1
|
Lorenzon P, Antos K, Tripathi A, Vedin V, Berghard A, Medini P. In vivo spontaneous activity and coital-evoked inhibition of mouse accessory olfactory bulb output neurons. iScience 2023; 26:107545. [PMID: 37664596 PMCID: PMC10470370 DOI: 10.1016/j.isci.2023.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Little is known about estrous effects on brain microcircuits. We examined the accessory olfactory bulb (AOB) in vivo, in anesthetized naturally cycling females, as model microcircuit receiving coital somatosensory information. Whole-cell recordings demonstrate that output neurons are relatively hyperpolarized in estrus and unexpectedly fire high frequency bursts of action potentials. To mimic coitus, a calibrated artificial vagino-cervical stimulation (aVCS) protocol was devised. aVCS evoked stimulus-locked local field responses in the interneuron layer independent of estrous stage. The response is sensitive to α1-adrenergic receptor blockade, as expected since aVCS increases norepinephrine release in AOB. Intriguingly, only in estrus does aVCS inhibit AOB spike output. Estrus-specific output reduction coincides with prolonged aVCS activation of inhibitory interneurons. Accordingly, in estrus the AOB microcircuit sets the stage for coital stimulation to inhibit the output neurons, possibly via high frequency bursting-dependent enhancement of reciprocal synapse efficacy between inter- and output neurons.
Collapse
Affiliation(s)
- Paolo Lorenzon
- Department of Integrative Medical Biology, Umeå University, SE90187 Umeå, Sweden
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, SE90187 Umeå, Sweden
| | - Anushree Tripathi
- Department of Integrative Medical Biology, Umeå University, SE90187 Umeå, Sweden
| | - Viktoria Vedin
- Department of Molecular Biology, Umeå University, SE90187 Umeå, Sweden
| | - Anna Berghard
- Department of Molecular Biology, Umeå University, SE90187 Umeå, Sweden
| | - Paolo Medini
- Department of Integrative Medical Biology, Umeå University, SE90187 Umeå, Sweden
| |
Collapse
|
2
|
Synchronous Infra-Slow Oscillations Organize Ensembles of Accessory Olfactory Bulb Projection Neurons into Distinct Microcircuits. J Neurosci 2020; 40:4203-4218. [PMID: 32312886 PMCID: PMC7244196 DOI: 10.1523/jneurosci.2925-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo. We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity. SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo. Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.
Collapse
|
3
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Zylbertal A, Yarom Y, Wagner S. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study. Front Comput Neurosci 2017; 11:85. [PMID: 28970791 PMCID: PMC5609115 DOI: 10.3389/fncom.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 12/02/2022] Open
Abstract
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel
| |
Collapse
|
5
|
Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. J Neurosci 2016; 36:3127-44. [PMID: 26985025 DOI: 10.1523/jneurosci.2520-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The accessory olfactory system controls social and sexual behavior. However, key aspects of sensory signaling along the accessory olfactory pathway remain largely unknown. Here, we investigate patterns of spontaneous neuronal activity in mouse accessory olfactory bulb mitral cells, the direct neural link between vomeronasal sensory input and limbic output. Both in vitro and in vivo, we identify a subpopulation of mitral cells that exhibit slow stereotypical rhythmic discharge. In intrinsically rhythmogenic neurons, these periodic activity patterns are maintained in absence of fast synaptic drive. The physiological mechanism underlying mitral cell autorhythmicity involves cyclic activation of three interdependent ionic conductances: subthreshold persistent Na(+) current, R-type Ca(2+) current, and Ca(2+)-activated big conductance K(+) current. Together, the interplay of these distinct conductances triggers infraslow intrinsic oscillations with remarkable periodicity, a default output state likely to affect sensory processing in limbic circuits. SIGNIFICANCE STATEMENT We show for the first time that some rodent accessory olfactory bulb mitral cells-the direct link between vomeronasal sensory input and limbic output-are intrinsically rhythmogenic. Driven by ≥ 3 distinct interdependent ionic conductances, infraslow intrinsic oscillations show remarkable periodicity both in vitro and in vivo. As a novel default state, infraslow autorhythmicity is likely to affect limbic processing of pheromonal information.
