1
|
Zhang Q, Du Y, Xu D, Zhang H, Li Y, Li L, Liu J, Jin X, Guo J, Wen J. Sonic hedgehog promotes Schwann cell proliferation through PI3K/AKT/cyclin E1 pathway. Tissue Cell 2025; 95:102858. [PMID: 40106859 DOI: 10.1016/j.tice.2025.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The proliferation of Schwann cells (SCs) is essential for both the development and regeneration of peripheral nervous system (PNS). Sonic hedgehog (Shh), a multifunctional signaling protein, plays pivotal roles in pattern formation, cell proliferation and cell survival during embryogenesis and tissue repair. While up-regulation of Shh in neurons and SCs following peripheral nerve injury has been associated with enhanced nerve regeneration its specific regulatory effects on SC proliferation remain poorly defined. In this study, we demonstrate dual expression patterns of Shh: significant up regulation in repair SCs post-injury and sustained high expression in immature SCs during developmental stages. Through lentivirus-mediated Shh knockdown in cultured SCs, we revealed that Shh silencing markedly suppresses SC proliferation by inducing G2/M-phase arrest. Transcriptomic profiling identified cell cycle dysregulation upon Shh depletion, characterized by diminished cyclin E1 expression. In mechanism, Shh maintains proliferative capacity through PI3K/AKT signaling activation, as evidenced by pathway inhibition following Shh silencing and subsequent rescue of proliferation deficits with PI3K/AKT agonists. These findings establish the PI3K/AKT/cyclin E1 axis as a central mechanism underlying Shh-mediated SC proliferation control. Our work elucidates the dual regulatory role of Shh in developmental and regenerative contexts while highlighting its potential as a therapeutic target for inherited peripheral neuropathies and peripheral nerve repair.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yunjing Du
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Danyang Xu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Huimei Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yanyi Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Lixia Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Jinkun Wen
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. eLife 2024; 13:e87394. [PMID: 38456457 PMCID: PMC10959528 DOI: 10.7554/elife.87394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
Affiliation(s)
- Matthew Grove
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Hyukmin Kim
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Shuhuan Pang
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Jose Paz Amaya
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Michel Lemay
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Young-Jin Son
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
4
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530298. [PMID: 38293102 PMCID: PMC10827063 DOI: 10.1101/2023.02.27.530298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
|
5
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
7
|
Velasco-Aviles S, Patel N, Casillas-Bajo A, Frutos-Rincón L, Velasco E, Gallar J, Arthur-Farraj P, Gomez-Sanchez JA, Cabedo H. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair. eLife 2022; 11:e72917. [PMID: 35076395 PMCID: PMC8853665 DOI: 10.7554/elife.72917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5, and 7 but not Hdac9. Here, we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4, 5, and 7 are simultaneously removed, the myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.
Collapse
Affiliation(s)
- Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Laura Frutos-Rincón
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Juana Gallar
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
- RICORS en enfermedades inflamatoriasSant Joan d'AlacantSpain
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | | | - Hugo Cabedo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| |
Collapse
|
8
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Kerman BE, Genoud S, Kurt Vatandaslar B, Denli AM, Georges Ghosh S, Xu X, Yeo GW, Aimone JB, Gage FH. Motoneuron expression profiling identifies an association between an axonal splice variant of HDGF-related protein 3 and peripheral myelination. J Biol Chem 2020; 295:12233-12246. [PMID: 32647008 PMCID: PMC7443494 DOI: 10.1074/jbc.ra120.014329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/27/2020] [Indexed: 11/06/2022] Open
Abstract
Disorders that disrupt myelin formation during development or in adulthood, such as multiple sclerosis and peripheral neuropathies, lead to severe pathologies, illustrating myelin's crucial role in normal neural functioning. However, although our understanding of glial biology is increasing, the signals that emanate from axons and regulate myelination remain largely unknown. To identify the core components of the myelination process, here we adopted a microarray analysis approach combined with laser-capture microdissection of spinal motoneurons during the myelinogenic phase of development. We identified neuronal genes whose expression was enriched during myelination and further investigated hepatoma-derived growth factor-related protein 3 (HRP3 or HDGFRP3). HRP3 was strongly expressed in the white matter fiber tracts of the peripheral (PNS) and central (CNS) nervous systems during myelination and remyelination in a cuprizone-induced demyelination model. The dynamic localization of HPR3 between axons and nuclei during myelination was consistent with its axonal localization during neuritogenesis. To study this phenomenon, we identified two splice variants encoded by the HRP3 gene: the canonical isoform HRP3-I and a newly recognized isoform, HRP3-II. HRP3-I remained solely in the nucleus, whereas HRP3-II displayed distinct axonal localization both before and during myelination. Interestingly, HRP3-II remained in the nuclei of unmyelinated neurons and glial cells, suggesting the existence of a molecular machinery that transfers it to and retains it in the axons of neurons fated for myelination. Overexpression of HRP3-II, but not of HRP3-I, increased Schwann cell numbers and myelination in PNS neuron-glia co-cultures. However, HRP3-II overexpression in CNS co-cultures did not alter myelination.
