribute to the crosstalk that generates chronic neuro-inflammation in neurological diseases; however, compared with microglia, astrocytes respond to a more limited continuum of innate immune system stimulants. Recent studies suggest that the fibrinolysis system may regulate inflammation. The goal of this study was to test whether fibrinolysis system components activate astrocytes and if so, elucidate the responsible biochemical pathway. Methods Primary cultures of astrocytes and microglia were prepared from neonatal mouse brains. The ability of purified fibrinolysis system proteins to elicit a pro-inflammatory response was determined by measuring expression of the mRNAs encoding tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and chemokine (C-C motif) ligand 2 (CCL2). IκBα phosphorylation also was measured. Plasminogen activation in association with cells was detected by chromogenic substrate hydrolysis. The activity of specific receptors was tested using neutralizing antibodies and reagents. Results Astrocytes expressed pro-inflammatory cytokines when treated with plasminogen but not when treated with agonists for Toll-like Receptor-4 (TLR4), TLR2, or TLR9. Microglia also expressed pro-inflammatory cytokines in response to plasminogen; however, in these cells, the response was observed only when tissue-type plasminogen activator (tPA) was added to activate plasminogen. In astrocytes, endogenously produced urokinase-type plasminogen activator (uPA) converted plasminogen into plasmin in the absence of tPA. Plasminogen activation was dependent on the plasminogen receptor, α-enolase, and the uPA receptor, uPAR. Although uPAR is capable of directly activating cell-signaling, the receptor responsible for cytokine expression and IκBα phosphorylation response to plasmin was Protease-activated Receptor-1 (PAR-1). The pathway, by which plasminogen induced astrocyte activation, was blocked by inhibiting any one of the three receptors implicated in this pathway with reagents such as εACA, α-enolase-specific antibody, uPAR-specific antibody, the uPA amino terminal fragment, or a pharmacologic PAR-1 inhibitor. Conclusions Plasminogen may activate astrocytes for pro-inflammatory cytokine expression through the concerted action of at least three distinct fibrinolysis protease receptors. The pathway is dependent on uPA to activate plasminogen, which is expressed endogenously by astrocytes in culture but also may be provided by other cells in the astrocytic cell microenvironment in the CNS.
Collapse
Affiliation(s)
- Paola Pontecorvi
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.,The Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Michael A Banki
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Carlotta Zampieri
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.,The Department of Chemical Sciences and Technologies, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Cristina Zalfa
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Pardis Azmoon
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Maria Z Kounnas
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA
| | - Cinzia Marchese
- The Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Steven L Gonias
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.
| | - Elisabetta Mantuano
- The Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
25
|
Amantea D, Petrelli F, Greco R, Tassorelli C, Corasaniti MT, Tonin P, Bagetta G. Azithromycin Affords Neuroprotection in Rat Undergone Transient Focal Cerebral Ischemia. Front Neurosci 2019; 13:1256. [PMID: 31849581 PMCID: PMC6902046 DOI: 10.3389/fnins.2019.01256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
Repurposing existing drugs represents a promising approach for successful development of acute stroke therapies. In this context, the macrolide antibiotic azithromycin has been shown to exert neuroprotection in mice due to its immunomodulatory properties. Here, we have demonstrated that acute administration of a single dose of azithromycin upon reperfusion produces a dose-dependent (ED50 = 1.40 mg/kg; 95% CI = 0.48-4.03) reduction of ischemic brain damage measured 22 h after transient (2 h) middle cerebral artery occlusion (MCAo) in adult male rats. Neuroprotection by azithromycin (150 mg/kg, i.p., upon reperfusion) was associated with a significant elevation of signal transducer and activator of transcription 3 (STAT3) phosphorylation in astrocytes and neurons of the peri-ischemic motor cortex as detected after 2 and 22 h of reperfusion. By contrast, in the core region of the striatum, drug administration resulted in a dramatic elevation of STAT3 phosphorylation only after 22 h of reperfusion, being the signal mainly ascribed to infiltrating leukocytes displaying an M2 phenotype. These early molecular events were associated with a long-lasting neuroprotection, since a single dose of azithromycin reduced brain infarct damage and neurological deficit measured up to 7 days of reperfusion. These data, together with the evidence that azithromycin was effective in a clinically relevant time-window (i.e., when administered after 4.5 h of MCAo), provide robust preclinical evidence to support the importance of developing azithromycin as an effective acute therapy for ischemic stroke.