Collapse
|
6
|
Zylbertal A, Kahan A, Ben-Shaul Y, Yarom Y, Wagner S. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells. PLoS Biol 2015; 13:e1002319. [PMID: 26674618 PMCID: PMC4684409 DOI: 10.1371/journal.pbio.1002319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. An experimental and computational study reveals a novel mechanism for persistent activity of neurons in response to transient stimulation. Instead of involving feedback mechanisms, it relies on slow changes in intracellular sodium ion concentration, leading to prolonged calcium-dependent inward current. The accessory olfactory system is essential for chemical communication in animals during social interactions. During this process, the principle cells of the accessory olfactory bulb (AOB) may respond to transient stimulation with prolonged activity, sometimes lasting for minutes—a property known as persistent activity. This property, which has been observed in other brain areas, is usually attributed to positive feedback mechanisms either at the cellular or the network level. Here, we show how persistent activity can emerge without feedback, relying on slow changes in internal ionic concentrations, which keep a record of past neuronal activity for long periods of time. We used a combined computational and experimental approach to show that the complex interaction between various ions, their extrusion mechanisms, and the membrane potential leads to stimulus-dependent persistent activity in the AOB. The same mechanism may apply to other neuronal types in various brain regions.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
- * E-mail:
| | - Anat Kahan
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yoram Ben-Shaul
- School of Medicine, Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, Hebrew University and the Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Shpak G, Zylbertal A, Wagner S. Transient and sustained afterdepolarizations in accessory olfactory bulb mitral cells are mediated by distinct mechanisms that are differentially regulated by neuromodulators. Front Cell Neurosci 2015; 8:432. [PMID: 25642164 PMCID: PMC4294165 DOI: 10.3389/fncel.2014.00432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022] Open
Abstract
Social interactions between mammalian conspecifics rely heavily on molecular communication via the main and accessory olfactory systems. These two chemosensory systems show high similarity in the organization of information flow along their early stages: social chemical cues are detected by the sensory neurons of the main olfactory epithelium and the vomeronasal organ. These neurons then convey sensory information to the main (MOB) and accessory (AOB) olfactory bulbs, respectively, where they synapse upon mitral cells that project to higher brain areas. Yet, the functional difference between these two chemosensory systems remains unclear. We have previously shown that MOB and AOB mitral cells exhibit very distinct intrinsic biophysical properties leading to different types of information processing. Specifically, we found that unlike MOB mitral cells, AOB neurons display persistent firing responses to strong stimuli. These prolonged responses are mediated by long-lasting calcium-activated non-selective cationic current (Ican). In the current study we further examined the firing characteristics of these cells and their modulation by several neuromodulators. We found that AOB mitral cells display transient depolarizing afterpotentials (DAPs) following moderate firing. These DAPs are not found in MOB mitral cells that show instead robust hyperpolarizing afterpotentials. Unlike Ican, the DAPs of AOB mitral cells are activated by low levels of intracellular calcium and are relatively insensitive to flufenamic acid. Moreover, the cholinergic agonist carbachol exerts opposite effects on the persistent firing and DAPs of AOB mitral cells. We conclude that these phenomena are mediated by distinct biophysical mechanisms that may serve to mediate different types of information processing in the AOB at distinct brain states.
