1
|
O'Reilly ML, Wulf MJ, Connors TM, Jin Y, Bearoff F, Hai N, Bouyer J, Kortagere S, Zhong Y, Bethea JR, Tom VJ. NF-κB inhibition attenuates sympathetic hyperreflexia and concomitant development of autonomic dysreflexia and immune dysfunction after spinal cord injury. Commun Biol 2025; 8:787. [PMID: 40404889 PMCID: PMC12098895 DOI: 10.1038/s42003-025-08237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Heightened sympathetic reflexes (sympathetic hyperreflexia, SH) post-high-level spinal cord injury (SCI) detrimentally impact effector organs, resulting in peripheral immune dysfunction and cardiovascular disease, two leading causes of morbidity and mortality in SCI. We previously found that an activated neuroimmune system after SCI contributes to intraspinal plasticity in the spinal sympathetic reflex (SSR) circuit, underlying SH. We hypothesize that activation of NF-κB, a key regulator of inflammation, in spinal cord below-SCI contributes to driving SSR circuit plasticity, resulting in SH-associated autonomic dysreflexia (AD) and peripheral immune dysfunction. Here, we demonstrate inhibition of central NF-κB signaling via intrathecal delivery of dimethylamino parthenolide (DMAPT) significantly decreases SH post-complete transection of thoracic spinal segment 3 in adult rats. This included reduced AD severity that was associated with decreased interneuron recruitment into the SSR circuit after SCI. We also observed intrathecal DMAPT-treatment improved survival post-SCI that corresponded with normalized numbers of splenic regulatory T-cells. These findings underscore central NF-κB signaling as a key component driving SH after SCI.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mariah J Wulf
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Theresa M Connors
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Frank Bearoff
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nan Hai
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - John R Bethea
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Tucker A, Baltazar A, Eisdorfer JT, Thackray JK, Vo K, Thomas H, Tandon A, Moses J, Singletary B, Gillespie T, Smith A, Pauken A, Nadella S, Pitonak M, Letchuman S, Jang J, Totty M, Jalufka FL, Aceves M, Adler AF, Maren S, Blackmon H, McCreedy DA, Abraira V, Dulin JN. Functional synaptic connectivity of engrafted spinal cord neurons with locomotor circuitry in the injured spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.644402. [PMID: 40236108 PMCID: PMC11996546 DOI: 10.1101/2025.04.05.644402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spinal cord injury (SCI) results in significant neurological deficits, with no currently available curative therapies. Neural progenitor cell (NPC) transplantation has emerged as a promising approach for neural repair, as graft-derived neurons (GDNs) can integrate into the host spinal cord and support axon regeneration. However, the mechanisms underlying functional recovery remain poorly understood. In this study, we investigate the synaptic integration of NPC-derived neurons into locomotor circuits, the projection patterns of distinct neuronal subtypes, and their potential to modulate motor circuit activity. Using transsynaptic tracing in a mouse thoracic contusion SCI model, we found that NPC-derived neurons form synaptic connections with host locomotor circuits, albeit at low frequencies. Furthermore, we mapped the axon projections of V0C and V2a interneurons, revealing distinct termination patterns within host spinal cord laminae. To assess functional integration, we employed chemogenetic activation of GDNs, which induced muscle activity in a subset of transplanted animals. However, NPC transplantation alone did not significantly improve locomotor recovery, highlighting a key challenge in the field. Our findings suggest that while GDNs can integrate into host circuits and modulate motor activity, synaptic connectivity remains a limiting factor in functional recovery. Future studies should focus on enhancing graft-host connectivity and optimizing transplantation strategies to maximize therapeutic benefits for SCI.