Collapse
Affiliation(s)
- Bilal Ersen Kerman
- Department of Histology and Embryology, Istanbul Medipol University International School of Medicine, Istanbul, Turkey; Regenerative and Restorative Medicine Research Center, Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Stéphane Genoud
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA; Vifor Pharma, Villars-sur-Glâne, Switzerland
| | - Burcu Kurt Vatandaslar
- Regenerative and Restorative Medicine Research Center, Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey; Institute of Health Science, Department of Neuroscience, Istanbul Medipol University, Istanbul, Turkey
| | - Ahmet Murat Denli
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Shereen Georges Ghosh
- Laboratory for Pediatric Brain Disease, University of California, San Diego, La Jolla, California, USA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Xiangdong Xu
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | - James Bradley Aimone
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
11
|
|
12
|
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv 2019; 2:i23-i32. [PMID: 32642730 PMCID: PMC7317060 DOI: 10.1093/noajnl/vdz045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.
Collapse
Affiliation(s)
- Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Ronchi G, Morano M, Fregnan F, Pugliese P, Crosio A, Tos P, Geuna S, Haastert-Talini K, Gambarotta G. The Median Nerve Injury Model in Pre-clinical Research - A Critical Review on Benefits and Limitations. Front Cell Neurosci 2019; 13:288. [PMID: 31316355 PMCID: PMC6609919 DOI: 10.3389/fncel.2019.00288] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The successful introduction of innovative treatment strategies into clinical practise strongly depends on the availability of effective experimental models and their reliable pre-clinical assessment. Considering pre-clinical research for peripheral nerve repair and reconstruction, the far most used nerve regeneration model in the last decades is the sciatic nerve injury and repair model. More recently, the use of the median nerve injury and repair model has gained increasing attention due to some significant advantages it provides compared to sciatic nerve injury. Outstanding advantages are the availability of reliable behavioural tests for assessing posttraumatic voluntary motor recovery and a much lower impact on the animal wellbeing. In this article, the potential application of the median nerve injury and repair model in pre-clinical research is reviewed. In addition, we provide a synthetic overview of a variety of methods that can be applied in this model for nerve regeneration assessment. This article is aimed at helping researchers in adequately adopting this in vivo model for pre-clinical evaluation of peripheral nerve reconstruction as well as for interpreting the results in a translational perspective.
Collapse
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Michela Morano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Pierfrancesco Pugliese
- Dipartimento di Chirurgia Generale e Specialistica, Azienda Ospedaliera Universitaria, Ancona, Italy
| | - Alessandro Crosio
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Pierluigi Tos
- UO Microchirurgia e Chirurgia della Mano, Ospedale Gaetano Pini, Milan, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi Foundation (NICO), University of Turin, Turin, Italy
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Belin S, Ornaghi F, Shackleford G, Wang J, Scapin C, Lopez-Anido C, Silvestri N, Robertson N, Williamson C, Ishii A, Taveggia C, Svaren J, Bansal R, Schwab MH, Nave K, Fratta P, D’Antonio M, Poitelon Y, Feltri ML, Wrabetz L. Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy. Hum Mol Genet 2019; 28:1260-1273. [PMID: 30535360 PMCID: PMC6452193 DOI: 10.1093/hmg/ddy420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/06/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.