Collapse
Affiliation(s)
- Guy Shpak
- Department of Psychiatry, Erasmus University Medical Center (Erasmus MC) Rotterdam, Netherlands ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | - Asaph Zylbertal
- Department of Neurobiology, Institute for Life Sciences, Edmond and Lily Safra Center for Brain Sciences, Hebrew University Jerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
8
|
Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. PLoS One 2013; 8:e64170. [PMID: 23691163 PMCID: PMC3655022 DOI: 10.1371/journal.pone.0064170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 04/12/2013] [Indexed: 12/02/2022] Open
Abstract
Cholecystokinin (CCK) is widely distributed in the brain as a sulfated octapeptide (CCK-8S). In the olfactory bulb, CCK-8S is concentrated in two laminae: an infraglomerular band in the external plexiform layer, and an inframitral band in the internal plexiform layer (IPL), corresponding to somata and terminals of superficial tufted cells with intrabulbar projections linking duplicate glomerular maps of olfactory receptors. The physiological role of CCK in this circuit is unknown. We made patch clamp recordings of CCK effects on mitral cell spike activity in mouse olfactory bulb slices, and applied immunohistochemistry to localize CCKB receptors. In cell-attached recordings, mitral cells responded to 300 nM –1 µM CCK-8S by spike excitation, suppression, or mixed excitation-suppression. Antagonists of GABAA and ionotropic glutamate receptors blocked suppression, but excitation persisted. Whole-cell recordings revealed that excitation was mediated by a slow inward current, and suppression by spike inactivation or inhibitory synaptic input. Similar responses were elicited by the CCKB receptor-selective agonist CCK-4 (1 µM). Excitation was less frequent but still occurred when CCKB receptors were blocked by LY225910, or disrupted in CCKB knockout mice, and was also observed in CCKA knockouts. CCKB receptor immunoreactivity was detected on mitral and superficial tufted cells, colocalized with Tbx21, and was absent from granule cells and the IPL. Our data indicate that CCK excites mitral cells postsynaptically, via both CCKA and CCKB receptors. We hypothesize that extrasynaptic CCK released from tufted cell terminals in the IPL may diffuse to and directly excite mitral cell bodies, creating a positive feedback loop that can amplify output from pairs of glomeruli receiving sensory inputs encoded by the same olfactory receptor. Dynamic plasticity of intrabulbar projections suggests that this could be an experience-dependent amplification mechanism for tuning and optimizing olfactory bulb signal processing in different odor environments.
Collapse
|
9
|
Zibman S, Shpak G, Wagner S. Distinct intrinsic membrane properties determine differential information processing between main and accessory olfactory bulb mitral cells. Neuroscience 2011; 189:51-67. [PMID: 21627980 DOI: 10.1016/j.neuroscience.2011.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 11/19/2022]
Abstract
Most mammals rely on semiochemicals, such as pheromones, to mediate their social interactions. Recent studies found that semiochemicals are perceived by at least two distinct chemosensory systems: the main and accessory olfactory systems, which share many molecular, cellular, and anatomical features. Nevertheless, the division of labor between these systems remained unclear. Previously we suggested that the two olfactory systems differ in the way they process sensory information. In this study we found that mitral cells of the main and accessory olfactory bulbs, the first brain stations of both systems, display markedly different passive and active intrinsic properties which permit distinct types of information processing. Moreover, we found that accessory olfactory bulb mitral cells are divided into three neuronal sub-populations with distinct firing properties. These neuronal sub-populations can be integrated in a simulated neuronal network that neglects episodic stimuli while amplifying reaction to long-lasting signals.
