1
|
Isaac AR, Chauvet MG, Lima-Filho R, Wagner BDA, Caroli BG, Leite REP, Suemoto CK, Nunes PV, De Felice FG, Ferreira ST, Lourenco MV. Defective regulation of the eIF2-eIF2B translational axis underlies depressive-like behavior in mice and correlates with major depressive disorder in humans. Transl Psychiatry 2024; 14:397. [PMID: 39349438 PMCID: PMC11442801 DOI: 10.1038/s41398-024-03128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Major depressive disorder (MDD) is a significant cause of disability in adults worldwide. However, the underlying causes and mechanisms of MDD are not fully understood, and many patients are refractory to available therapeutic options. Impaired control of brain mRNA translation underlies several neurodevelopmental and neurodegenerative conditions, including autism spectrum disorders and Alzheimer's disease (AD). Nonetheless, a potential role for mechanisms associated with impaired translational control in depressive-like behavior remains elusive. A key pathway controlling translation initiation relies on the phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α-P) which, in turn, blocks the guanine exchange factor activity of eIF2B, thereby reducing global translation rates. Here we report that the expression of EIF2B5 (which codes for eIF2Bε, the catalytic subunit of eIF2B) is reduced in postmortem MDD prefrontal cortex from two distinct human cohorts and in the frontal cortex of social isolation-induced depressive-like behavior model mice. Further, pharmacological treatment with anisomycin or with salubrinal, an inhibitor of the eIF2α phosphatase GADD34, induces depressive-like behavior in adult C57BL/6J mice. Salubrinal-induced depressive-like behavior is blocked by ISRIB, a compound that directly activates eIF2B regardless of the phosphorylation status of eIF2α, suggesting that increased eIF2α-P promotes depressive-like states. Taken together, our results suggest that impaired eIF2-associated translational control may participate in the pathophysiology of MDD, and underscore eIF2-eIF2B translational axis as a potential target for the development of novel approaches for MDD and related mood disorders.
Collapse
Affiliation(s)
- Alinny R Isaac
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Multidisciplinary Research Core in Biology (NUMPEX-BIO), Campus Duque de Caxias Professor Geraldo Cidade, Federal University of Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Mariana G Chauvet
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ricardo Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz de A Wagner
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno G Caroli
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Division of Geriatrics, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Paula Villela Nunes
- Department of Psychiatry, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen's University, Kingston, ON, Canada
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Al-Smadi S, Padros A, Goss GG, Dickson CT. The translational inhibitor and amnestic agent emetine also suppresses ongoing hippocampal neural activity similarly to other blockers of protein synthesis. Hippocampus 2024; 34:380-392. [PMID: 38785391 DOI: 10.1002/hipo.23611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The consolidation of memory is thought to ultimately depend on the synthesis of new proteins, since translational inhibitors such as anisomycin and cycloheximide adversely affect the permanence of long-term memory. However, when applied directly in brain, these agents also profoundly suppress neural activity to an extent that is directly correlated to the degree of protein synthesis inhibition caused. Given that neural activity itself is likely to help mediate consolidation, this finding is a serious criticism of the strict de novo protein hypothesis of memory. Here, we test the neurophysiological effects of another translational inhibitor, emetine. Unilateral intra-hippocampal infusion of emetine suppressed ongoing local field and multiunit activity at ipsilateral sites as compared to the contralateral hippocampus in a fashion that was positively correlated to the degree of protein synthesis inhibition as confirmed by autoradiography. This suppression of activity was also specific to the circumscribed brain region in which protein synthesis inhibition took place. These experiments provide further evidence that ongoing protein synthesis is necessary and fundamental for neural function and suggest that the disruption of memory observed in behavioral experiments using translational inhibitors may be due, in large part, to neural suppression.