Collapse
Affiliation(s)
- Sophie Belin
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Francesca Ornaghi
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- SR-TIGET, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ghjuvan’Ghjacumu Shackleford
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Nicholas Silvestri
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neil Robertson
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Courtney Williamson
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
| | - Akihiro Ishii
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Carla Taveggia
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - John Svaren
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Klaus Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Maurizio D’Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Cappello V, Marchetti L, Parlanti P, Landi S, Tonazzini I, Cecchini M, Piazza V, Gemmi M. Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Sci Rep 2016; 6:1. [PMID: 28442746 PMCID: PMC5431369 DOI: 10.1038/s41598-016-0001-8] [Citation(s) in RCA: 6749] [Impact Index Per Article: 749.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 08/15/2016] [Indexed: 02/08/2023] Open
Abstract
Krabbe disease (KD) is a neurodegenerative disorder caused by the lack of β- galactosylceramidase enzymatic activity and by widespread accumulation of the cytotoxic galactosyl-sphingosine in neuronal, myelinating and endothelial cells. Despite the wide use of Twitcher mice as experimental model for KD, the ultrastructure of this model is partial and mainly addressing peripheral nerves. More details are requested to elucidate the basis of the motor defects, which are the first to appear during KD onset. Here we use transmission electron microscopy (TEM) to focus on the alterations produced by KD in the lower motor system at postnatal day 15 (P15), a nearly asymptomatic stage, and in the juvenile P30 mouse. We find mild effects on motorneuron soma, severe ones on sciatic nerves and very severe effects on nerve terminals and neuromuscular junctions at P30, with peripheral damage being already detectable at P15. Finally, we find that the gastrocnemius muscle undergoes atrophy and structural changes that are independent of denervation at P15. Our data further characterize the ultrastructural analysis of the KD mouse model, and support recent theories of a dying-back mechanism for neuronal degeneration, which is independent of demyelination.
Collapse
Affiliation(s)
- Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy.
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| | - Paola Parlanti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Silvia Landi
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122, Milano, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Vincenzo Piazza
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| | - Mauro Gemmi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro, 12, 56127, Pisa, Italy
| |
Collapse
|
16
|
Wu J, Liu W, Williams JP, Ratner N. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene 2016; 36:1669-1677. [PMID: 27748759 DOI: 10.1038/onc.2016.386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an inherited disease in which affected patients are predisposed to develop benign Schwann cell (SC) tumours called neurofibromas. In the mouse, loss of Nf1 in the SC lineage causes neurofibroma formation. The tyrosine kinase receptor EGFR is expressed in Schwann cell precursors (SCP), which have been implicated in plexiform neurofibroma initiation. To test if EGFR activity affects neurofibroma initiation, size, and/or number, we studied mice expressing human EGFR in SCs and SCP in the context of mice that form neurofibromas. Neurofibroma number increased in homozygous CNP-hEGFR mice versus heterozygous littermates, and neurofibroma number and size increased when CNP-hEGFR was crossed to Nf1fl/fl;DhhCre mice. Conversely, diminished EGFR signalling in Nf1fl/fl;DhhCre;Wa2/+ mice decreased neurofibroma number. In vivo transplantation verified the correlation between EGFR activity and neurofibroma formation. Mechanistically, expression of CNP-hEGFR increased SCP/neurofibroma-initiating cell self-renewal, a surrogate for tumour initiation, and activated P-Stat3. Further, Il-6 reinforced Jak2/Stat3 activation in SCPs and SCs. These gain- and loss-of function assays show that levels of tyrosine kinase expression in SCPs modify neurofibroma initiation.
