1
|
Hewitt LT, Marron AM, Brager DH. Higher hyperpolarization-activated current in a subpopulation of interneurons in stratum oriens of area CA1 in the hippocampus of fragile X mice. J Neurophysiol 2025; 133:1558-1571. [PMID: 40247608 DOI: 10.1152/jn.00510.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Fragile X syndrome is the most common inherited form of intellectual disability and the leading monogenetic cause of autism. Studies in mouse models of autism spectrum disorders, including the Fmr1 knockout (FX) mouse, suggest that abnormal inhibition in hippocampal circuits contributes to behavioral phenotypes. In FX mice, changes in multiple voltage-gated ion channels occur in excitatory pyramidal neurons of the hippocampus. Whether there are also changes in the intrinsic properties of hippocampal inhibitory interneurons, however, remains largely unknown. We made whole cell current clamp recordings from both fast-spiking (FS) and low threshold spiking (LTS) interneurons in the stratum oriens region of the hippocampus. We found that LTS, but not FS, interneurons in FX mice had lower input resistance and action potential firing compared with the wild type. When we subdivided LTS interneurons into low-threshold high hyperpolarization-activated current (Ih) (LTH) and putative oreins-lacunosum moleculare (OLM) cells (Hewitt et al. Physiol Rep 9: e14848, 2021), we found that it was the LTH subgroup that had significantly lower input resistance in FX mice. The difference in input resistance between wild-type and FX LTH interneurons was absent in the presence of the h-channel blocker ZD7288, suggesting a greater contribution of Ih in FX LTH interneurons. Voltage clamp recordings found that indeed, Ih was significantly higher in FX LTH interneurons compared with wild type. Our results suggest that altered inhibition in the hippocampus of FX mice may be due in part to changes in the intrinsic excitability of LTH inhibitory interneurons.NEW & NOTEWORTHY In this paper, we use physiological and biochemical approaches to investigate the intrinsic excitability of inhibitory interneurons in hippocampal area CA1 of the fragile X mouse. We found that higher Ih lowers the intrinsic excitability of one specific type of interneuron. This study highlights how changes to voltage-gated ion channels in specific neuronal populations may contribute to the altered excitatory/inhibitory balance in fragile X syndrome.
Collapse
Affiliation(s)
- Lauren T Hewitt
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
| | - Alyssa M Marron
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
- Interdisciplinary Neuroscience Program, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| |
Collapse
|
2
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
3
|
O'Shea RT, Priebe NJ, Brager DH. Impaired thalamic burst firing in Fragile X syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635156. [PMID: 40027682 PMCID: PMC11870407 DOI: 10.1101/2025.01.27.635156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The thalamus performs a critical role in sensory processing by gating the flow of sensory information to the neocortex and directing sensory-driven behaviors; functions which are disrupted in people with autism spectrum disorders (ASD). We have identified cellular changes in thalamic neurons in a mouse model of Fragile X syndrome (FX), the leading monogenic cause of ASD, that alter how the thalamus transmits sensory information to neocortical circuits. In awake animals, thalamic relay cells gate input by shifting between two firing modes: burst and tonic. Relay cells in FX mice, however, do not shift between these modes and instead operate primarily in the tonic mode. We demonstrate that the lack of burst mode firing is caused by a shift in the voltage sensitivity for the Ca 2+ -dependent low threshold spike, which underlies normal burst firing.
Collapse
|
4
|
Ordemann GJ, Lyuboslavsky P, Kizimenko A, Brumback AC. Fmr1 KO causes delayed rebound spike timing in mediodorsal thalamocortical neurons through regulation of HCN channel activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636122. [PMID: 39975001 PMCID: PMC11838482 DOI: 10.1101/2025.02.02.636122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background The neurodevelopmental disorder Fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene which prevents FMRP production. FMRP modulates the expression and function of a wide variety of proteins, including voltage-gated ion channels such as Hyperpolarization-Activated Cyclic Nucleotide gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders. MD connectivity with mPFC is integral to executive functions like working memory and social behaviors that are disrupted in FXS. Methods We used a combination of retrograde labeling and ex vivo brain slice whole cell electrophysiology in 40 wild type and 42 Fmr1 KO male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the medial prefrontal cortex (MD→mPFC neurons). Results In MD-L neurons, Fmr1 knockout caused a decrease in HCN-mediated membrane properties such as voltage sag and membrane afterhyperpolarization. These changes in subthreshold properties were accompanied by changes in suprathreshold neuron properties such as the variability of action potential burst timing. Conclusions In Fmr1 knockout mice, reduced HCN channel activity in MD→mPFC neurons impairs both the timing and magnitude of HCN-mediated membrane potential regulation. Changes in response timing may adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are critical for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity may lead to therapeutic interventions for individuals with FXS.
