1
|
Jayasinghe M, Rashidi F, Gadelmawla AF, Pitton Rissardo J, Rashidi M, Elendu CC, Fornari Caprara AL, Khalil I, Hmedat KI, Atef M, Moharam H, Prathiraja O. Neurological Manifestations of Systemic Lupus Erythematosus: A Comprehensive Review. Cureus 2025; 17:e79569. [PMID: 40151747 PMCID: PMC11947500 DOI: 10.7759/cureus.79569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological involvement in systemic lupus erythematosus (SLE) poses significant challenges, impacting patient morbidity, mortality, and quality of life. This narrative review provides an update on the pathogenesis, clinical presentation, diagnosis, and management of neurological SLE. The multifaceted pathophysiology involves immune-mediated and vascular mechanisms such as autoantibodies, neuroinflammation, complement dysregulation, and genetic factors. Neuropsychiatric SLE (NPSLE) manifests in a variety of ways, including cognitive dysfunction, mood disorders, psychosis, cerebrovascular disease, demyelinating syndromes, and neuropathies. Diagnosing neurological SLE is complicated by nonspecific and fluctuating symptoms, requiring comprehensive neurological examination, neuroimaging, autoantibody profiling, and cerebrospinal fluid analysis. Current management strategies include corticosteroids, immunosuppressive agents, and emerging biologics targeting specific immune pathways. Managing neuropsychiatric symptoms, seizures, and neuropathic pain remains a complex aspect of treatment. This review highlights the importance of early recognition and tailored management approaches to improve patient outcomes in neurological SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ibrahim Khalil
- Neurological Surgery, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | - Khalil I Hmedat
- Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, EGY
| | | | | | | |
Collapse
|
2
|
Chen K, Luo M, Lv Y, Luo Z, Yang H. Undervalued and novel roles of heterogeneous nuclear ribonucleoproteins in autoimmune diseases: Resurgence as potential biomarkers and targets. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1806. [PMID: 37365887 DOI: 10.1002/wrna.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Autoimmune diseases are mainly characterized by the abnormal autoreactivity due to the loss of tolerance to specific autoantigens, though multiple pathways associated with the homeostasis of immune responses are involved in initiating or aggravating the conditions. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a major category of RNA-binding proteins ubiquitously expressed in a multitude of cells and have attracted great attentions especially with their distinctive roles in nucleic acid metabolisms and the pathogenesis in diseases like neurodegenerative disorders and cancers. Nevertheless, the interplay between hnRNPs and autoimmune disorders has not been fully elucidated. Virtually various family members of hnRNPs are increasingly identified as immune players and are pertinent to all kinds of immune-related processes including immune system development and innate or adaptive immune responses. Specifically, hnRNPs have been extensively recognized as autoantigens within and even beyond a myriad of autoimmune diseases, yet their diagnostic and prognostic values are seemingly underestimated. Molecular mimicry, epitope spreading and bystander activation may represent major putative mechanisms underlying the presence of autoantibodies to hnRNPs. Besides, hnRNPs play critical parts in regulating linchpin genes expressions that control genetic susceptibility, disease-linked functional pathways, or immune responses by interacting with other components particularly like microRNAs and long non-coding RNAs, thereby contributing to inflammation and autoimmunity as well as specific disease phenotypes. Therefore, comprehensive unraveling of the roles of hnRNPs is conducive to establishing potential biomarkers and developing better intervention strategies by targeting these hnRNPs in the corresponding disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengchuan Luo
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzhi Lv
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Sousa DCD, de Almeida SB, Roriz Filho JDS, Freitas TH, Braga-Neto P. Cognitive Dysfunction Biomarkers in Patients With Rheumatoid Arthritis: A Systematic Review. J Clin Rheumatol 2023; 29:159-164. [PMID: 36729842 DOI: 10.1097/rhu.0000000000001888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES During the last years, a growing number of studies have investigated the link between cognitive dysfunction and rheumatoid arthritis (RA), highlighting the potential pathogenic role of several clinical, psychological, and biological factors. We aimed to investigate serological and cerebrospinal fluid biomarkers in humans and its association with cognitive dysfunction in patients with RA. METHODS We performed a systematic review using PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis) protocol. A systematic search was conducted in the PubMed/MEDLINE, EMBASE, LILACS, Scopus, and Google Scholar databases from inception up to November 2021. The inclusion criteria for studies were defined based on the participants involved, type of exposure, type of comparison group, outcome of interest, and study design. RESULTS Five original studies were included, which provided data from 428 participants. Among plasma proteins, SHH was increased and TTR was reduced in patients with mild cognitive impairment; anti-myelin basic protein and anti-myelin oligodendrocyte glycoprotein negatively correlated with memory, executive function, and attention. S100β negatively correlated with memory and executive functions; some lymphocyte subpopulations positively correlated with attention, memory, and executive functions. Interleukin 2 [IL-2], IL-4, IL-6, and tumor necrosis factor α negatively correlated with memory and positively correlated with executive functions. Interleukin 1β negatively correlated with global cognitive dysfunction and positively correlated with logical thinking. Interleukin 10 and brain-derived neurotrophic factor negatively correlated with memory. CONCLUSION Despite the relative scarcity of studies on this subject and the heterogeneity of results, we identified possible biomarkers for cognitive deficits in the RA population. Further longitudinal studies are warranted to clarify these associations and the establishment of possible biomarkers for cognitive deficits in RA.