Collapse
Affiliation(s)
- J Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - W Liu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - J P Williams
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| | - N Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Wang L, Sanford MT, Xin Z, Lin G, Lue TF. Role of Schwann cells in the regeneration of penile and peripheral nerves. Asian J Androl 2016; 17:776-82. [PMID: 25999359 PMCID: PMC4577590 DOI: 10.4103/1008-682x.154306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Schwann cells (SCs) are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED). Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1) the origin and development of SCs in the peripheral and penile nerve system; (2) Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3) how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4) and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.
Collapse
Affiliation(s)
| | | | | | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA,
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA,
| |
Collapse
|
18
|
Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. J Control Release 2016; 226:21-34. [PMID: 26826306 DOI: 10.1016/j.jconrel.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that stimulates the differentiation and function of vascular endothelial cells. VEGF has been implicated in improving nervous system function after injury. However, uncontrolled overexpression of VEGF increases the risk of tumor formation at the site of gene delivery. For this reason, VEGF expression needs to be strictly controlled. The goal of the present study was to understand the effects of hypoxia-induced gene expression system to control VEGF gene expression in neural stem cells (NSCs) on the regeneration of neural tissue after sciatic nerve injury. In this study, we used the erythropoietin (Epo) enhancer-SV40 promoter system (EpoSV-VEGF-NSCs) for hypoxia-specific VEGF expression. We used three types of NSCs: DsRed-NSCs as controls, SV-VEGF-NSCs as uncontrolled VEGF overexpressing NSCs, and EpoSV-VEGF-NSCs. For comparison of VEGF expression at normoxia and hypoxia, we measured the amount of VEGF secreted. VEGF expression decreased at normoxia and increased at hypoxia for EpoSV-VEGF-NSCs; thus, EpoSV-VEGF-NSCs controlled VEGF expression, dependent upon oxygenation condition. To demonstrate the therapeutic effect of EpoSV-VEGF-NSCs, we transplanted each cell line in a neuropathic pain sciatic nerve injury rat model. The transplanted EpoSV-VEGF-NSCs improved sciatic nerve functional index (SFI), mechanical allodynia, and re-myelination similar to the SV-VEGF-NSCs. Additionally, the number of blood vessels increased to a level similar to that of the SV-VEGF-NSCs. However, we did not observe tumor generation in the EpoSV-VEGF-NSC animals that were unlikely to have tumor formation in the SV-VEGF-NSCs. From our results, we determined that EpoSV-VEGF-NSCs safely regulate VEGF gene expression which is dependent upon oxygenation status. In addition, we found that they are therapeutically appropriate for treating sciatic nerve injury.
Collapse
|
19
|
Abstract
Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone. BIOMED RESEARCH INTERNATIONAL 2014; 2014:704259. [PMID: 24738070 PMCID: PMC3971563 DOI: 10.1155/2014/704259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.
Collapse
|
21
|
Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J. Lysophosphatidic acid (LPA) and its receptor, LPA1 , influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 2013; 61:2009-22. [PMID: 24115248 DOI: 10.1002/glia.22572] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/31/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023]
Abstract
Schwann cell (SC) migration is an important step preceding myelination and remyelination in the peripheral nervous system, and can be promoted by peptide factors like neuregulins. Here we present evidence that a lipid factor, lysophosphatidic acid (LPA), influences both SC migration and peripheral myelination through its cognate G protein-coupled receptor (GPCR) known as LPA1 . Ultrastructural analyses of peripheral nerves in mouse null-mutants for LPA1 showed delayed SC-to-axon segregation, polyaxonal myelination by single SCs, and thinner myelin sheaths. In primary cultures, LPA promoted SC migration through LPA1 , while analysis of conditioned media from purified dorsal root ganglia neurons using HPLC/MS supported the production of LPA by these neurons. The heterotrimeric G-alpha protein, Gαi , and the small GTPase, Rac1, were identified as important downstream signaling components of LPA1 . These results identify receptor mediated LPA signaling between neurons and SCs that promote SC migration and contribute to the normal development of peripheral nerves through effects on SC-axon segregation and myelination.