Collapse
Affiliation(s)
- S Al-Smadi
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - A Padros
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - G G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - C T Dickson
- Department of Physiology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Liang X, Miao Y, Tong X, Chen J, Liu H, He Z, Liu A, Hu Z. Dental pulp mesenchymal stem cell-derived exosomes inhibit neuroinflammation and microglial pyroptosis in subarachnoid hemorrhage via the miRNA-197-3p/FOXO3 axis. J Nanobiotechnology 2024; 22:426. [PMID: 39030593 PMCID: PMC11264715 DOI: 10.1186/s12951-024-02708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe stroke subtype that lacks effective treatment. Exosomes derived from human dental pulp stem cells (DPSCs) are a promising acellular therapeutic strategy for neurological diseases. However, the therapeutic effects of DPSC-derived exosomes (DPSC-Exos) on SAH remain unknown. In this study, we investigated the therapeutic effects and mechanisms of action of DPSC-Exos in SAH. MATERIALS AND METHODS SAH was established using 120 male Sprague-Dawley rats. One hour after SAH induction, DPSC-Exos were administered via tail vein injection. To investigate the effect of DPSC-Exos, SAH grading, short-term and long-term neurobehavioral assessments, brain water content, western blot (WB), immunofluorescence staining, Nissl staining, and HE staining were performed. The role of miR-197-3p/FOXO3 in regulating pyroptosis was demonstrated through miRNA sequencing, bioinformatics analysis, and rescue experiments. The SAH model in vitro was established by stimulating BV2 cells with hemoglobin (Hb) and the underlying mechanism of DPSC-Exos was investigated through WB and Hoechst/PI staining. RESULTS The expressions of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were increased after SAH. DPSC-Exos alleviated brain edema and neuroinflammation by inhibiting the expression of FOXO3 and reducing NLRP3 inflammasome activation, leading to improved neurobehavioral functions at 24 h after SAH. In vitro, the expression of the NLRP3 inflammasome components (NLRP3 and caspase1-p20), GSDMD-N, and IL-18 was inhibited in BV2 cells pretreated with DPSC-Exos. Importantly, DPSC-Exos overexpressing miR-197-3p had a more obvious protective effect than those from NC-transfected DPSCs, while those from DPSCs transfected with the miR-197-3p inhibitor had a weaker protective effect. Functional studies indicated that miR-197-3p bound to the 3'-untranslated region of FOXO3, inhibiting its transcription. Furthermore, the overexpression of FOXO3 reversed the protective effects of miR-197-3p. CONCLUSIONS DPSC-Exos inhibited activation of the NLRP3 inflammasome and related cytokine release via the miR-197-3p/FOXO3 pathway, alleviated neuroinflammation, and inhibited microglial pyroptosis. These findings suggest that using DPSC-Exos is a promising therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Xin Liang
- Department of Neurosurgery, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Neurosurgery, Affiliated Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yan Miao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Tong
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Cerebrovascular Disease Department, Neurological Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jigang Chen
- Department of burn and plastic surgery, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hongyi Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Zilong He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China.
| | - Zhiqiang Hu
- Department of Neurosurgery, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
4
|
Tzeplaeff L, Seguin J, Le Gras S, Megat S, Cosquer B, Plassard D, Dieterlé S, Paiva I, Picchiarelli G, Decraene C, Alcala-Vida R, Cassel JC, Merienne K, Dupuis L, Boutillier AL. Mutant FUS induces chromatin reorganization in the hippocampus and alters memory processes. Prog Neurobiol 2023; 227:102483. [PMID: 37327984 DOI: 10.1016/j.pneurobio.2023.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France; Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Jonathan Seguin
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Stéphanie Le Gras
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Salim Megat
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France
| | - Brigitte Cosquer
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Damien Plassard
- Université de Strasbourg, CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | | | - Isabel Paiva
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | | | - Charles Decraene
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Rafael Alcala-Vida
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Karine Merienne
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France; CNRS, UMR 7364, Strasbourg 67000, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S1118, Strasbourg, France.
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France.