Collapse
Affiliation(s)
- Gregory J. Ordemann
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Polina Lyuboslavsky
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Alena Kizimenko
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Audrey C. Brumback
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Department of Pediatrics, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| |
Collapse
|
5
|
Mishra P, Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins 2025; 93:72-92. [PMID: 37982354 PMCID: PMC7616572 DOI: 10.1002/prot.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.
Collapse
Affiliation(s)
- Poonam Mishra
- Department of Neuroscience, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
6
|
Herstel LJ, Wierenga CJ. Distinct Modulation of I h by Synaptic Potentiation in Excitatory and Inhibitory Neurons. eNeuro 2024; 11:ENEURO.0185-24.2024. [PMID: 39406481 PMCID: PMC11574699 DOI: 10.1523/eneuro.0185-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Selective modifications in the expression or function of dendritic ion channels regulate the propagation of synaptic inputs and determine the intrinsic excitability of a neuron. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open upon membrane hyperpolarization and conduct a depolarizing inward current (I h). HCN channels are enriched in the dendrites of hippocampal pyramidal neurons where they regulate the integration of synaptic inputs. Synaptic plasticity can bidirectionally modify dendritic HCN channels in excitatory neurons depending on the strength of synaptic potentiation. In inhibitory neurons, however, the dendritic expression and modulation of HCN channels are largely unknown. In this study, we systematically compared the modulation of I h by synaptic potentiation in hippocampal CA1 pyramidal neurons and stratum radiatum (sRad) interneurons in mouse organotypic cultures. I h properties were similar in inhibitory and excitatory neurons and contributed to resting membrane potential and action potential firing. We found that in sRad interneurons, HCN channels were downregulated after synaptic plasticity, irrespective of the strength of synaptic potentiation. This suggests differential regulation of I h in excitatory and inhibitory neurons, possibly signifying their distinct role in network activity.
Collapse
Affiliation(s)
- Lotte J Herstel
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
7
|
Luque MA, Morcuende S, Torres B, Herrero L. Kv7/M channel dysfunction produces hyperexcitability in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. J Physiol 2024; 602:3769-3791. [PMID: 38976504 DOI: 10.1113/jp285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Fragile X syndrome (FXS), the most frequent monogenic form of intellectual disability, is caused by transcriptional silencing of the FMR1 gene that could render neuronal hyperexcitability. Here we show that pyramidal cells (PCs) in the dorsal CA1 region of the hippocampus elicited a larger action potential (AP) number in response to suprathreshold stimulation in juvenile Fmr1 knockout (KO) than wild-type (WT) mice. Because Kv7/M channels modulate CA1 PC excitability in rats, we investigated if their dysfunction produces neuronal hyperexcitability in Fmr1 KO mice. Immunohistochemical and western blot analyses showed no differences in the expression of Kv7.2 and Kv7.3 channel subunits between genotypes; however, the current mediated by Kv7/M channels was reduced in Fmr1 KO mice. In both genotypes, bath application of XE991 (10 μM), a blocker of Kv7/M channels: produced an increased AP number, produced an increased input resistance, produced a decreased AP voltage threshold and shaped AP medium afterhyperpolarization by increasing mean velocities. Retigabine (10 μM), an opener of Kv7/M channels, produced opposite effects to XE991. Both XE991 and retigabine abolished differences in all these parameters found in control conditions between genotypes. Furthermore, a low concentration of retigabine (2.5 μM) normalized CA1 PC excitability of Fmr1 KO mice. Finally, ex vivo seizure-like events evoked by 4-aminopyiridine (200 μM) in the dorsal CA1 region were more frequent in Fmr1 KO mice, and were abolished by retigabine (5-10 μM). We conclude that CA1 PCs of Fmr1 KO mice exhibit hyperexcitability, caused by Kv7/M channel dysfunction, and increased epileptiform activity, which were abolished by retigabine. KEY POINTS: Dorsal pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice exhibit hyperexcitability. Kv7/M channel activity, but not expression, is reduced in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Kv7/M channel dysfunction causes hyperexcitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice by increasing input resistance, decreasing AP voltage threshold and shaping medium afterhyperpolarization. A Kv7/M channel opener normalizes neuronal excitability in pyramidal cells of the hippocampal CA1 region of Fmr1 knockout mice. Ex vivo seizure-like events evoked in the dorsal CA1 region were more frequent in Fmr1 KO mice, and such an epileptiform activity was abolished by a Kv7/M channel opener depending on drug concentration. Kv7/M channels may represent a therapeutic target for treating symptoms associated with hippocampal alterations in fragile X syndrome.