Collapse
Affiliation(s)
- Brigitte Anliker
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
22
|
Godinho MJ, Teh L, Pollett MA, Goodman D, Hodgetts SI, Sweetman I, Walters M, Verhaagen J, Plant GW, Harvey AR. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One 2013; 8:e69987. [PMID: 23950907 PMCID: PMC3739754 DOI: 10.1371/journal.pone.0069987] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023] Open
Abstract
We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.
Collapse
Affiliation(s)
- Maria João Godinho
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lip Teh
- Cranio-Maxillo-Facial Unit, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Margaret A. Pollett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Douglas Goodman
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Stuart I. Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Iain Sweetman
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Walters
- Cranio-Maxillo-Facial Unit, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Giles W. Plant
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan R. Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
23
|
Gomez-Sanchez JA, Gomis-Coloma C, Morenilla-Palao C, Peiro G, Serra E, Serrano M, Cabedo H. Epigenetic induction of the Ink4a/Arf locus prevents Schwann cell overproliferation during nerve regeneration and after tumorigenic challenge. ACTA ACUST UNITED AC 2013; 136:2262-78. [PMID: 23748155 DOI: 10.1093/brain/awt130] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The number of Schwann cells is fitted to axonal length in peripheral nerves. This relationship is lost when tumorigenic stimuli induce uncontrolled Schwann cell proliferation, generating tumours such us neurofibromas and schwannomas. Schwann cells also re-enter the cell cycle following nerve injury during the process of Wallerian degeneration. In both cases proliferation is finally arrested. We show that in neurofibroma, the induction of Jmjd3 (jumonji domain containing 3, histone lysine demethylase) removes trimethyl groups on lysine-27 of histone-H3 and epigenetically activates the Ink4a/Arf-locus, forcing Schwann cells towards replicative senescence. Remarkably, blocking this mechanism allows unrestricted proliferation, inducing malignant transformation of neurofibromas. Interestingly, our data suggest that in injured nerves, Schwann cells epigenetically activate the same locus to switch off proliferation and enter the senescence programme. Indeed, when this pathway is genetically blocked, Schwann cells fail to drop out of the cell cycle and continue to proliferate. We postulate that the Ink4a/Arf-locus is expressed as part of a physiological response that prevents uncontrolled proliferation of the de-differentiated Schwann cell generated during nerve regeneration, a response that is also activated to avoid overproliferation after tumorigenic stimuli in the peripheral nervous system.
Collapse
|
24
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
25
|
Gambarotta G, Fregnan F, Gnavi S, Perroteau I. Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:223-56. [PMID: 24083437 DOI: 10.1016/b978-0-12-410499-0.00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuregulin 1 (NRG1) is a multifunctional and versatile protein: its numerous isoforms can signal in a paracrine, autocrine, or juxtacrine manner, playing a fundamental role during the development of the peripheral nervous system and during the process of nerve repair, suggesting that the treatment with NRG1 could improve functional outcome following injury. Accordingly, the use of NRG1 in vivo has already yielded encouraging results. The aim of this review is to focus on the role played by the different NRG1 isoforms during peripheral nerve regeneration and remyelination and to identify good candidates to be used for the development of tissue engineered medical devices delivering NRG1, with the objective of promoting better nerve repair.
Collapse
Affiliation(s)
- Giovanna Gambarotta
- Nerve Regeneration Group, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
26
|
The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. J Neurosci 2012; 32:4944-58. [PMID: 22492050 DOI: 10.1523/jneurosci.5868-11.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFβ, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.