| |
Collapse
|
5
|
Sun W, Chen X, Mei Y, Yang Y, Li X, An L. Prelimbic proBDNF Facilitates Retrieval-Dependent Fear Memory Destabilization by Regulation of Synaptic and Neural Functions in Juvenile Rats. Mol Neurobiol 2022; 59:4179-4196. [PMID: 35501631 DOI: 10.1007/s12035-022-02849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Fear regulation changes as a function of the early life is a key developmental period for the continued maturation of fear neural circuitry. The mechanisms of fear retrieval-induced reconsolidation have been investigated but remain poorly understood. The involvement of prelimbic proBDNF in fear memory extinction and its mediated signaling have been reported previously. Specifically, blocking the proBDNF/p75NTR pathway during the postnatal stage disrupts synaptic development and neuronal activity in adulthood. Given the inherent high expression of proBDNF during the juvenile period, we tested whether the prelimbic proBDNF regulated synaptic and neuronal functions allowing to influencing retrieval-dependent memory processing. By examining the freezing behavior of auditory fear-conditioned rats, we found the high level of the prelimbic proBDNF in juvenile rats enhanced the destabilization of the retrieval-dependent weak but not strong fear memory through activating p75NTR-GluN2B signaling. This modification of fear memory traces was attributed to the increment in the proportion of thin-type spine and promotion in synaptic function, as evidenced by the facilitation of NMDA-mediated EPSCs and GluN2B-dependent synaptic depression at the prelimbic projection. Furthermore, the strong prelimbic theta- and gamma-oscillation coupling predicted the suppressive effect of juvenile proBDNF on the recall of postretrieval memory. Our results critically emphasize the importance of developmental proBDNF for modification of retrieval-dependent memory and provide a potential critical targeting to inhibit threaten memories associated with neurodevelopment disorders.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Shrestha P, Klann E. Spatiotemporally resolved protein synthesis as a molecular framework for memory consolidation. Trends Neurosci 2022; 45:297-311. [PMID: 35184897 PMCID: PMC8930706 DOI: 10.1016/j.tins.2022.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/25/2023]
Abstract
De novo protein synthesis is required for long-term memory consolidation. Dynamic regulation of protein synthesis occurs via a complex interplay of translation factors and modulators. Many components of the protein synthesis machinery have been targeted either pharmacologically or genetically to establish its requirement for memory. The combination of ligand/light-gating and genetic strategies, that is, chemogenetics and optogenetics, has begun to reveal the spatiotemporal resolution of protein synthesis in specific cell types during memory consolidation. This review summarizes current knowledge of the macroscopic and microscopic neural substrates for protein synthesis in memory consolidation. In addition, we highlight future directions for determining the localization and timing of de novo protein synthesis for memory consolidation with tools that permit unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Prerana Shrestha
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10012, USA; NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
7
|
Huff AE, McGraw SD, Winters BD. Muscarinic (M 1 ) cholinergic receptor activation within the dorsal hippocampus promotes destabilization of strongly encoded object location memories. Hippocampus 2021; 32:55-66. [PMID: 34881482 DOI: 10.1002/hipo.23396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/06/2021] [Accepted: 11/28/2021] [Indexed: 11/09/2022]
Abstract
Following the initial consolidation process, memories can become reactivated by exposure to a reminder of the original learning event. This can lead to the memory becoming destabilized and vulnerable to disruption or other forms of modification. The memory must then undergo the protein-synthesis dependent process of reconsolidation in order to be retained. However, older and/or stronger memories resist destabilization, but can become labile when reactivated in the presence of salient novelty. We have implicated the neurotransmitter acetylcholine, acting at M1 muscarinic cholinergic receptors (mAChRs) within perirhinal cortex (PRh), in novelty-induced destabilization of remote object memories. It remains unclear, however, whether mAChRs are involved in destabilization of other forms of memory. We hypothesized that the role of M1 mAChRs previously demonstrated for PRh-dependent object memory would extend to hippocampus-dependent spatial memory. Using the object location (OL) task, which relies on the dorsal hippocampus (dHPC), we showed that (a) reactivation-dependent reconsolidation of OL memories requires protein synthesis within the dHPC; (b) destabilization of relatively weak OL memories depends on M1 mAChR activation within the dHPC; (c) salient novelty during reactivation promotes destabilization of resistant strongly encoded OL memories; (d) novelty-induced destabilization of strong OL memories requires activation of mAChRs within the dHPC; and (e) M1 mAChR activation within the dHPC in the absence of novelty during memory reactivation mimics the effect of novelty, destabilizing strongly encoded OL memories. These results implicate ACh acting at M1 mAChRs in the destabilization of dHPC-dependent spatial memories, demonstrating generalizability of this cholinergic function beyond memory for object identity. These findings therefore enhance our understanding of the dynamics of long-term memory storage and suggest implications for the treatment of human conditions such as Alzheimer's disease and aging, which are characterized by behavioral and mnemonic inflexibility.