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Petrelli
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosaria Greco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
26
|
Diaz A, Merino P, Manrique LG, Cheng L, Yepes M. Urokinase-type plasminogen activator (uPA) protects the tripartite synapse in the ischemic brain via ezrin-mediated formation of peripheral astrocytic processes. J Cereb Blood Flow Metab 2019; 39:2157-2171. [PMID: 29890880 PMCID: PMC6827113 DOI: 10.1177/0271678x18783653] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia has a harmful effect on the synapse associated with neurological impairment. The "tripartite synapse" is assembled by the pre- and postsynaptic terminals, embraced by astrocytic elongations known as peripheral astrocytic processes (PAPs). Ischemic stroke induces the detachment of PAPs from the synapse, leading to synaptic dysfunction and neuronal death. Ezrin is a membrane-associated protein, required for the formation of PAPs, that links the cell surface to the actin cytoskeleton. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to its receptor (uPAR) promotes neurite growth during development. In the adult brain, neurons release uPA and astrocytes recruit uPAR to the plasma membrane during the recovery phase from an ischemic stroke, and uPA/uPAR binding promotes functional improvement following an ischemic injury. We found that uPA induces the synthesis of ezrin in astrocytes, with the subsequent formation of PAPs that enter in direct contact with the synapse. Furthermore, either the release of neuronal uPA or intravenous treatment with recombinant uPA (ruPA) induces the formation of PAPs in the ischemic brain, and the interaction of these PAPs with the pre- and postsynaptic terminals protects the integrity of the "tripartite synapse" from the harmful effects of the ischemic injury.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Luis G Manrique
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Lihong Cheng
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center; Atlanta, GA, USA
| |
Collapse
|
27
|
Shmakova AA, Rubina KA, Rysenkova KD, Gruzdeva AM, Ivashkina OI, Anokhin KV, Tkachuk VA, Semina EV. Urokinase receptor and tissue plasminogen activator as immediate-early genes in pentylenetetrazole-induced seizures in the mouse brain. Eur J Neurosci 2019; 51:1559-1572. [PMID: 31587391 DOI: 10.1111/ejn.14584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022]
Abstract
Epileptogenesis progressively leads to the rearrangement of normal neuronal networks into more excitable ones and can be viewed as a form of neuroplasticity, the molecular mechanisms of which still remain obscure. Here, we studied pentylenetetrazole seizure-induced regulation of genes for plasminogen activator system in the mouse brain. We found that expression of tissue plasminogen activator (tPA) and urokinase receptor (uPAR) mRNA was strongly increased in the mouse cerebral cortex, hippocampus, striatum and amygdala as early as 3 hr after pentylenetetrazole seizures. Such early activity-induced expression of uPAR in the central nervous system has not been demonstrated before. uPAR mRNA accumulation was followed by elevation of uPAR protein, indicating a complete transcription-translation process. Both tPA gene induction and uPAR gene induction were independent of the protein synthesis, suggesting that they are regulated by neural activity as immediate-early genes. In contrast to tPA and uPAR genes, the expression of which returned to the basal level 6 hr following seizures, urokinase and plasminogen activator inhibitor-1 gene expression showed a delayed activation only at 3 days after seizures. In conclusion, our results suggest an important sensitivity of the brain plasminogen activator system to seizure activity which raises the question of its role in activity-dependent neural tissue remodeling in pathological and normal conditions.