Collapse
Affiliation(s)
- S Zibman
- Institute for Life Sciences and Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
10
|
Ma J, Lowe G. Correlated firing in tufted cells of mouse olfactory bulb. Neuroscience 2010; 169:1715-38. [PMID: 20600657 PMCID: PMC2921928 DOI: 10.1016/j.neuroscience.2010.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 01/04/2023]
Abstract
Temporally correlated spike discharges are proposed to be important for the coding of olfactory stimuli. In the olfactory bulb, correlated spiking is known in two classes of output neurons, the mitral cells and external tufted cells. We studied a third major class of bulb output neurons, the middle tufted cells, analyzing their bursting and spike timing correlations, and their relation to mitral cells. Using patch-clamp and fluorescent tracing, we recorded spontaneous spiking from tufted-tufted or mitral-tufted cell pairs with visualized dendritic projections in mouse olfactory bulb slices. We found peaks in spike cross-correlograms indicating correlated activity on both fast (peak width 1-50 ms) and slow (peak width>50 ms) time scales, only in pairs with convergent glomerular projections. Coupling appeared tighter in tufted-tufted pairs, which showed correlated firing patterns and smaller mean width and lag of narrow peaks. Some narrow peaks resolved into 2-3 sub-peaks (width 1-12 ms), indicating multiple modes of fast correlation. Slow correlations were related to bursting activity, while fast correlations were independent of slow correlations, occurring in both bursting and non-bursting cells. The AMPA receptor antagonist NBQX (20 microM) failed to abolish broad or narrow peaks in either tufted-tufted or mitral-tufted pairs, and changes of peak height and width in NBQX were not significantly different from spontaneous drift. Thus, AMPA-receptors are not required for fast and slow spike correlations. Electrical coupling was observed in all convergent tufted-tufted and mitral-tufted pairs tested, suggesting a potential role for gap junctions in concerted firing. Glomerulus-specific correlation of spiking offers a useful mechanism for binding the output signals of diverse neurons processing and transmitting different sensory information encoded by common olfactory receptors.
Collapse
Affiliation(s)
- Jie Ma
- Monell Chemical Senses Center, Philadelphia
| | | |
Collapse
|
11
|
Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc Natl Acad Sci U S A 2010; 107:8525-30. [PMID: 20413724 DOI: 10.1073/pnas.0914794107] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the visualization of NO production using fluorescence in tissue slices of the mouse main olfactory bulb. This discovery was possible through the use of a novel, cell-trappable probe for intracellular nitric oxide detection based on a symmetric scaffold with two NO-reactive sites. Ester moieties installed onto the fluorescent probe are cleaved by intracellular esterases to yield the corresponding negatively charged, cell-impermeable acids. The trappable probe Cu(2)(FL2E) and the membrane-impermeable acid derivative Cu(2)(FL2A) respond rapidly and selectively to NO in buffers that simulate biological conditions, and application of Cu(2)(FL2E) leads to detection of endogenously produced NO in cell cultures and olfactory bulb brain slices.
Collapse
|
12
|
Egger V, Stroh O. Calcium buffering in rodent olfactory bulb granule cells and mitral cells. J Physiol 2009; 587:4467-79. [PMID: 19635818 DOI: 10.1113/jphysiol.2009.174540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the mammalian olfactory bulb, axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between mitral cells (MCs) via reciprocal dendrodendritic synapses. Calcium signals in the GC dendrites and reciprocal spines appear to decay unusually slowly, hence GC calcium handling might contribute to the known asynchronous release at this synapse. By recording fluorescence transients of different Ca(2+)-sensitive dyes at variable concentrations evoked by backpropagating action potentials (APs) and saturating AP trains we extrapolated Ca(2+) dynamics to conditions of zero added buffer for juvenile rat GC apical dendrites and spines and MC lateral dendrites. Resting [Ca(2+)] was at approximately 50 nM in both GC dendrites and spines. The average endogenous GC buffer capacities (kappa(E)) were within a range of 80-90 in the dendrites and 110-140 in the spines. The extrusion rate (gamma) was estimated as 570 s(-1) for dendrites and 870 s(-1) for spines and the decay time constant as approximately 200 ms for both. Single-current-evoked APs resulted in a [Ca(2+)] elevation of approximately 250 nM. Calcium handling in juvenile and adult mouse GCs appeared mostly similar. In MC lateral dendrites, we found AP-mediated [Ca(2+)] elevations of approximately 130 nM with a similar decay to that in GC dendrites, while kappa(E) and gamma were roughly 4-fold higher. In conclusion, the slow GC Ca(2+) dynamics are due mostly to sluggish Ca(2+) extrusion. Under physiological conditions this slow removal may well contribute to delayed release and also feed into other Ca(2+)-dependent mechanisms that foster asynchronous output from the reciprocal spine.
