1
|
Joshi S, Haney S, Wang Z, Locatelli F, Lei H, Cao Y, Smith B, Bazhenov M. Plasticity in inhibitory networks improves pattern separation in early olfactory processing. Commun Biol 2025; 8:590. [PMID: 40204909 PMCID: PMC11982548 DOI: 10.1038/s42003-025-07879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Distinguishing between nectar and non-nectar odors is challenging for animals due to shared compounds and varying ratios in complex mixtures. Changes in nectar production throughout the day and over the animal's lifetime add to the complexity. The honeybee olfactory system, containing fewer than 1000 principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. Previous studies identified plasticity in the AL circuits, but its role in odor learning remains poorly understood. Using a biophysical computational model, tuned by in vivo electrophysiological data, and live imaging of the honeybee's AL, we explored the neural mechanisms of plasticity in the AL. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses responses to shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise neural code. Our calcium imaging data support these predictions. Analysis of a graph convolutional neural network performing an odor categorization task revealed a similar mechanism for contrast enhancement. Our study provides insights into how inhibitory plasticity in the early olfactory network reshapes the coding for efficient learning of complex odors.
Collapse
Affiliation(s)
- Shruti Joshi
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Seth Haney
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenyu Wang
- Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
| | - Fernando Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Buenos Aires, Argentina
| | - Hong Lei
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | - Yu Cao
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brian Smith
- School of Life Science, Arizona State University, Tempe, AZ, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Joshi S, Haney S, Wang Z, Locatelli F, Lei H, Cao Y, Smith B, Bazhenov M. Plasticity in inhibitory networks improves pattern separation in early olfactory processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.24.576675. [PMID: 38328149 PMCID: PMC10849730 DOI: 10.1101/2024.01.24.576675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Distinguishing between nectar and non-nectar odors is challenging for animals due to shared compounds and varying ratios in complex mixtures. Changes in nectar production throughout the day - and potentially many times within a forager's lifetime - add to the complexity. The honeybee olfactory system, containing fewer than 1,000 principal neurons in the early olfactory relay, the antennal lobe (AL), must learn to associate diverse volatile blends with rewards. Previous studies identified plasticity in the AL circuits, but its role in odor learning remains poorly understood. Using a biophysical computational network model, tuned by in vivo electrophysiological data, and live imaging of the honeybee's AL, we explored the neural mechanisms and functions of plasticity in the early olfactory system. Our findings revealed that when trained with a set of rewarded and unrewarded odors, the AL inhibitory network suppresses shared chemical compounds while enhancing responses to distinct compounds. This results in improved pattern separation and a more concise neural code. Our calcium imaging data support these predictions. Analysis of a graph convolutional neural network performing an odor categorization task revealed a similar mechanism for contrast enhancement. Our study provides insights into how inhibitory plasticity in the early olfactory network reshapes the coding for efficient learning of complex odors.
Collapse
Affiliation(s)
- Shruti Joshi
- Department of Electrical and Computer Engineering, University of California San Diego, USA
- Department of Medicine, University of California San Diego, USA
| | - Seth Haney
- Department of Medicine, University of California San Diego, USA
| | - Zhenyu Wang
- Department of Electrical, Computer and Energy Engineering, Arizona State University, USA
| | - Fernando Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Buenos Aires, Argentina
| | - Hong Lei
- School of Life Science, Arizona State University, USA
| | - Yu Cao
- Department of Electrical and Computer Engineering, University of Minnesota, USA
| | - Brian Smith
- School of Life Science, Arizona State University, USA
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, USA
| |
Collapse
|
3
|
Chakroborty NK, Leboulle, Einspanier R, Menzel R. Behavioral and genetic correlates of heterogeneity in learning performance in individual honeybees, Apis mellifera. PLoS One 2024; 19:e0304563. [PMID: 38865313 PMCID: PMC11168654 DOI: 10.1371/journal.pone.0304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Learning an olfactory discrimination task leads to heterogeneous results in honeybees with some bees performing very well and others at low rates. Here we investigated this behavioral heterogeneity and asked whether it was associated with particular gene expression patterns in the bee's brain. Bees were individually conditioned using a sequential conditioning protocol involving several phases of olfactory learning and retention tests. A cumulative score was used to differentiate the tested bees into high and low performers. The rate of CS+ odor learning was found to correlate most strongly with a cumulative performance score extracted from all learning and retention tests. Microarray analysis of gene expression in the mushroom body area of the brains of these bees identified a number of differentially expressed genes between high and low performers. These genes are associated with diverse biological functions, such as neurotransmission, memory formation, cargo trafficking and development.