Collapse
Affiliation(s)
- Anna A Shmakova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Kseniya A Rubina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Karina D Rysenkova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna M Gruzdeva
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, Russian Federation.,Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow, Russian Federation
| | - Vsevolod A Tkachuk
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina V Semina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russian Federation.,Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
28
|
Rajput PS, Lamb J, Kothari S, Pereira B, Soetkamp D, Wang Y, Tang J, Van Eyk JE, Mullins ES, Lyden PD. Neuron-generated thrombin induces a protective astrocyte response via protease activated receptors. Glia 2019; 68:246-262. [PMID: 31453648 DOI: 10.1002/glia.23714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Astrocytes protect neurons during cerebral injury through several postulated mechanisms. Recent therapeutic attention has focused on enhancing or augmenting the neuroprotective actions of astrocytes but in some instances astrocytes can assume a neurotoxic phenotype. The signaling mechanisms that drive astrocytes toward a protective versus toxic phenotype are not fully known but cell-cell signaling via proteases acting on cell-specific receptors underlies critical mechanistic steps in neurodevelopment and disease. The protease activated receptor (PAR), resides in multiple brain cell types, and most PARs are found on astrocytes. We asked whether neuron-generated thrombin constituted an important astrocyte activation signal because our previous studies have shown that neurons contain prothrombin gene and transcribed protein. We used neuron and astrocyte mono-cell cultures exposed to oxygen-glucose deprivation and a model of middle cerebral artery occlusion. We found that ischemic neurons secrete thrombin into culture media, which leads to astrocyte activation; such astrocyte activation can be reproduced with low doses of thrombin. Media from prothrombin-deficient neurons failed to activate astrocytes and adding thrombin to such media restored activation. Astrocytes lacking PAR1 did not respond to neuron-generated thrombin. Induced astrocyte activation was antagonized dose-dependently with thrombin inhibitors or PAR1 antagonists. Ischemia-induced astrocyte activation in vivo was inhibited after neuronal prothrombin knockout, resulting in larger strokes. Restoring prothrombin to neurons with a lentiviral gene vector restored astrocyte activation and reduced stroke damage. We conclude that neuron-generated thrombin, released during ischemia, acts via PAR1 and may cause astrocyte activation and paracrine neuroprotection.
Collapse
Affiliation(s)
- Padmesh S Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jessica Lamb
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shweta Kothari
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Benedict Pereira
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel Soetkamp
- The Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eric S Mullins
- Division of Hematology and Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
29
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
30
|
Griemert EV, Hedrich J, Hirnet T, Thal SC. Deficiency of Plasminogen Activator Inhibitor Type 2 Limits Brain Edema Formation after Traumatic Brain Injury. J Neurotrauma 2019; 36:2272-2278. [DOI: 10.1089/neu.2018.6126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Jana Hedrich
- Institute of Physiology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tobias Hirnet
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
31
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
32
|
Zhou X, Wu Q, Lu Y, Zhang X, Lv S, Shao J, Zhou Y, Chen J, Hou L, Huang C, Zhang X. Crosstalk between soluble PDGF-BB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage. FASEB J 2019; 33:9588-9601. [PMID: 31162947 DOI: 10.1096/fj.201900195r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) dynamically changes after brain injury, possibly mediating the neuroprotective role of soluble homodimers of the platelet-derived growth factor β subunit (PDGF-BB) that is secreted by microcirculation cells. The aim of this study was to determine whether binding of PDGF-BB to astrocytic PDGFRβ enhanced crosstalk among the various components of the neurovascular unit, leading to synaptic recovery after subarachnoid hemorrhage (SAH). The soluble PDGF-BB from the cerebrospinal fluid (CSF) of patients with SAH was measured. The relationship between PDGF-BB treatment and astrocytic PDGFRβ signaling was further explored in vivo and in vitro in experimental SAH models. Compared with the levels in the control samples, the PDGF-BB protein levels in the CSF of patients with SAH were significantly increased. After the generation of experimental SAH, astrocyte activation markers were markedly induced by the binding of PDGF-BB to astrocytic PDGFRβ, accompanied by improved levels of synaptic recovery and cognitive function. Soluble PDGF-BB and astrocytic PDGFRβ signaling are essential for the neuroprotective effect in the hippocampus and the coculture system in vitro after SAH that otherwise leads to cognitive dysfunction and neuronal damage.-Zhou, X., Wu, Q., Lu, Y., Zhang, X., Lv, S., Shao, J., Zhou, Y., Chen, J., Hou, L., Huang, C., Zhang, X. Crosstalk between soluble PDGF-BB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China; and
| | - Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital-School of Medicine, Southern Medical University, Nanjing, China
| | - Jiang Shao
- Department of Neurosurgery, Jinling Hospital-School of Medicine, Southern Medical University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Chengguang Huang
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Liu M, Lin L, Høyer-Hansen G, Ploug M, Li H, Jiang L, Yuan C, Li J, Huang M. Crystal structure of the unoccupied murine urokinase-type plasminogen activator receptor (uPAR) reveals a tightly packed DII-DIII unit. FEBS Lett 2019; 593:1236-1247. [PMID: 31044429 DOI: 10.1002/1873-3468.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a cell surface receptor that is capable of binding to a range of extracellular proteins and triggering a series of proteolytic and signaling events. Previous structural studies of uPAR with its ligands uPA and vitronectin revealed that its three domains (DI, DII, and DIII) form a large hydrophobic cavity to accommodate uPA. In the present study, the structure of unoccupied murine uPAR (muPAR) is determined. The structure of DII and DIII of muPAR is well defined and forms a compact globular unit, while DI could not be traced. Molecular dynamic simulations further confirm the rigid binding interface between DII and DIII. This study shows overall structural flexibility of uPAR in the absence of uPA.