Collapse
Affiliation(s)
- Andrew E Huff
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Shelby D McGraw
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Coullery R, Pacchioni AM, Rosso SB. Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway. Reprod Toxicol 2020; 96:390-398. [PMID: 32805371 DOI: 10.1016/j.reprotox.2020.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Glyphosate-based formulations are the most popular herbicide used around the world. These herbicides are widely applied in agriculture to control weeds on genetically modified crops. Although there is much evidence showing that glyphosate-based herbicides induce toxic effect on reproductive and hepatic systems, and also cause oxidative damage on cells, studies from recent years revealed that the nervous system may represent a key target for their toxicity. In the present work, we evaluated the effect of glyphosate (without adjuvants) in neonate rats after gestational exposure. Particularly, we examined whether glyphosate during gestation affected the nervous system function at early development. Pregnant Wistar rats were treated with 24 or 35 mg/kg of pure glyphosate every 48 h and neurobehavioral studies were performed. Our results indicated that gestational exposure to glyphosate induced changes in reflexes development, motor activity and cognitive function, in a dose-dependent manner. To go further, we evaluated whether prenatal exposure to glyphosate affected the Ca+2-mediated Wnt non-canonical signaling pathway. Results indicated that embryos exposed to glyphosate showed an inhibition of Wnt5a-CaMKII signaling pathway, an essential cascade controlling the formation and integration of neural circuits. Taken together, these findings suggest that gestational exposure to glyphosate leads to a downregulation of Wnt/Ca+2 pathway that could induce a developmental neurotoxicity evidenced by deficits at behavioral and cognitive levels in rat pups.
Collapse
Affiliation(s)
- Romina Coullery
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Alejandra M Pacchioni
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Silvana B Rosso
- Área Toxicología, Departamento de Ciencias de los Alimentos y Medio Ambiente, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina.
| |
Collapse
|
9
|
Zuo G, Zhang T, Huang L, Araujo C, Peng J, Travis Z, Okada T, Ocak U, Zhang G, Tang J, Lu X, Zhang JH. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats. Free Radic Biol Med 2019; 143:441-453. [PMID: 31493504 PMCID: PMC6848789 DOI: 10.1016/j.freeradbiomed.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress and neuronal apoptosis play important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). The activation of TGR5, a novel membrane-bound bile acid receptor, possesses anti-oxidative stress and anti-apoptotic effects in hepatobiliary disease and kidney disease. The present study aimed to explore the neuroprotective effect of TGR5 activation against EBI after SAH and the potential underlying mechanisms. METHODS The endovascular perforation model of SAH was performed on 199 Sprague Dawley rats to investigate the beneficial effects of TGR5 activation after SAH. INT-777, a specific synthetic TGR5 agonist, was administered intranasally at 1 h after SAH induction. TGR5 CRISPR and ALDH2 CRISPR were administered intracerebroventricularly at 48 h before SAH to illuminate potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, TUNEL staining, Fluoro-Jade C staining, Nissl staining, immunofluorescence staining, and western blots were performed at 24 h after SAH. RESULTS The expressions of endogenous TGR5 and ALDH2 gradually increased and peaked at 24 h after SAH. TGR5 was expressed primarily in neurons, as well as in astrocytes and microglia. The activation of TGR5 with INT-777 significantly improved the short-term and long-term neurological deficits, accompanied by reduced the oxidative stress and neuronal apoptosis at 24 h after SAH. Moreover, INT-777 treatment significantly increased the expressions of TGR5, cAMP, phosphorylated PKCε, ALDH2, HO-1, and Bcl-2, while downregulated the expressions of 4-HNE, Bax, and Cleaved Caspase-3. TGR5 CRISPR and ALDH2 CRISPR abolished the neuroprotective effects of TGR5 activation after SAH. CONCLUSIONS In summary, the activation of TGR5 with INT-777 attenuated oxidative stress and neuronal apoptosis via the cAMP/PKCε/ALDH2 signaling pathway after SAH in rats. Furthermore, TGR5 may serve as a novel therapeutic target to ameliorate EBI after SAH.