Collapse
Affiliation(s)
- M Angeles Luque
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Sara Morcuende
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Blas Torres
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Luis Herrero
- Departamento Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
9
|
Lyuboslavsky P, Ordemann GJ, Kizimenko A, Brumback AC. Two contrasting mediodorsal thalamic circuits target the mouse medial prefrontal cortex. J Neurophysiol 2024; 131:876-890. [PMID: 38568510 PMCID: PMC11383385 DOI: 10.1152/jn.00456.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 05/09/2024] Open
Abstract
At the heart of the prefrontal network is the mediodorsal (MD) thalamus. Despite the importance of MD in a broad range of behaviors and neuropsychiatric disorders, little is known about the physiology of neurons in MD. We injected the retrograde tracer cholera toxin subunit B (CTB) into the medial prefrontal cortex (mPFC) of adult wild-type mice. We prepared acute brain slices and used current clamp electrophysiology to measure and compare the intrinsic properties of the neurons in MD that project to mPFC (MD→mPFC neurons). We show that MD→mPFC neurons are located predominantly in the medial (MD-M) and lateral (MD-L) subnuclei of MD. MD-L→mPFC neurons had shorter membrane time constants and lower membrane resistance than MD-M→mPFC neurons. Relatively increased hyperpolarization-activated cyclic nucleotide-gated (HCN) channel activity in MD-L neurons accounted for the difference in membrane resistance. MD-L neurons had a higher rheobase that resulted in less readily generated action potentials compared with MD-M→mPFC neurons. In both cell types, HCN channels supported generation of burst spiking. Increased HCN channel activity in MD-L neurons results in larger after-hyperpolarization potentials compared with MD-M neurons. These data demonstrate that the two populations of MD→mPFC neurons have divergent physiologies and support a differential role in thalamocortical information processing and potentially behavior.NEW & NOTEWORTHY To realize the potential of circuit-based therapies for psychiatric disorders that localize to the prefrontal network, we need to understand the properties of the populations of neurons that make up this network. The mediodorsal (MD) thalamus has garnered attention for its roles in executive functioning and social/emotional behaviors mediated, at least in part, by its projections to the medial prefrontal cortex (mPFC). Here, we identify and compare the physiology of the projection neurons in the two MD subnuclei that provide ascending inputs to mPFC in mice. Differences in intrinsic excitability between the two populations of neurons suggest that neuromodulation strategies targeting the prefrontal thalamocortical network will have differential effects on these two streams of thalamic input to mPFC.
Collapse
Affiliation(s)
- Polina Lyuboslavsky
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Gregory J Ordemann
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Alena Kizimenko
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| | - Audrey C Brumback
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Center for Learning and Memory, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
10
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
11
|
Svalina MN, Sullivan R, Restrepo D, Huntsman MM. From circuits to behavior: Amygdala dysfunction in fragile X syndrome. Front Integr Neurosci 2023; 17:1128529. [PMID: 36969493 PMCID: PMC10034113 DOI: 10.3389/fnint.2023.1128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.