Collapse
Affiliation(s)
- Veronica Egger
- Institut für Physiologie der Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | |
Collapse
|
13
|
Castro JB, Urban NN. Subthreshold glutamate release from mitral cell dendrites. J Neurosci 2009; 29:7023-30. [PMID: 19474329 PMCID: PMC2709214 DOI: 10.1523/jneurosci.5606-08.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/20/2009] [Accepted: 04/02/2009] [Indexed: 11/21/2022] Open
Abstract
The dendrites of a number of neuron types function as presynaptic structures, releasing transmitter after action potentials and dendritic spikes. In this regard, dendrites can function like axons, producing discrete outputs after suprathreshold electrical events. However, as the major site of synaptic inputs, dendrites experience ongoing subthreshold fluctuations in membrane potential, raising the question of whether these subthreshold changes can cause changes in transmitter release. Here, we show that mitral cells of the accessory olfactory bulb release glutamate from their dendrites in response to both subthreshold and suprathreshold stimuli. Whereas subthreshold output was typically low under control conditions, it could be enhanced several fold by pharmacological or endogenous activation of group I metabotropic glutamate receptors. These results indicate that presynaptic dendrites can support two distinct forms of output, and can dynamically regulate how electrical activity is coupled to transmitter release.
Collapse
Affiliation(s)
- Jason B Castro
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
14
|
The organization of feedback projections in a pathway important for processing pheromonal signals. Neuroscience 2009; 161:489-500. [PMID: 19341782 DOI: 10.1016/j.neuroscience.2009.03.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/21/2023]
Abstract
In most of the mammalian sensory systems there are massive cortical feedback projections to early processing stations. The mammalian accessory olfactory system is considered unique in several aspects. It is specialized for processing pheromonal signals and plays a critical role in regulating sociosexual behaviors. Furthermore, pheromonal signals are believed to bypass cortex and reach the hypothalamic behavioral centers after merely three forward projections. Because the organization of the feedback projections in the accessory olfactory system remains largely unclear, the importance of the feedback projections in the processing of pheromonal signals has been ignored. Here we show that in mice the feedback projections from the bed nucleus of stria terminalis (BST) and the vomeronasal amygdala to the accessory olfactory bulb (AOB) are topographically organized and use different neurotransmitters. By retrograde and anterograde tracing, we find that the feedback projection from the BST terminates in the AOB mitral cell layer, whereas that from the amygdala terminates in the AOB granule cell layer. By combining tracing, genetic labeling of GABAergic neurons, and immunostaining against a marker of glutamatergic synapses, we observe that the BST-to-AOB projection is GABAergic whereas the amygdala-to-AOB projection is glutamatergic. In addition, a substantial number of feedback neurons in the amygdala and BST express estrogen receptors. Thus, the accessory olfactory system, like other sensory systems, possesses extensive feedback projections. Moreover, our results suggest that central hormonal cues may modulate the processing of pheromonal signals at early stations through the precisely organized feedback projections.
Collapse
|
15
|
Larriva-Sahd J. The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J Comp Neurol 2008; 510:309-50. [PMID: 18634021 DOI: 10.1002/cne.21790] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The accessory olfactory bulb (AOB) in the adult rat is organized into external (ECL) and internal (ICL) cellular layers separated by the lateral olfactory tract (LOT). The most superficial layer, or vomeronasal nerve layer, is composed of two fiber contingents that distribute in rostral and caudal halves. The second layer, or glomerular layer, is also divided by a conspicuous invagination of the neuropil of the ECL at the junction of the rostral and caudal halves. The ECL contains eight cell types distributed in three areas: a subglomerular area containing juxtaglomerular and superficial short-axon neurons, an intermediate area harboring large principal cells (LPC), or mitral and tufted cells, and a deep area containing dwarf, external granule, polygonal, and round projecting cells. The ICL contains two neuron types: internal granule (IGC) and main accessory cells (MACs). The dendrites and axons of LPCs in the two AOB halves are organized symmetrically with respect to an anatomical plane called linea alba. The LPC axon collaterals may recruit adjacent intrinsic, possibly gamma-aminobutyric acid (GABA)-ergic, neurons that, in turn, interact with the dendrites of the adjacent LPCs. These modules may underlie the process of decoding pheromonal clues. The most rostral ICL contains another neuron group termed interstitial neurons of the bulbi (INBs) that includes both intrinsic and projecting neurons. MACs and INBs share inputs from fiber efferents arising in the main olfactory bulb (MOB) and AOB and send axons to IGCs. Because IGCs are a well-known source of modulatory inputs to LPCs, both MACs and INBs represent a site of convergence of the MOB with the AOB.