Collapse
|
3
|
Sysoev YI, Shkorbatova PY, Prikhodko VA, Kalinina DS, Bazhenova EY, Okovityi SV, Bader M, Alenina N, Gainetdinov RR, Musienko PE. Central Serotonin Deficiency Impairs Recovery of Sensorimotor Abilities After Spinal Cord Injury in Rats. Int J Mol Sci 2025; 26:2761. [PMID: 40141402 PMCID: PMC11942851 DOI: 10.3390/ijms26062761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Spinal cord injury (SCI) affects millions of people worldwide. One of the main challenges of rehabilitation strategies is re-training and enhancing the plasticity of the spinal circuitry that was preserved or rebuilt after the injury. The serotonergic system appears to be crucial in these processes, since recent studies have reported the capability of serotonergic (5-HT) axons for axonal sprouting and regeneration in response to central nervous system (CNS) trauma or neurodegeneration. We took advantage of tryptophan hydroxylase 2 knockout (TPH2 KO) rats, lacking serotonin specifically in the brain and spinal cord, to study the role of the serotonergic system in the recovery of sensorimotor function after SCI. In the present work, we compared the rate of sensorimotor recovery of TPH2 KO and wild-type (WT) female rats after SCI (lateral hemisection at the T8 spinal level). SCI caused severe motor impairments in the ipsilateral left hindlimb, the most pronounced in the first week after the hemisection with gradual functional recovery during the following 3 weeks. The results demonstrate that TPH2 KO rats have less potential to recover motor functions since the degree of sensorimotor deficit in the tapered beam walking test (TBW) and ladder walking test (LW) was significantly higher in the TPH2 KO group in comparison to the WT animals in the 3rd and 4th weeks after SCI. The recovery dynamics of the hindlimb muscle tone and voluntary movements was in agreement with the restoration of motor performance in TBW and LW. Compound muscle action potential analysis in the gastrocnemius (GM) and tibialis (TA) muscles of both hindlimbs after electrical stimulation of the sciatic nerve or lumbar region (L5-L6) of the spinal cord indicated slower recovery of sensorimotor pathways in the TPH2 KO group versus their WT counterparts. In general, the observed results confirm the significance of central serotonergic mechanisms in the recovery of sensorimotor functions in rats and the relevance of the TPH2 KO rat model in studying the role of the 5-HT system in neurorehabilitation.
Collapse
Affiliation(s)
- Yuri I. Sysoev
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
| | - Polina Y. Shkorbatova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Daria S. Kalinina
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint Petersburg 194223, Russia
| | - Elena Y. Bazhenova
- Pavlov Institute of Physiology of the RAS, Saint Petersburg 199034, Russia; (P.Y.S.); (E.Y.B.)
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, Saint Petersburg 197022, Russia; (V.A.P.); (S.V.O.)
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (M.B.); (N.A.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7–9 Universitetskaya Emb., Saint Petersburg 199034, Russia;
| | - Pavel E. Musienko
- Department of Neuroscience, Sirius University of Science and Technology, Sirius 353340, Russia; (Y.I.S.)
- Federal Center of Brain Research and Neurotechnologies, Moscow 199330, Russia
- Life Improvement by Future Technologies Center, Moscow 143025, Russia
| |
Collapse
|
4
|
Trueblood CT, Singh A, Cusimano MA, Hou S. Autonomic Dysreflexia in Spinal Cord Injury: Mechanisms and Prospective Therapeutic Targets. Neuroscientist 2024; 30:597-611. [PMID: 38084412 PMCID: PMC11166887 DOI: 10.1177/10738584231217455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
High-level spinal cord injury (SCI) often results in cardiovascular dysfunction, especially the development of autonomic dysreflexia. This disorder, characterized as an episode of hypertension accompanied by bradycardia in response to visceral or somatic stimuli, causes substantial discomfort and potentially life-threatening symptoms. The neural mechanisms underlying this dysautonomia include a loss of supraspinal control to spinal sympathetic neurons, maladaptive plasticity of sensory inputs and propriospinal interneurons, and excessive discharge of sympathetic preganglionic neurons. While neural control of cardiovascular function is largely disrupted after SCI, the renin-angiotensin system (RAS), which mediates blood pressure through hormonal mechanisms, is up-regulated after injury. Whether the RAS engages in autonomic dysreflexia, however, is still controversial. Regarding therapeutics, transplantation of embryonic presympathetic neurons, collected from the brainstem or more specific raphe regions, into the injured spinal cord may reestablish supraspinal regulation of sympathetic activity for cardiovascular improvement. This treatment reduces the occurrence of spontaneous autonomic dysreflexia and the severity of artificially triggered dysreflexic responses in rodent SCI models. Though transplanting early-stage neurons improves neural regulation of blood pressure, hormonal regulation remains high and baroreflex dysfunction persists. Therefore, cell transplantation combined with selected RAS inhibition may enhance neuroendocrine homeostasis for cardiovascular recovery after SCI.