Collapse
Affiliation(s)
- Matthew N. Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regina Sullivan
- Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, Child Study Center, New York University School of Medicine, New York, NY, United States
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Molly M. Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Molly M. Huntsman,
| |
Collapse
|
12
|
Brandalise F, Kalmbach BE, Cook EP, Brager DH. Impaired dendritic spike generation in the Fragile X prefrontal cortex is due to loss of dendritic sodium channels. J Physiol 2023; 601:831-845. [PMID: 36625320 PMCID: PMC9970745 DOI: 10.1113/jp283311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Patients with Fragile X syndrome, the leading monogenetic cause of autism, suffer from impairments related to the prefrontal cortex, including working memory and attention. Synaptic inputs to the distal dendrites of layer 5 pyramidal neurons in the prefrontal cortex have a weak influence on the somatic membrane potential. To overcome this filtering, distal inputs are transformed into local dendritic Na+ spikes, which propagate to the soma and trigger action potential output. Layer 5 extratelencephalic (ET) prefrontal cortex (PFC) neurons project to the brainstem and various thalamic nuclei and are therefore well positioned to integrate task-relevant sensory signals and guide motor actions. We used current clamp and outside-out patch clamp recording to investigate dendritic spike generation in ET neurons from male wild-type and Fmr1 knockout (FX) mice. The threshold for dendritic spikes was more depolarized in FX neurons compared to wild-type. Analysis of voltage responses to simulated in vivo 'noisy' current injections showed that a larger dendritic input stimulus was required to elicit dendritic spikes in FX ET dendrites compared to wild-type. Patch clamp recordings revealed that the dendritic Na+ conductance was significantly smaller in FX ET dendrites. Taken together, our results suggest that the generation of Na+ -dependent dendritic spikes is impaired in ET neurons of the PFC in FX mice. Considering our prior findings that somatic D-type K+ and dendritic hyperpolarization-activated cyclic nucleotide-gated-channel function is reduced in ET neurons, we suggest that dendritic integration by PFC circuits is fundamentally altered in Fragile X syndrome. KEY POINTS: Dendritic spike threshold is depolarized in layer 5 prefrontal cortex neurons in Fmr1 knockout (FX) mice. Simultaneous somatic and dendritic recording with white noise current injections revealed that larger dendritic stimuli were required to elicit dendritic spikes in FX extratelencephalic (ET) neurons. Outside-out patch clamp recording revealed that dendritic sodium conductance density was lower in FX ET neurons.
Collapse
Affiliation(s)
- Federico Brandalise
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
- Current address: Department of Biosciences, University of Milan, Milano Italy
| | - Brian E. Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
- Current address: Allen Institute for Brain Science, Seattle, WA and Department of Physiology and Biophysics, University of Washington
| | - Erik P. Cook
- Department of Physiology, McGill University, Montreal QC, Canada
| | - Darrin H. Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712 USA
- Department of Neuroscience University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
13
|
Sibille J, Kremkow J, Koch U. Absence of the Fragile X messenger ribonucleoprotein alters response patterns to sounds in the auditory midbrain. Front Neurosci 2022; 16:987939. [PMID: 36188480 PMCID: PMC9523263 DOI: 10.3389/fnins.2022.987939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Among the different autism spectrum disorders, Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Sensory and especially auditory hypersensitivity is a key symptom in patients, which is well mimicked in the Fmr1 -/- mouse model. However, the physiological mechanisms underlying FXS’s acoustic hypersensitivity in particular remain poorly understood. Here, we categorized spike response patterns to pure tones of different frequencies and intensities from neurons in the inferior colliculus (IC), a central integrator in the ascending auditory pathway. Based on this categorization we analyzed differences in response patterns between IC neurons of wild-type (WT) and Fmr1 -/- mice. Our results report broadening of frequency tuning, an increased firing in response to monaural as well as binaural stimuli, an altered balance of excitation-inhibition, and reduced response latencies, all expected features of acoustic hypersensitivity. Furthermore, we noticed that all neuronal response types in Fmr1 -/- mice displayed enhanced offset-rebound activity outside their excitatory frequency response area. These results provide evidence that the loss of Fmr1 not only increases spike responses in IC neurons similar to auditory brainstem neurons, but also changes response patterns such as offset spiking. One can speculate this to be an underlying aspect of the receptive language problems associated with Fragile X syndrome.