Collapse
Affiliation(s)
- Min Liu
- College of Biological Science and Engineering, Fuzhou University, China.,College of Life Science, Fujian Normal University, Fuzhou, China
| | - Lin Lin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gunilla Høyer-Hansen
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Michael Ploug
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Hanlin Li
- College of Chemistry, Fuzhou University, China
| | | | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, China
| | | |
Collapse
|
34
|
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M. Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem 2019; 294:7403-7418. [PMID: 30894413 DOI: 10.1074/jbc.ra119.007847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.
Collapse
Affiliation(s)
- Julie M Leth
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Haydyn D T Mertens
- the European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany, and
| | - Katrine Zinck Leth-Espensen
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Thomas J D Jørgensen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Michael Ploug
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark, .,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
35
|
Kugaevskaya EV, Gureeva TA, Timoshenko OS, Solovyeva NI. Urokinase-Type Plasminogen Activator System in Norm and in Life-Threatening Processes (Review). ACTA ACUST UNITED AC 2018. [DOI: 10.15360/1813-9779-2018-6-61-79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The multifunctional urokinase-type plasminogen activator system (uPA-system) includes serine proteinase — uPA or urokinase, its receptor (uPAR) and two inhibitors (PAI-1 and PAI-2). The review discusses the structural features and involvement of the system components in the development of life-threatening processes including carcinogenesis, inflammation, neurogenesis and fibrinolysis, in regulation of which the destruction of extracellular matrix (ECM), cell mobility and signaling inside and outside the cell play a decisive role. uPA triggers the processes by activating the plasminogen and its convertion into plasmin involved in the activation of matrix metalloproteinases (MMPs) in addition to the regulation of fibrinolysis. MMPs can hydrolyze all the major ECM components and therefore play a key role in invasion, metastasis, and cell mobility. MMPs activates a cassette of biologically active regulatory molecules and release them from ECM. uPAR, PAI-1 and PAI-2 are responsible for regulation of the uPA activity. In addition, being a signaling receptor, uPAR along with MMPs lead to the stimulation of a number of signaling pathways that are associated with the regulation of proliferation, apoptosis, adhesion, growth and migration of cells contributing to tumor progression, inflammation, chemotaxis, and angiogenesis. Effective participation of the uPA system components in ECM destruction and regulation of intracellular and extracellular signaling pathways demonstrates that the system significantly contributes to the regulation of various physiological and pathological processes.