Collapse
|
4
|
Muslimov IA, Berardi V, Stephenson S, Ginzler EM, Hanly JG, Tiedge H. Autoimmune RNA dysregulation and seizures: therapeutic prospects in neuropsychiatric lupus. Life Sci Alliance 2022; 5:5/12/e202201496. [PMID: 36229064 PMCID: PMC9559755 DOI: 10.26508/lsa.202201496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus autoimmunity frequently presents with neuropsychiatric manifestations, but underlying etiology remains poorly understood. Human brain cytoplasmic 200 RNA (BC200 RNA) is a translational regulator in neuronal synapto-dendritic domains. Here, we show that a BC200 guanosine-adenosine dendritic transport motif is recognized by autoantibodies from a subset of neuropsychiatric lupus patients. These autoantibodies impact BC200 functionality by quasi irreversibly displacing two RNA transport factors from the guanosine-adenosine transport motif. Such anti-BC autoantibodies, which can gain access to brains of neuropsychiatric lupus patients, give rise to clinical manifestations including seizures. To establish causality, naive mice with a permeabilized blood-brain barrier were injected with anti-BC autoantibodies from lupus patients with seizures. Animals so injected developed seizure susceptibility with high mortality. Seizure activity was entirely precluded when animals were injected with lupus anti-BC autoantibodies together with BC200 decoy autoantigen. Seizures are a common clinical manifestation in neuropsychiatric lupus, and our work identifies anti-BC autoantibody activity as a mechanistic cause. The results demonstrate potential utility of BC200 decoys for autoantibody-specific therapeutic interventions in neuropsychiatric lupus.
Collapse
Affiliation(s)
- Ilham A Muslimov
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| | - Valerio Berardi
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Stacy Stephenson
- Division of Comparative Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ellen M Ginzler
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine, Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Canada
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA,Correspondence: ;
| |
Collapse
|
5
|
Qiao X, Lu L, Zhou K, Tan L, Liu X, Ni J, Hou Y, Liang J, Dou H. The correlation between proteoglycan 2 and neuropsychiatric systemic lupus erythematosus. Clin Immunol 2022; 239:109042. [PMID: 35568106 DOI: 10.1016/j.clim.2022.109042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
The proposed pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE) mainly includes ischemia and neuroinflammation mechanisms. Protein encoded by Proteoglycan 2 (PRG2) mRNA is involved in the immune process related to eosinophils, also being found in the placenta and peripheral blood of pregnant women. We evaluated the correlation between PRG2 and NPSLE for the first time and found that PRG2 protein is overexpressed in the serum of patients with NPSLE and correlated with the SLE disease activity index (SLEDAI) subset scores of psychosis. Moreover, we investigated the correlation between hippocampal PRG2 level and hippocampally dependent learning and memory ability in MRL/lpr mice, and discovered that the number of PRG2+GFAP+ astrocytes in the cortex and hypothalamus and the number of PRG2+IBA-1+ microglia in the hippocampus and cortex significantly increased in the MRL/lpr mice. These data provided a reference for the follow-up exploration of the role of PRG2 in SLE or other diseases.