Collapse
Affiliation(s)
- Cameron T. Trueblood
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Anurag Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Marissa A. Cusimano
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Shaoping Hou
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
6
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
7
|
Song Y, Guo L, Jiang X, Dong M, Xiang D, Wen M, He S, Yuan Y, Lin F, Zhao G, Liu L, Liao J. Meglumine cyclic adenylate improves cardiovascular hemodynamics and motor-function in a rat model of acute T4 thoracic spinal cord injury. Spinal Cord 2023; 61:422-429. [PMID: 37402893 DOI: 10.1038/s41393-023-00909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
STUDY DESIGN Animal experimental study. OBJECTIVES Spinal cord injury (SCI) at or above the T6 level causes cardiovascular dysfunction. Maintaining cAMP levels with cAMP analogs can facilitate neurological recovery. In the present study, the effects of meglumine cyclic adenylate (MCA), a cAMP analog and approved cardiovascular drug, on cardiovascular and neurological recovery in acute T4-SCI in rats were investigated. SETTING Hospital in Kunming, China. METHODS Eighty rats were randomly allocated to five groups, and groups A-D received SCI: (A) a group administered MCA at 2 mg/kg/d iv qd, (B) a group administered dopamine at 2.5 to 5 μg/kg/min iv to maintain mean arterial pressure above 85 mm Hg, (C) a group administered atropine at 1 mg/kg iv bid, (D) a group receiving an equal volume of saline iv qd for 3 weeks after SCI and (E) a group undergoing laminectomy only. The cardiovascular and behavioral parameters of the rats were examined, and spinal cord tissues were processed for hematoxylin and eosin staining, Nissl staining, electron microscopy, and analysis of cAMP levels. RESULTS Compared with dopamine or atropine, MCA significantly reversed the decrease in cAMP levels in both myocardial cells and the injured spinal cord; improved hypotension, bradycardia and behavioral parameters at 6 weeks; and improved spinal cord blood flow and histological structure at 7 days post-SCI. The regression analysis suggested spinal cord motor-function improved as decreased heart rate and mean arterial pressure were stopped post-SCI. CONCLUSIONS MCA may be an effective treatment for acute SCI by sustaining cAMP-dependent reparative processes and improving post-SCI cardiovascular dysfunction. SPONSORSHIP N/A.
Collapse
Affiliation(s)
- Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Limin Guo
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Xingxiong Jiang
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Minglin Dong
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Dong Xiang
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Ming Wen
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Shaoxuan He
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yong Yuan
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Feng Lin
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Gang Zhao
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Luping Liu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jingwu Liao
- Orthopedic-Traumatology Department, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
8
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
9
|
Wulf MJ, Tom VJ. Consequences of spinal cord injury on the sympathetic nervous system. Front Cell Neurosci 2023; 17:999253. [PMID: 36925966 PMCID: PMC10011113 DOI: 10.3389/fncel.2023.999253] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury (SCI) damages multiple structures at the lesion site, including ascending, descending, and propriospinal axons; interrupting the conduction of information up and down the spinal cord. Additionally, axons associated with the autonomic nervous system that control involuntary physiological functions course through the spinal cord. Moreover, sympathetic, and parasympathetic preganglionic neurons reside in the spinal cord. Thus, depending on the level of an SCI, autonomic function can be greatly impacted by the trauma resulting in dysfunction of various organs. For example, SCI can lead to dysregulation of a variety of organs, such as the pineal gland, the heart and vasculature, lungs, spleen, kidneys, and bladder. Indeed, it is becoming more apparent that many disorders that negatively affect quality-of-life for SCI individuals have a basis in dysregulation of the sympathetic nervous system. Here, we will review how SCI impacts the sympathetic nervous system and how that negatively impacts target organs that receive sympathetic innervation. A deeper understanding of this may offer potential therapeutic insight into how to improve health and quality-of-life for those living with SCI.