Collapse
|
27
|
Velanac V, Unterbarnscheidt T, Hinrichs W, Gummert MN, Fischer TM, Rossner MJ, Trimarco A, Brivio V, Taveggia C, Willem M, Haass C, Möbius W, Nave KA, Schwab MH. Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 2011; 60:203-17. [PMID: 22052506 PMCID: PMC3267053 DOI: 10.1002/glia.21255] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/21/2011] [Indexed: 12/15/2022]
Abstract
Myelin sheath thickness is precisely adjusted to axon caliber, and in the peripheral nervous system, neuregulin 1 (NRG1) type III is a key regulator of this process. It has been proposed that the protease BACE1 activates NRG1 dependent myelination. Here, we characterize the predicted product of BACE1-mediated NRG1 type III processing in transgenic mice. Neuronal overexpression of a NRG1 type III-variant, designed to mimic prior cleavage in the juxtamembrane stalk region, induces hypermyelination in vivo and is sufficient to restore myelination of NRG1 type III-deficient neurons. This observation implies that the NRG1 cytoplasmic domain is dispensable and that processed NRG1 type III is sufficient for all steps of myelination. Surprisingly, transgenic neuronal overexpression of full-length NRG1 type III promotes hypermyelination also in BACE1 null mutant mice. Moreover, NRG1 processing is impaired but not abolished in BACE1 null mutants. Thus, BACE1 is not essential for the activation of NRG1 type III to promote myelination. Taken together, these findings suggest that multiple neuronal proteases collectively regulate NRG1 processing. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Viktorija Velanac
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shin YK, Jang SY, Lee HK, Jung J, Suh DJ, Seo SY, Park HT. Pathological adaptive responses of Schwann cells to endoplasmic reticulum stress in bortezomib-induced peripheral neuropathy. Glia 2011; 58:1961-76. [PMID: 20830808 DOI: 10.1002/glia.21065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bortezomib, a proteasome inhibitor, has been considered as a promising anticancer drug in the treatment of recurrent multiple myeloma and some solid tumors. The bortezomib-induced peripheral neuropathy (BIPN) is a prominent cause of dose-limiting toxicities after bortezomib treatment. In this study, we found that BIPN in a mouse model is characterized by acute but transient endoplasmic reticulum (ER) damages to Schwann cells. These damaged Schwann cells exhibit abnormal outcomes from healing processes such as the myelination of Remak bundles. A morphometric analysis of polymyelinated Remak bundles revealed that the pathological myelination was not related to the axonal parameters that regulate the normal myelination process during development. In addition, demyelinating macrophages were focally infiltrated within endoneurium of the sciatic nerve. To identify the mechanism underlying these pathologies, we applied a gene microarray analysis to bortezomib-treated primary Schwann cells and verified the changes of several gene expression in bortezomib-treated sciatic nerves. The analysis showed that bortezomib-induced ER stress was accompanied by the activation of several protective molecular chaperones and the down-regulation of myelin gene expression. ER stress inducers such as thapsigargin and bredelfin A also suppressed the mRNA expression of myelin gene P0 at transcriptional levels. In addition, the expression of chemokines such as the macrophage chemoattractants Ccl3 and Cxcl2 was significantly increased in Schwann cells in response to bortezomib and ER stress inducers. Taken together, these observations suggest that the pathological adaptive responses of Schwann cells to bortezomib-induced ER stress may, in part, participate in the development of BIPN.
Collapse
Affiliation(s)
- Yoon Kyung Shin
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Danovi D, Cremona CA, Machado-da-Silva G, Basu S, Noon LA, Parrinello S, Lloyd AC. A genetic screen for anchorage-independent proliferation in mammalian cells identifies a membrane-bound neuregulin. PLoS One 2010; 5:e11774. [PMID: 20668675 PMCID: PMC2909903 DOI: 10.1371/journal.pone.0011774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022] Open
Abstract
Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT) are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF), a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy.
Collapse
Affiliation(s)
- Davide Danovi
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Catherine A. Cremona
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Gisela Machado-da-Silva
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Sreya Basu
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Luke A. Noon
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Simona Parrinello
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
| | - Alison C. Lloyd
- MRC Laboratory for Molecular Cell Biology and The UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|