Collapse
Affiliation(s)
- Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
6
|
Sarwar S, Mohamed AS, Rogers S, Sarmast ST, Kataria S, Mohamed KH, Khalid MZ, Saeeduddin MO, Shiza ST, Ahmad S, Awais A, Singh R. Neuropsychiatric Systemic Lupus Erythematosus: A 2021 Update on Diagnosis, Management, and Current Challenges. Cureus 2021; 13:e17969. [PMID: 34667659 PMCID: PMC8516357 DOI: 10.7759/cureus.17969] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with systemic lupus erythematosus (SLE) experience neuropsychiatric symptoms. The term neuropsychiatric SLE (NPSLE) is a generic term that refers to a series of neurological and psychiatric symptoms directly related to SLE. In approximately 30% of patients with neuropsychiatric symptoms, SLE is the primary cause (NPSLE), and symptoms manifest more frequently around SLE onset. Neurovascular and psychotic conditions can also lead to NPSLE. Pathogenesis of NPSLE is implicated in both neuroinflammatory and ischemic mechanisms, and it is associated with high morbidity and mortality. After diagnosing and assigning causality, NPSLE treatment is individualized according to the type of neuropsychiatric manifestations, type of the predominant pathway, activity of SLE, and severity of the clinical manifestations. There are many problems to be addressed with regards to the diagnosis and management of NPSLE. Controlled clinical trials provide limited guidance for management, and observational cohort studies support symptomatic, antithrombotic, and immunosuppressive agents. The purpose of this review was to provide a detailed and critical review of the literature on the pathophysiology, diagnosis, and treatment of NPSLE. This study aimed to identify the shortcoming in diagnostic biomarkers, novel therapies against NPSLE, and additional research needs.
Collapse
Affiliation(s)
- Sobia Sarwar
- Neurology, Independent Medical College, Faisalabad, PAK
| | | | - Sylvette Rogers
- Family Medicine, Caribbean Medical University, Des Plaines, USA
| | - Shah T Sarmast
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Saurabh Kataria
- Neurology, Ochsner Louisiana State University Health Sciences Center - Shreveport, Shreveport, USA.,Neurology and Neurocritical Care, University of Missouri Health Care, Columbia, USA.,Neurology, West Virginia University, Morgantown, USA
| | - Khalid H Mohamed
- Anatomical Sciences, St. George's University - School of Medicine, St. George's, GRD
| | | | | | - Saher T Shiza
- Internal Medicine, Deccan College of Medical Sciences, Hyderabad, IND
| | - Sarfaraz Ahmad
- Internal Medicine, Saint James School of Medicine, Chicago, USA
| | - Anum Awais
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | |
Collapse
|
7
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
8
|
Zarfeshani A, Carroll KR, Volpe BT, Diamond B. Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Curr Rheumatol Rep 2021; 23:25. [PMID: 33782842 PMCID: PMC11207197 DOI: 10.1007/s11926-021-00992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
A wide range of patients with systemic lupus erythematosus (SLE) suffer from cognitive dysfunction (CD) which severely impacts their quality of life. However, CD remains underdiagnosed and poorly understood. Here, we discuss current findings in patients and in animal models. Strong evidence suggests that CD pathogenesis involves known mechanisms of tissue injury in SLE. These mechanisms recruit brain resident cells, in particular microglia, into the pathological process. While systemic immune activation is critical to central nervous system injury, the current focus of therapy is the microglial cell and not the systemic immune perturbation. Further studies are critical to examine additional potential therapeutic targets and more specific treatments based on the cause and progress of the disease.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kaitlin R Carroll
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
9
|
Govoni M, Hanly JG. The management of neuropsychiatric lupus in the 21st century: still so many unmet needs? Rheumatology (Oxford) 2021; 59:v52-v62. [PMID: 33280014 PMCID: PMC7719041 DOI: 10.1093/rheumatology/keaa404] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropsychiatric (NP) events occur in the majority of patients with SLE and predominantly affect the CNS in addition to the peripheral and autonomic systems. Approximately 30% of all NP events are attributable to SLE (NPSLE) and present most frequently around the time of SLE onset. NPSLE is associated with increased morbidity and mortality and the proposed pathogenesis includes both ischaemic and neuroinflammatory mechanisms. Following diagnosis and causal attribution, the treatment of NPSLE is tailored to the type of NP event, the predominant putative pathogenic pathway and the activity and severity of the clinical event. There is a dearth of controlled clinical trials to guide management, but therapeutic options include symptomatic, antithrombotic and immunosuppressive agents that are supported by observational cohort studies. Our objective was to review what is currently known about NPSLE and to identify deficiencies in diagnostic biomarkers, novel therapies and clinical trials for this manifestation of SLE.