Collapse
Affiliation(s)
| | - Veronica J. Tom
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Fernandes S, Oatman E, Weinberger J, Dixon A, Osei-Owusu P, Hou S. The susceptibility of cardiac arrhythmias after spinal cord crush injury in rats. Exp Neurol 2022; 357:114200. [PMID: 35952765 PMCID: PMC9801389 DOI: 10.1016/j.expneurol.2022.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/03/2023]
Abstract
High-level spinal cord injury (SCI) often interrupts supraspinal regulation of sympathetic input to the heart. Although it is known that dysregulated autonomic control increases the risk for cardiac disorders, the mechanisms mediating SCI-induced arrhythmias are poorly understood. Here, we employed a rat model of complete spinal cord crush injury at the 2nd/3rd thoracic (T2/3) level to investigate cardiac rhythm disorders resulting from SCI. Rats with T9 injury and naïve animals served as two controls. Four weeks after SCI, rats were implanted with a radio-telemetric device for electrocardiogram and blood pressure monitoring. During 24-h recordings, heart rate variability in rats with T2/3 but not T9 injury exhibited a significant reduction in the time domain, and a decrease in power at low frequency but increased power at high frequency in the frequency domain which indicates reduced sympathetic and increased parasympathetic outflow to the heart. Pharmacological blockade of the sympathetic or parasympathetic branches confirmed the imbalance of cardiac autonomic control. Activation of sympatho-vagal input during the induction of autonomic dysreflexia by colorectal distention triggered various severe arrhythmic events in T2/3 injured rats. Meanwhile, intravenous infusion of the β1-adrenergic receptor agonist, dobutamine, caused greater incidence of arrhythmias in rats with T2/3 injury than naïve and T9 injured controls. Together, the results indicate that high-level SCI increases the susceptibility to developing cardiac arrhythmias likely owing to compromised autonomic homeostasis. The T2/3 crush model is appropriate for studying abnormal cardiac electrophysiology resulting from SCI.
Collapse
Affiliation(s)
- Silvia Fernandes
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Emily Oatman
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jeremy Weinberger
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alethia Dixon
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Shaoping Hou
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
12
|
Xu T, Duan J, Li Y, Wang G, Li S, Li Y, Lu W, Yan X, Ren Y, Guo F, Cao L, Lu J. Generation of a TPH2-EGFP reporter cell line for purification and monitoring of human serotonin neurons in vitro and in vivo. Stem Cell Reports 2022; 17:2365-2379. [PMID: 36150384 PMCID: PMC9561537 DOI: 10.1016/j.stemcr.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 10/25/2022] Open
Abstract
Generation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a promising platform to explore the mechanisms of serotonin-associated neuropsychiatric disorders. However, neural differentiation always yields heterogeneous cell populations, making it difficult to identify and purify SNs in vitro or track them in vivo following transplantation. Herein, we generated a TPH2-EGFP reporter hPSC line with insertion of EGFP into the endogenous tryptophan hydroxylase 2 (TPH2) locus using CRISPR-Cas9-mediated gene editing technology. This TPH2-reporter, which faithfully indicated TPH2 expression during differentiation, enabled us to obtain purified SNs for subsequent transcriptional analysis and study of pharmacological responses to antidepressants. In addition, the reporter system showed strong EGFP expression to indicate SNs, which enabled us to explore in vitro and ex vivo electrophysiological properties of SNs. In conclusion, this TPH2-EGFP reporter cell line might be of great significance for studies on human SN-related development and differentiation, drug screening, disease modeling, and cell replacement therapies.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinyi Yan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Ren
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Suzhou Institute of Tongji University, Suzhou 215101, China.
| |
Collapse
|
13
|
Fossey MPM, Balthazaar SJT, Squair JW, Williams AM, Poormasjedi-Meibod MS, Nightingale TE, Erskine E, Hayes B, Ahmadian M, Jackson GS, Hunter DV, Currie KD, Tsang TSM, Walter M, Little JP, Ramer MS, Krassioukov AV, West CR. Spinal cord injury impairs cardiac function due to impaired bulbospinal sympathetic control. Nat Commun 2022; 13:1382. [PMID: 35296681 PMCID: PMC8927412 DOI: 10.1038/s41467-022-29066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/20/2022] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury chronically alters cardiac structure and function and is associated with increased odds for cardiovascular disease. Here, we investigate the cardiac consequences of spinal cord injury on the acute-to-chronic continuum, and the contribution of altered bulbospinal sympathetic control to the decline in cardiac function following spinal cord injury. By combining experimental rat models of spinal cord injury with prospective clinical studies, we demonstrate that spinal cord injury causes a rapid and sustained reduction in left ventricular contractile function that precedes structural changes. In rodents, we experimentally demonstrate that this decline in left ventricular contractile function following spinal cord injury is underpinned by interrupted bulbospinal sympathetic control. In humans, we find that activation of the sympathetic circuitry below the level of spinal cord injury causes an immediate increase in systolic function. Our findings highlight the importance for early interventions to mitigate the cardiac functional decline following spinal cord injury. By combining experimental models with prospective clinical studies, the authors show that spinal cord injury causes a rapid reduction in cardiac function that precedes structural changes, and that the loss of descending sympathetic control is the major cause of reduced cardiac function following spinal cord injury.