Collapse
Affiliation(s)
- Jérémie Sibille
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jérémie Sibille, ,
| | - Jens Kremkow
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Ursula Koch
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Ursula Koch,
| |
Collapse
|
14
|
Rolotti SV, Ahmed MS, Szoboszlay M, Geiller T, Negrean A, Blockus H, Gonzalez KC, Sparks FT, Solis Canales AS, Tuttman AL, Peterka DS, Zemelman BV, Polleux F, Losonczy A. Local feedback inhibition tightly controls rapid formation of hippocampal place fields. Neuron 2022; 110:783-794.e6. [PMID: 34990571 PMCID: PMC8897257 DOI: 10.1016/j.neuron.2021.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Hippocampal place cells underlie spatial navigation and memory. Remarkably, CA1 pyramidal neurons can form new place fields within a single trial by undergoing rapid plasticity. However, local feedback circuits likely restrict the rapid recruitment of individual neurons into ensemble representations. This interaction between circuit dynamics and rapid feature coding remains unexplored. Here, we developed "all-optical" approaches combining novel optogenetic induction of rapidly forming place fields with 2-photon activity imaging during spatial navigation in mice. We find that induction efficacy depends strongly on the density of co-activated neurons. Place fields can be reliably induced in single cells, but induction fails during co-activation of larger subpopulations due to local circuit constraints imposed by recurrent inhibition. Temporary relief of local inhibition permits the simultaneous induction of place fields in larger ensembles. We demonstrate the behavioral implications of these dynamics, showing that our ensemble place field induction protocol can enhance subsequent spatial association learning.
Collapse
Affiliation(s)
- Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA.
| | - Mohsin S Ahmed
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Heike Blockus
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Ana Sofia Solis Canales
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anna L Tuttman
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Boris V Zemelman
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Chen YS, Zhang SM, Yue CX, Xiang P, Li JQ, Wei Z, Xu L, Zeng Y. Early environmental enrichment for autism spectrum disorder Fmr1 mice models has positive behavioral and molecular effects. Exp Neurol 2022; 352:114033. [DOI: 10.1016/j.expneurol.2022.114033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 03/01/2022] [Indexed: 11/04/2022]
|
16
|
Deng PY, Avraham O, Cavalli V, Klyachko VA. Hyperexcitability of Sensory Neurons in Fragile X Mouse Model. Front Mol Neurosci 2022; 14:796053. [PMID: 35002623 PMCID: PMC8727524 DOI: 10.3389/fnmol.2021.796053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023] Open
Abstract
Sensory hypersensitivity and somatosensory deficits represent the core symptoms of Fragile X syndrome (FXS). These alterations are believed to arise from changes in cortical sensory processing, while potential deficits in the function of peripheral sensory neurons residing in dorsal root ganglia remain unexplored. We found that peripheral sensory neurons exhibit pronounced hyperexcitability in Fmr1 KO mice, manifested by markedly increased action potential (AP) firing rate and decreased threshold. Unlike excitability changes found in many central neurons, no significant changes were observed in AP rising and falling time, peak potential, amplitude, or duration. Sensory neuron hyperexcitability was caused primarily by increased input resistance, without changes in cell capacitance or resting membrane potential. Analyses of the underlying mechanisms revealed reduced activity of HCN channels and reduced expression of HCN1 and HCN4 in Fmr1 KO compared to WT. A selective HCN channel blocker abolished differences in all measures of sensory neuron excitability between WT and Fmr1 KO neurons. These results reveal a hyperexcitable state of peripheral sensory neurons in Fmr1 KO mice caused by dysfunction of HCN channels. In addition to the intrinsic neuronal dysfunction, the accompanying paper examines deficits in sensory neuron association/communication with their enveloping satellite glial cells, suggesting contributions from both neuronal intrinsic and extrinsic mechanisms to sensory dysfunction in the FXS mouse model.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States.,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
18
|