Collapse
|
36
|
Thiebaut AM, Gauberti M, Ali C, Martinez De Lizarrondo S, Vivien D, Yepes M, Roussel BD. The role of plasminogen activators in stroke treatment: fibrinolysis and beyond. Lancet Neurol 2018; 17:1121-1132. [PMID: 30507392 DOI: 10.1016/s1474-4422(18)30323-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Although recent technical advances in thrombectomy have revolutionised acute stroke treatment, prevalence of disability and death related to stroke remain high. Therefore, plasminogen activators-eukaryotic, bacterial, or engineered forms that can promote fibrinolysis by converting plasminogen into active plasmin and facilitate clot breakdown-are still commonly used in the acute treatment of ischaemic stroke. Hence, plasminogen activators have become a crucial area for clinical investigation for their ability to recanalise occluded arteries in ischaemic stroke and to accelerate haematoma clearance in haemorrhagic stroke. However, inconsistent results, insufficient evidence of efficacy, or reports of side-effects in trial settings might reduce the use of plasminogen activators in clinical practice. Additionally, the mechanism of action for plasminogen activators could extend beyond the vessel lumen and involve plasminogen-independent processes, which would suggest that plasminogen activators have also non-fibrinolytic roles. Understanding the complex mechanisms of action of plasminogen activators can guide future directions for therapeutic interventions in patients with stroke.
Collapse
Affiliation(s)
- Audrey M Thiebaut
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Carine Ali
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Sara Martinez De Lizarrondo
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France; Clinical Research Department, University Hospital Caen-Normandy, Caen, France
| | - Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, and Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Benoit D Roussel
- Normandie Université, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, Cyceron, Caen, France.
| |
Collapse
|
37
|
Mansilla A, Jordán-Álvarez S, Santana E, Jarabo P, Casas-Tintó S, Ferrús A. Molecular mechanisms that change synapse number. J Neurogenet 2018; 32:155-170. [DOI: 10.1080/01677063.2018.1506781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Ying YQ, Yan XQ, Jin SJ, Liang Y, Hou L, Niu WT, Luo XP. Inhibitory Effect of LPS on the Proliferation of Oligodendrocyte Precursor Cells through the Notch Signaling Pathway in Intrauterine Infection-induced Rats. Curr Med Sci 2018; 38:840-846. [PMID: 30341518 DOI: 10.1007/s11596-018-1951-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/04/2018] [Indexed: 10/28/2022]
Abstract
Periventricular white matter injury (PWMI) is very common in survivors of premature birth, and the final outcomes are a reduction in myelinated neurons leading to white matter hypomyelination. How and (or) why the oligodendrocyte lineage develops abnormally and myelination is reduced is a hot topic in the field. This study focuses on the effect of intrauterine inflammation on the proliferation of oligodendrocyte lineage cells and the underlying mechanisms. Lipopolysaccharide (LPS) (300 μg/kg) was intraperitoneally injected into pregnant Sprague-Dawley rats at embryonic days 19 and 20 to establish a rat model of intrauterine infection-induced white matter injury. Corpus callosum tissues were collected at postnatal day 14 (P14) to quantify the number of oligodendrocytes, the number and proliferation of oligodendrocyte precursor cells (OPCs), and the expression of myelin proteins (MBP and PLP). Furthermore, the expression of Wnt and Notch signaling-related proteins was analyzed. The results showed that the number of oligodendrocytes in the corpus callosum tissues of LPS-treated rats was reduced, and the expression levels of myelinating proteins were down-regulated. Further analysis showed that the Notch signaling pathway was down-regulated in the LPStreated group. These results indicate that intrauterine LPS may inhibit the proliferation of OPCs by down-regulating the Notch rather than the Wnt signaling pathway, leading to hypomyelination of white matter.
Collapse
Affiliation(s)
- Yan-Qin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Qin Yan
- Department of Children Healthcare, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, 528403, China
| | - Sheng-Juan Jin
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wan-Ting Niu
- VA Boston Healthcare System, Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, 02130, USA
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
39
|
Abstract
Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to its receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface. Recent studies indicate that neurons but not astrocytes release uPA during the recovery phase from an ischemic injury, and that binding of uPA to uPAR promotes neurorepair in the ischemic brain by a mechanism that does not require plasmin generation. A combined approach of in vitro and in vivo studies has shown that uPA binding to uPAR induces the reorganization of the actin cytoskeleton in dendritic spines and axons that have suffered an ischemic injury. Furthermore, recent data indicate that uPA-uPAR binding induces astrocytic activation and a crosstalk between activated astrocytes and the injured neuron that triggers a sequence of biochemical events that promote the repair of synapses injured by the ischemic insult. The translational relevance of these observations is noteworthy because following its intravenous administrations recombinant uPA (ruPA) reaches the ischemic tissue, thus raising the question of whether treatment with ruPA is an effective therapeutic strategy to promote neurorepair functional recovery among ischemic stroke survivors.