Collapse
Affiliation(s)
- Jorge Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Querétaro, CP 76001 Qro., México.
| |
Collapse
|
16
|
Shepherd GM, Chen WR, Willhite D, Migliore M, Greer CA. The olfactory granule cell: from classical enigma to central role in olfactory processing. ACTA ACUST UNITED AC 2007; 55:373-82. [PMID: 17434592 DOI: 10.1016/j.brainresrev.2007.03.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/08/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
The granule cell of the olfactory bulb was first described by Golgi in 1875 and Cajal and his contemporaries in the 1890s as an enigmatic cell without an axon, whose status as a nerve cell was questionable. Insight into its functions began in the 1960s with evidence that it acted as an interneuron to mediate powerful inhibition of mitral cells. The circuit was found to involve dendrodendritic synapses for activation by mitral cell lateral dendrites of the granule cell dendritic spines and inhibition of the same and neighboring mitral cell lateral dendrites. Subsequent studies established the roles of glutamatergic receptors and GABAergic receptors in this circuit. The lateral inhibition is believed to be involved in contrast enhancement between mitral cells responding to different odor molecules. Current studies are analysing how the lateral inhibition can be mediated over arbitrary distances between columns of granule cells through action potential propagation in the mitral cell secondary dendrites. Among other important properties, granule cells undergo neurogenesis from precursor cells throughout adult life. This originally enigmatic cell thus appears to play a critical role in olfactory processing.
Collapse
Affiliation(s)
- Gordon M Shepherd
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
17
|
Zhou Z, Xiong W, Zeng S, Xia A, Shepherd GM, Greer CA, Chen WR. Dendritic excitability and calcium signalling in the mitral cell distal glomerular tuft. Eur J Neurosci 2007; 24:1623-32. [PMID: 17004926 DOI: 10.1111/j.1460-9568.2006.05076.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The processing of odour information starts at the level of the olfactory glomerulus, where the mitral cell distal dendritic tuft not only receives olfactory nerve sensory input but also generates dendrodendritic output to form complicated glomerular synaptic circuits. Analysing the membrane properties and calcium signalling mechanisms in these tiny dendritic branches is crucial for understanding how the glomerular tuft transmits and processes olfactory signals. With the use of two-photon Ca2+ imaging in rat olfactory bulb slices, we found that these distal dendritic branches displayed a significantly larger Ca2+ signal than the soma and primary dendrite trunk. A back-propagating action potential was able to trigger a Ca2+ increase throughout the entire glomerular tuft, indicative of the presence of voltage-gated Ca2+ conductances in all branches at different levels of ramification. In response to a train of action potentials evoked at 60 Hz from the soma, the tuft Ca2+ signal increased linearly with the number of action potentials, suggesting that these glomerular branches were able to support repetitive penetration of Na+ action potentials. When a strong olfactory nerve excitatory input was paired with an inhibition from mitral cell basal dendrites, a small spike-like fast prepotential was revealed at both the soma and distal primary dendrite trunk. Corresponding to this fast prepotential was a Ca2+ increase confined locally within the glomerular tuft. In summary, the mitral cell distal dendritic tuft possesses both Na+ and Ca2+ voltage-dependent conductances which can mediate glomerular Ca2+ responsiveness critical for dendrodendritic output and synaptic plasticity.