Xiao HL, Xiao YJ, Wang Q, Chen ML, Jiang AL. Moxibustion Regulates Gastrointestinal Motility via HCN1 in Functional Dyspepsia Rats. Med Sci Monit 2021; 27:e932885. [PMID: 34845181 PMCID: PMC8642983 DOI: 10.12659/msm.932885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Moxibustion therapy has been found to ameliorate clinical symptoms of functional dyspepsia (FD). We aimed to examine the regulatory effect of moxibustion on the gastrointestinal (GI) motility in FD and explore the underlying mechanism based on the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1). Material/Methods Moxibustion therapy was used in FD rats induced by using classic tail-pinch and irregular feeding. Weight gain and food intake were recorded weekly, followed by detecting gastric residual rate (GRR) and small intestine propulsion rate (IPR). Next, western blotting was performed to determine the expression levels of HCN1 in the gastric antrum. qRT-PCR was used to detect HCN1 in the small intestine and hypothalamic satiety center. Double immunolabeling was used for HCN1 and ICCs in gastric antrum and small intestine. Results The obtained results suggested that moxibustion treatment could increase weight gain and food intake in FD rats. The GRR and IPR were compared among the groups, which showed that moxibustion treatment could decrease GRR and increase IPR. Moxibustion increased the expression of HCN1 in the gastric antrum, small intestine, and hypothalamic satiety center. Histologically, the co-expressions of HCN1 and ICCs tended to increase in gastric antrum and small intestine. Meanwhile, HCN channel inhibitor ZD7288 prevented the above-mentioned therapeutic effects of moxibustion. Conclusions The results of the present study suggest that moxibustion can effectively improve the GI motility of FD rats, which may be related to the upregulation of HCN1 expression in gastric antrum, small intestine, and satiety center.
Collapse
Affiliation(s)
- Hong-Ling Xiao
- School of Nursing, Second Military Medical University, Shanghai, China (mainland).,School of Nursing, Tianjin University of Chinese Medicine, Tianjin, China (mainland)
| | - Yun-Jiu Xiao
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Qian Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Mei-Ling Chen
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - An-Li Jiang
- School of Nursing, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
19
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
20
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
21
|
Ordemann GJ, Apgar CJ, Chitwood RA, Brager DH. Altered A-Type Potassium Channel Function Impairs Dendritic Spike Initiation and Temporoammonic Long-Term Potentiation in Fragile X Syndrome. J Neurosci 2021; 41:5947-5962. [PMID: 34083256 PMCID: PMC8265803 DOI: 10.1523/jneurosci.0082-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism spectrum disorder. Area CA1 of the hippocampus receives current information about the external world from the entorhinal cortex via the temporoammonic (TA) pathway. Given its role in learning and memory, it is surprising that little is known about TA long-term potentiation (TA-LTP) in FXS. We found that TA-LTP was impaired in male fmr1 KO mice. Although there were no significant differences in basal synaptic transmission, synaptically evoked dendritic calcium signals were smaller in KO neurons. Using dendritic recording, we found no difference in complex spikes or pharmacologically isolated Ca2+ spikes; however, the threshold for fast, Na+-dependent dendritic spikes was depolarized in fmr1 KO mice. Cell-attached patch-clamp recordings found no difference in Na+ channels between wild-type and fmr1 KO CA1 dendrites. Dendritic spike threshold and TA-LTP were restored by blocking A-type K+ channels with either 150 µm Ba2+ or the more specific toxin AmmTx3. The impairment of TA-LTP shown here, coupled with previously described enhanced Schaffer collateral LTP, may contribute to spatial memory alterations in FXS. Furthermore, as both of these LTP phenotypes are attributed to changes in A-type K+ channels in FXS, our findings provide a potential therapeutic target to treat cognitive impairments in FXS.SIGNIFICANCE STATEMENT Alterations in synaptic function and plasticity are likely contributors to learning and memory impairments in many neurologic disorders. Fragile X syndrome is marked by dysfunctional learning and memory and changes in synaptic structure and function. This study shows a lack of LTP at temporoammonic synapses in CA1 neurons associated with biophysical differences in A-type K+ channels in fmr1 KO CA1 neurons. Our results, along with previous findings on A-type K+ channel effects on Schaffer collateral LTP, reveal differential effects of a single ion channelopathy on LTP at the two major excitatory pathways of CA1 pyramidal neurons. These findings expand our understanding of memory deficits in FXS and provide a potential therapeutic target for the treatment of memory dysfunction in FXS.