Collapse
Affiliation(s)
- Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Atlanta, GA, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine; Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center; Atlanta, GA, USA
| |
Collapse
|
40
|
Liu XP, Chen JS, Mao CJ, Niu HL, Song JM, Jin BK. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite. Anal Chim Acta 2018; 1025:99-107. [DOI: 10.1016/j.aca.2018.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
41
|
Merino P, Diaz A, Manrique LG, Cheng L, Yepes M. Urokinase-type plasminogen activator (uPA) promotes ezrin-mediated reorganization of the synaptic cytoskeleton in the ischemic brain. J Biol Chem 2018; 293:9234-9247. [PMID: 29720403 DOI: 10.1074/jbc.ra118.002534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
Synaptic repair in the ischemic brain is a complex process that requires reorganization of the actin cytoskeleton. Ezrin, radixin, and moesin (ERM) are a group of evolutionarily conserved proteins that link the plasma membrane to the actin cytoskeleton and act as scaffolds for signaling transduction. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface and activates intracellular signaling pathways. Early studies indicate that uPA and uPAR expression increase during the recovery phase from an ischemic stroke and that uPA binding to uPAR promotes neurorepair in the ischemic brain. The in vitro and in vivo studies presented here show that either the release of neuronal uPA or treatment with recombinant uPA induces the local synthesis of ezrin in the synapse and the recruitment of β3-integrin to the postsynaptic density (PSD) of cerebral cortical neurons by a plasminogen-independent mechanism. We found that β3-integrin has a double effect on ezrin, inducing its recruitment to the PSD via the intercellular adhesion molecule-5 (ICAM-5) and its subsequent activation by phosphorylation at Thr-567. Finally, our data indicate that by triggering the reorganization of the actin cytoskeleton in the postsynaptic terminal, active ezrin induces the recovery of dendritic spines and synapses that have been damaged by an acute ischemic stroke. In summary, our data show that uPA-uPAR binding promotes synaptic repair in the ischemic brain via ezrin-mediated reorganization of the actin cytoskeleton in the postsynaptic terminal.
Collapse
Affiliation(s)
- Paola Merino
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Ariel Diaz
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Luis Guillermo Manrique
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Lihong Cheng
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329.,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Manuel Yepes
- From the Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329, .,the Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, and.,the Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033
| |
Collapse
|
42
|
Diaz A, Yepes M. Urokinase-type plasminogen activator promotes synaptic repair in the ischemic brain. Neural Regen Res 2018; 13:232-233. [PMID: 29557368 PMCID: PMC5879890 DOI: 10.4103/1673-5374.226384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Ariel Diaz
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
43
|
Yepes M. Urokinase-type Plasminogen Activator Promotes Synaptic Recovery in the Ischemic Brain. JOURNAL OF TRANSLATIONAL NEUROSCIENCES 2018; 3:3. [PMID: 29938252 PMCID: PMC6013270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptic dysfunction underlies the development of neurological impairment following an acute ischemic stroke. Unfortunately, to this date there is no therapeutic approach to protect and repair the synapse that has suffered an ischemic injury. However, recent research with in vitro models of hypoxia, in vivo models of cerebral ischemia and different neuroradiological techniques has revealed that during the recovery phase from a hypoxic injury neurons release the serine proteinase urokinase-type plasminogen activator (uPA) and astrocytes recruit its receptor (uPAR) to their plasma membrane; and that binding of neuronal uPA to astrocytic uPAR promotes the recovery of the "tripartite synapse" that has suffered an acute ischemic injury. The translational relevance of these findings is underscored by the fact that intravenous treatment with recombinant uPA promotes synaptic recovery and functional improvement following an acute ischemic stroke.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA,Department of Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA,Corresponding author: Manuel Yepes, , MD, Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Road-NE, Atlanta, GA 30329-4208, USA. Tel: (404) 712 8358, Fax: (404) 727 3728
| |
Collapse
|