Collapse
Affiliation(s)
- Gang Zuo
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Camila Araujo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Zachary Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiaojun Lu
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
10
|
Scavuzzo CJ, LeBlancq MJ, Nargang F, Lemieux H, Hamilton TJ, Dickson CT. The amnestic agent anisomycin disrupts intrinsic membrane properties of hippocampal neurons via a loss of cellular energetics. J Neurophysiol 2019; 122:1123-1135. [PMID: 31291154 PMCID: PMC6766744 DOI: 10.1152/jn.00370.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nearly axiomatic idea that de novo protein synthesis is necessary for long-term memory consolidation is based heavily on behavioral studies using translational inhibitors such as anisomycin. Although inhibiting protein synthesis has been shown to disrupt the expression of memory, translational inhibitors also have been found to profoundly disrupt basic neurobiological functions, including the suppression of ongoing neural activity in vivo. In the present study, using transverse hippocampal brain slices, we monitored the passive and active membrane properties of hippocampal CA1 pyramidal neurons using intracellular whole cell recordings during a brief ~30-min exposure to fast-bath-perfused anisomycin. Anisomycin suppressed protein synthesis to 46% of control levels as measured using incorporation of radiolabeled amino acids and autoradiography. During its application, anisomycin caused a significant depolarization of the membrane potential, without any changes in apparent input resistance or membrane time constant. Anisomycin-treated neurons also showed significant decreases in firing frequencies and spike amplitudes, and showed increases in spike width across spike trains, without changes in spike threshold. Because these changes indicated a loss of cellular energetics contributing to maintenance of ionic gradients across the membrane, we confirmed that anisomycin impaired mitochondrial function by reduced staining with 2,3,5-triphenyltetrazolium chloride and also impaired cytochrome c oxidase (complex IV) activity as indicated through high-resolution respirometry. These findings emphasize that anisomycin-induced alterations in neural activity and metabolism are a likely consequence of cell-wide translational inhibition. Critical reevaluation of studies using translational inhibitors to promote the protein synthesis dependent idea of long-term memory is absolutely necessary.NEW & NOTEWORTHY Memory consolidation is thought to be dependent on the synthesis of new proteins because translational inhibitors produce amnesia when administered just after learning. However, these agents also disrupt basic neurobiological functions. We show that blocking protein synthesis disrupts basic membrane properties of hippocampal neurons that correspond to induced disruptions of mitochondrial function. It is likely that translational inhibitors cause amnesia through their disruption of neural activity as a result of dysfunction of intracellular energetics.
Collapse
Affiliation(s)
- C. J. Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - M. J. LeBlancq
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - F. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - H. Lemieux
- Faculty Saint-Jean, Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - T. J. Hamilton
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - C. T. Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Effects of anisomycin infusions into the dorsal striatum on memory consolidation of intense training and neurotransmitter activity. Brain Res Bull 2019; 150:250-260. [DOI: 10.1016/j.brainresbull.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
|
12
|
Abstract
Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.
Collapse
|
13
|
Jeon SJ, Kim B, Ryu B, Kim E, Lee S, Jang DS, Ryu JH. Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice. Biomol Ther (Seoul) 2017; 25:249-258. [PMID: 27829270 PMCID: PMC5424634 DOI: 10.4062/biomolther.2016.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 11/13/2022] Open
Abstract
To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.
Collapse
Affiliation(s)
- Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Boseong Kim
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byeol Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunji Kim
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
WANG YUN, LIU TE, PAN WEIDONG, CHI HUIYING, CHEN JIULIN, YU ZHIHUA, CHEN CHUAN. Small molecule compounds alleviate anisomycin-induced oxidative stress injury in SH-SY5Y cells via downregulation of p66shc and Aβ1-42 expression. Exp Ther Med 2016; 11:593-600. [PMID: 26893652 PMCID: PMC4734097 DOI: 10.3892/etm.2015.2921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/01/2015] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress and ageing are important factors contributing to the pathogenesis of Alzheimer's disease (AD), which is associated with neuronal damage and β-amyloid (Aβ) deposition. The p66shc adaptor protein is important for the regulation of oxidative stress and ageing. In the present study, SH-SY5Y human neuroblastoma cells were treated with anisomycin in order to establish a cell model of oxidative stress-induced neuronal damage. The results from quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and western blotting demonstrated that anisomycin was able to stimulate the secretion of Aβ1-42 from SH-SY5Y cells and upregulate the expression levels of p66shc, which was associated with concomitant damage to SH-SY5Y cells. In addition, the protective effects of various small molecule compounds with antioxidant properties against neuronal damage were evaluated. Notably, treatment of SH-SY5Y cells with gallic acid was associated with significant downregulation of p66shc protein expression levels, reduced anisomycin-induced secretion of Aβ1-42, and increased superoxide dismutase activity and acetylcholine secretion levels. The results of the present study suggested that anisomycin is able to promote oxidative neuronal damage by inducing the secretion of Aβ1-42 from neurons and increasing the neuronal expression of p66shc, and this damage may be attenuated by treatment with gallic acid. Therefore, gallic acid and similar small molecule compounds may be considered for the alleviation of neuronal oxidative stress injury in patients with AD.
Collapse
Affiliation(s)
- YUN WANG
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - TE LIU
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - WEIDONG PAN
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - HUIYING CHI
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - JIULIN CHEN
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - ZHIHUA YU
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - CHUAN CHEN
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|