Collapse
Affiliation(s)
- Mary P M Fossey
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shane J T Balthazaar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Alexandra M Williams
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Centre for Trauma Sciences Research, University of Birmingham, Edgabaston, Birmingham, UK
| | - Erin Erskine
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian Hayes
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Mehdi Ahmadian
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Garett S Jackson
- Faculty of Health and Social Development, University of British Columbia, Kelowna, BC, Canada
| | - Diana V Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Teresa S M Tsang
- Division of Cardiology, University of British Columbia, Vancouver General and University of British Columbia Hospital Echocardiography Department, Vancouver, BC, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
15
|
Fortino TA, Randelman ML, Hall AA, Singh J, Bloom DC, Engel E, Hoh DJ, Hou S, Zholudeva LV, Lane MA. Transneuronal tracing to map connectivity in injured and transplanted spinal networks. Exp Neurol 2022; 351:113990. [DOI: 10.1016/j.expneurol.2022.113990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
16
|
Development of a Spinal Cord Injury Model Permissive to Study the Cardiovascular Effects of Rehabilitation Approaches Designed to Induce Neuroplasticity. BIOLOGY 2021; 10:biology10101006. [PMID: 34681105 PMCID: PMC8533334 DOI: 10.3390/biology10101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary People living with high-level spinal cord injury experience worse cardiovascular health than the general population. In most spinal cord injuries, there are some remaining functioning pathways leading from the brain through the spinal cord to the organs and muscles, but not enough to sustain normal levels of function. Recently, therapies that aim to increase the strength of connections in these remaining pathways have shown great potential in restoring walking, hand, and breathing function in the spinal cord injured population. In order to test these therapies for their effects on cardiovascular function, we developed a new type of spinal cord injury rat model that spares enough pathways for these therapies to act upon but still produces measurable reductions in heart and blood vessel function that can be targeted with interventions/treatments. Abstract As primary medical care for spinal cord injury (SCI) has improved over the last decades there are more individuals living with neurologically incomplete (vs. complete) cervical injuries. For these individuals, a number of promising therapies are being actively researched in pre-clinical settings that seek to strengthen the remaining spinal pathways with a view to improve motor function. To date, few, if any, of these interventions have been tested for their effectiveness to improve autonomic and cardiovascular (CV) function. As a first step to testing such therapies, we aimed to develop a model that has sufficient sparing of descending sympathetic pathways for these interventions to target yet induces robust CV impairment. Twenty-six Wistar rats were assigned to SCI (n = 13) or naïve (n = 13) groups. Animals were injured at the T3 spinal segment with 300 kdyn of force. Fourteen days post-SCI, left ventricular (LV) and arterial catheterization was performed to assess in vivo cardiac and hemodynamic function. Spinal cord lesion characteristics along with sparing in catecholaminergic and serotonergic projections were determined via immunohistochemistry. SCI produced a decrease in mean arterial pressure of 17 ± 3 mmHg (p < 0.001) and left ventricular contractility (end-systolic elastance) of 0.7 ± 0.1 mmHg/µL (p < 0.001). Our novel SCI model produced significant decreases in cardiac and hemodynamic function while preserving 33 ± 9% of white matter at the injury epicenter, which we believe makes it a useful pre-clinical model of SCI to study rehabilitation approaches designed to induce neuroplasticity.
Collapse
|
17
|
Ueno M. Restoring neuro-immune circuitry after brain and spinal cord injuries. Int Immunol 2021; 33:311-325. [PMID: 33851981 DOI: 10.1093/intimm/dxab017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Neuro-immune interactions are essential for our body's defense and homeostasis. Anatomical and physiological analyses have shown that the nervous system comprises multiple pathways that regulate the dynamics and functions of immune cells, which are mainly mediated by the autonomic nervous system and adrenal signals. These are disturbed when the neurons and circuits are damaged by diseases of the central nervous system (CNS). Injuries caused by stroke or trauma often cause immune dysfunction by abrogation of the immune-regulating neural pathways, which leads to an increased risk of infections. Here, I review the structures and functions of the neural pathways connecting the brain and the immune system, and the neurogenic mechanisms of immune dysfunction that emerge after CNS injuries. Recent technological advances in manipulating specific neural circuits have added mechanistic aspects of neuro-immune interactions and their dysfunctions. Understanding the neural bases of immune control and their pathological processes will deepen our knowledge of homeostasis and lead to the development of strategies to cure immune deficiencies observed in various CNS disorders.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Niigata 951-8585, Japan
| |
Collapse
|