Collapse
Affiliation(s)
- Marcello Govoni
- Rheumatology Unit, S. Anna Hospital - Ferrara (loc. Cona), Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - John G Hanly
- Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Center and Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Booy EP, Gussakovsky D, Choi T, McKenna SA. The noncoding RNA BC200 associates with polysomes to positively regulate mRNA translation in tumor cells. J Biol Chem 2020; 296:100036. [PMID: 33410401 PMCID: PMC7949042 DOI: 10.1074/jbc.ra120.015775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BC200 is a noncoding RNA elevated in a broad spectrum of tumor cells that is critical for cell viability, invasion, and migration. Overexpression studies have implicated BC200 and the rodent analog BC1 as negative regulators of translation in both cell-based and in vitro translation assays. Although these studies are consistent, they have not been confirmed in knockdown studies and direct evidence for this function is lacking. Herein, we have demonstrated that BC200 knockdown is correlated with a decrease in global translation rates. As this conflicts with the hypothesis that BC200 is a translational suppressor, we overexpressed BC200 by transfection of in vitro transcribed RNA and transient expression from transfected plasmids. In this context BC200 suppressed translation; however, an innate immune response confounded the data. To overcome this, breast cancer cells stably overexpressing BC200 and various control RNAs were developed by selection for genomic incorporation of a plasmid coexpressing BC200 and the neomycin resistance gene. Stable overexpression of BC200 was associated with elevated translation levels in pooled stable cell lines and isolated single-cell clones. Cross-linking sucrose density gradient centrifugation demonstrated an association of BC200 and its reported binding partners SRP9/14, CSDE1, DHX36, and PABPC1 with both ribosomal subunits and polysomal RNA, an association not previously observed owing to the labile nature of the interactions. In summary, these data present a novel understanding of BC200 function as well as optimized methodology that has far reaching implications in the study of noncoding RNAs, particularly within the context of translational regulatory mechanisms.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Curr Opin Rheumatol 2020; 32:152-158. [PMID: 31895125 DOI: 10.1097/bor.0000000000000682] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diagnosing and treating neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging as the pathogenesis is still being debated. In this review, we discuss studies evaluating recent advances in diagnostic methods, pathogenic mediators and potential treatments. RECENT FINDINGS Screening tools used for neurodegenerative diseases were found to be both sensitive and moderately specific for cognitive dysfunction in NPSLE. Neuroimaging can be used to distinguish systemic lupus erythematosus (SLE) patients from healthy controls, but further refinement is needed to differentiate between lupus patients with and without neuropsychiatric manifestations. Elevated levels of specific molecules in the cerebrospinal fluid and/or serum, as well as the presence of certain autoantibodies, have been identified as potential biomarkers in attempts to facilitate a more accurate and objective diagnosis. Among such autoantibodies, anti-NR2 and anti-ribosomal P autoantibodies also have a pathogenic role, although newer studies demonstrate that blood-brain barrier damage may not always be required as previously believed. These and other observations, together with new evidence for disease attenuation after microglial modulation, suggest direct involvement of the central nervous system in NPSLE pathogenesis. SUMMARY Neuropsychiatric involvement of SLE includes a variety of symptoms that impact quality of life and patient prognosis. There have been recent advances in improving the diagnosis of NPSLE as well as in dissecting the underlying pathogenesis. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for targeted therapies, which are based on a clearer understanding of the pathogenesis of NPSLE. Further assessment of these treatments is required in NPSLE patients, as well as the potential use of neuroimaging to distinguish between SLE patients with or without neuropsychiatric manifestations.
Collapse
|
12
|
Brain Cytoplasmic RNAs in Neurons: From Biosynthesis to Function. Biomolecules 2020; 10:biom10020313. [PMID: 32079202 PMCID: PMC7072442 DOI: 10.3390/biom10020313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
Flexibility in signal transmission is essential for high-level brain function. This flexibility is achieved through strict spatial and temporal control of gene expression in neurons. Given the key regulatory roles of a variety of noncoding RNAs (ncRNAs) in neurons, studying neuron-specific ncRNAs provides an important basis for understanding molecular principles of brain function. This approach will have wide use in understanding the pathogenesis of brain diseases and in the development of therapeutic agents in the future. Brain cytoplasmic RNAs (BC RNAs) are a leading paradigm for research on neuronal ncRNAs. Since the first confirmation of brain-specific expression of BC RNAs in 1982, their investigation has been an area of active research. In this review, we summarize key studies on the characteristics and functions of BC RNAs in neurons.
Collapse
|