Collapse
Affiliation(s)
- Gregory J Ordemann
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Christopher J Apgar
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Raymond A Chitwood
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
22
|
Booker SA, Kind PC. Mechanisms regulating input-output function and plasticity of neurons in the absence of FMRP. Brain Res Bull 2021; 175:69-80. [PMID: 34245842 DOI: 10.1016/j.brainresbull.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
The function of brain circuits relies on high-fidelity information transfer within neurons. Synaptic inputs arrive primarily at dendrites, where they undergo integration and summation throughout the somatodendritic domain, ultimately leading to the generation of precise patterns of action potentials. Emerging evidence suggests that the ability of neurons to transfer synaptic information and modulate their output is impaired in a number of neurodevelopmental disorders including Fragile X Syndrome. In this review we summarise recent findings that have revealed the pathophysiological and plasticity mechanisms that alter the ability of neurons in sensory and limbic circuits to reliably code information in the absence of FMRP. We examine which aspects of this transform may result directly from the loss of FMRP and those that a result from compensatory or homeostatic alterations to neuronal function. Dissection of the mechanisms leading to altered input-output function of neurons in the absence of FMRP and their effects on regulating neuronal plasticity throughout development could have important implications for potential therapies for Fragile X Syndrome, including directing the timing and duration of different treatment options.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Peter C Kind
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; National Centre for Biological Sciences (NCBS), Bangalore, India.
| |
Collapse
|
23
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.
Collapse
|
24
|
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period. J Neurosci 2021; 41:1218-1241. [PMID: 33402421 DOI: 10.1523/jneurosci.2167-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.
Collapse
|
25
|
Kalmbach BE, Brager DH. Fragile X mental retardation protein modulates somatic D-type K + channels and action potential threshold in the mouse prefrontal cortex. J Neurophysiol 2020; 124:1766-1773. [PMID: 32997566 DOI: 10.1152/jn.00494.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Axo-somatic K+ channels control action potential output in part by acting in concert with voltage-gated Na+ channels to set action potential threshold. Slowly inactivating, D-type K+ channels are enriched at the axo-somatic region of cortical pyramidal neurons of the prefrontal cortex, where they regulate action potential firing. We previously demonstrated that D-type K+ channels are downregulated in extratelencephalic-projecting (ET) L5 neurons in the medial prefrontal cortex (mPFC) of the Fmr1-knockout mouse model of fragile X syndrome (FX mice), resulting in a hyperpolarized action potential threshold. To test whether K+ channel alterations are regulated in a cell-autonomous manner in FXS, we used a virus-mediated approach to restore expression of fragile X mental retardation protein (FMRP) in a small population of prefrontal neurons in male FX mice. Outside-out voltage-clamp recordings revealed a higher D-type K+ conductance in FMRP-positive ET neurons compared with nearby FMRP-negative ET neurons. FMRP did not affect either rapidly inactivating A-type or noninactivating K+ conductance. ET neuron patches recorded with FMRP1-298, a truncated form of FMRP that lacks mRNA binding domains, included in the pipette solution had larger D-type K+ conductance compared with heat-inactivated controls. Viral expression of FMRP in FX mice depolarized action potential threshold to near-wild-type levels in ET neurons. These results suggest that FMRP influences the excitability of ET neurons in the mPFC by regulating somatic D-type K+ channels in a cell-autonomous, protein-protein-dependent manner.NEW & NOTEWORTHY We demonstrate that fragile X mental retardation protein (FMRP), which is absent in fragile X syndrome (FXS), regulates D-type potassium channels in prefrontal cortex L5 pyramidal neurons with subcerebral projections but not in neighboring pyramidal neurons without subcerebral projections. FMRP regulates D-type potassium channels in a protein-protein-dependent manner and rescues action potential threshold in a mouse model of FXS. These findings have implications for how changes in voltage-gated channels contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Darrin H Brager
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas.,Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|