Collapse
Affiliation(s)
- Zhishang Zhou
- Yale University Department of Neurobiology, 333 Cedar Street, SHM-C303, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ma J, Lowe G. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb. Neuroscience 2006; 144:1094-108. [PMID: 17156930 PMCID: PMC2094052 DOI: 10.1016/j.neuroscience.2006.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 11/27/2022]
Abstract
Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that AMPA receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > approximately 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co(2+) ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd(2+) and (+/-)-4-(4-aminophenyl)-2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools: postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses.
Collapse
Affiliation(s)
- J Ma
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, USA
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Patients with advanced head and neck cancer are being treated with chemo-radiotherapy, and life is being prolonged, with or without persistent disease, for longer than was previously. Hypercalcaemia may present in patients with advanced or disseminated head and neck cancer, and, as such, these patients may present to a larger variety of clinicians for advice concerning their symptoms and illness. Modes of presentation of hypercalcaemia and treatment strategies are reviewed. RECENT FINDINGS There were previously few large series of head and neck cancer patients diagnosed with hypercalcaemia, which may or may not have been related to their cancer being treated. Investigations, by way of blood/serum calcium level, may identify such patients. Patients with cancer-related hypercalcaemia have a poor prognosis, but many may respond temporarily to treatment when offered, with an improvement of their quality of life and death. SUMMARY Hypercalcaemia should and must be considered in all patients who have or possibly have a diagnosis of a head and neck cancer and who present unwell with symptoms of fatigue, lethargy and somnolence. Investigation must include serum calcium (corrected for serum albumin binding) and parathyroid hormone level. Patients may be treated by a combination of rehydration and bisulphonate therapy until the serum calcium is reduced to a level below 3 mmol/l. The majority of patients diagnosed with hypercalcaemia due to head and neck malignancy die of their diseases in the short term, but some may enjoy a prolongation of life with reasonable quality if diagnosed and treated aggressively.
Collapse
Affiliation(s)
- Patrick J Bradley
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital, Nottingham, UK.
| |
Collapse
|
20
|
Abstract
The mammalian accessory olfactory system is critical for the detection and identification of pheromones and the representation of complex stimuli including sex, genetic relatedness, and individual identity. Mitral cells, the principal cells of the accessory olfactory bulb (AOB), receive monosynaptic input from the sensory periphery and already show highly specific response properties, firing selectively for combinations of genetic markers and gender-specific cues. Vomeronasal sensory neuron axons form synapses onto distal tuft-like branches of mitral cell primary dendrites. We have studied dendritic excitability and synaptic integration in AOB mitral cell dendrites, and we show that dendrites of accessory olfactory bulb mitral cells support action potential propagation and can fire regenerative spike-like events that are likely to contribute to the integration of inputs to these cells. These tuft spikes may be important for the specificity of AOB mitral cell responses.
Collapse
Affiliation(s)
- Nathaniel N Urban
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
21
|
Yuan Q, Knöpfel T. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft. J Neurophysiol 2005; 95:2417-26. [PMID: 16319202 DOI: 10.1152/jn.00964.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular interactions is not clear. We used patch-clamp electrophysiology combined with whole field or two-photon Ca2+ imaging to study ON stimulation-induced Ca2+ signaling at the level of individual terminal branches of the MC primary dendrite in mice. ON-evoked subthreshold excitatory postsnaptic potentials induced Ca2+ transients in the MC tuft dendrites that were spatially inhomogeneous, exhibiting discrete "hot spots." In contrast, Ca2+ transients induced by backpropagating action potentials occurred throughout the dendritic tuft, being larger in the thin terminal dendrites than in the base of the tuft. Single ON stimulation-induced Ca2+ transients were depressed by the NMDA receptor antagonist D-aminophosphonovaleric acid (D-APV), increased with increasing stimulation intensity, and typically showed a prolonged rising phase. The synaptically induced Ca2+ signals reflect, at least in part, dendrodendritic interactions that support intraglomerular coupling of MCs and generation of an output that is common to all MCs associated with one glomerulus.
Collapse
Affiliation(s)
- Q Yuan
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, Saitama, Japan
| | | |
Collapse
|