Collapse
Affiliation(s)
- Neloy Kumar Chakroborty
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Leboulle
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg, Berlin, Germany
| | - Randolf Menzel
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| |
Collapse
|
4
|
Mahoney S, Hosler J, Smith BH. Reinforcement expectation in the honeybee ( Apis mellifera): Can downshifts in reinforcement show conditioned inhibition? Learn Mem 2024; 31:a053915. [PMID: 38862176 PMCID: PMC11199939 DOI: 10.1101/lm.053915.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
When animals learn the association of a conditioned stimulus (CS) with an unconditioned stimulus (US), later presentation of the CS invokes a representation of the US. When the expected US fails to occur, theoretical accounts predict that conditioned inhibition can accrue to any other stimuli that are associated with this change in the US. Empirical work with mammals has confirmed the existence of conditioned inhibition. But the way it is manifested, the conditions that produce it, and determining whether it is the opposite of excitatory conditioning are important considerations. Invertebrates can make valuable contributions to this literature because of the well-established conditioning protocols and access to the central nervous system (CNS) for studying neural underpinnings of behavior. Nevertheless, although conditioned inhibition has been reported, it has yet to be thoroughly investigated in invertebrates. Here, we evaluate the role of the US in producing conditioned inhibition by using proboscis extension response conditioning of the honeybee (Apis mellifera). Specifically, using variations of a "feature-negative" experimental design, we use downshifts in US intensity relative to US intensity used during initial excitatory conditioning to show that an odorant in an odor-odor mixture can become a conditioned inhibitor. We argue that some alternative interpretations to conditioned inhibition are unlikely. However, we show variation across individuals in how strongly they show conditioned inhibition, with some individuals possibly revealing a different means of learning about changes in reinforcement. We discuss how the resolution of these differences is needed to fully understand whether and how conditioned inhibition is manifested in the honeybee, and whether it can be extended to investigate how it is encoded in the CNS. It is also important for extension to other insect models. In particular, work like this will be important as more is revealed of the complexity of the insect brain from connectome projects.
Collapse
Affiliation(s)
- Shawn Mahoney
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | - Jay Hosler
- Department of Biology, Juniata College, Huntingdon, Pennsylvania 16652, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| |
Collapse
|
5
|
Raiser G, Galizia CG, Szyszka P. Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination. Chem Senses 2024; 49:bjae030. [PMID: 39133054 PMCID: PMC11408607 DOI: 10.1093/chemse/bjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.
Collapse
Affiliation(s)
- Georg Raiser
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Konstanz, Germany
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Paul Szyszka
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
7
|
Latshaw JS, Mazade RE, Petersen M, Mustard JA, Sinakevitch I, Wissler L, Guo X, Cook C, Lei H, Gadau J, Smith B. Tyramine and its Amtyr1 receptor modulate attention in honey bees ( Apis mellifera). eLife 2023; 12:e83348. [PMID: 37814951 PMCID: PMC10564449 DOI: 10.7554/elife.83348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/14/2023] [Indexed: 10/11/2023] Open
Abstract
Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor gene Amtyr1 [We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption of Amtyr1 signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinct Amtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for how Amtyr1 acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.
Collapse
Affiliation(s)
- Joseph S Latshaw
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Reece E Mazade
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Mary Petersen
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Julie A Mustard
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | | | - Lothar Wissler
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Xiaojiao Guo
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Chelsea Cook
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Hong Lei
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Jürgen Gadau
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Brian Smith
- School of Life Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
8
|
Patel M, Kulkarni N, Lei HH, Lai K, Nematova O, Wei K, Lei H. Experimental and theoretical probe on mechano- and chemosensory integration in the insect antennal lobe. Front Physiol 2022; 13:1004124. [PMID: 36406994 PMCID: PMC9667105 DOI: 10.3389/fphys.2022.1004124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, olfactory signals are delivered to detectors—for example, insect antennae—by means of turbulent air, which exerts concurrent chemical and mechanical stimulation on the detectors. The antennal lobe, which is traditionally viewed as a chemosensory module, sits downstream of antennal inputs. We review experimental evidence showing that, in addition to being a chemosensory structure, antennal lobe neurons also respond to mechanosensory input in the form of wind speed. Benchmarked with empirical data, we constructed a dynamical model to simulate bimodal integration in the antennal lobe, with model dynamics yielding insights such as a positive correlation between the strength of mechanical input and the capacity to follow high frequency odor pulses, an important task in tracking odor sources. Furthermore, we combine experimental and theoretical results to develop a conceptual framework for viewing the functional significance of sensory integration within the antennal lobe. We formulate the testable hypothesis that the antennal lobe alternates between two distinct dynamical regimes, one which benefits odor plume tracking and one which promotes odor discrimination. We postulate that the strength of mechanical input, which correlates with behavioral contexts such being mid-flight versus hovering near a flower, triggers the transition from one regime to the other.
Collapse
Affiliation(s)
- Mainak Patel
- Department of Mathematics, William and Mary College, Williamsburg, VA, United States
| | - Nisha Kulkarni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Harry H. Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kaitlyn Lai
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Omina Nematova
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Katherine Wei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- *Correspondence: Hong Lei,
| |
Collapse
|
9
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
10
|
Coureaud G, Thomas-Danguin T, Sandoz JC, Wilson DA. Biological constraints on configural odour mixture perception. J Exp Biol 2022; 225:274695. [PMID: 35285471 PMCID: PMC8996812 DOI: 10.1242/jeb.242274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Team Sensory Neuroethology (ENES), CNRS/INSERM/UCBL1/UJM, 69500 Lyon, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, Team Flavor, Food Oral Processing and Perception, INRAE, CNRS, Institut Agro Dijon, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Donald A Wilson
- Department of Child & Adolescent Psychiatry, New York University Langone School of Medicine and Nathan S. Kline Institute for Psychiatric Research, New York, NY 10016, USA
| |
Collapse
|
11
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Sezen E, Dereszkiewicz E, Hozan A, Bennett MM, Ozturk C, Smith BH, Cook CN. Heritable Cognitive Phenotypes Influence Appetitive Learning but not Extinction in Honey Bees. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2021; 114:606-613. [PMID: 34512859 PMCID: PMC8423107 DOI: 10.1093/aesa/saab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 06/13/2023]
Abstract
Learning and attention allow animals to better navigate complex environments. While foraging, honey bees (Apis mellifera L.) learn several aspects of their foraging environment, such as color and odor of flowers, which likely begins to happen before they evaluate the quality of the food. If bees begin to evaluate quality before they taste food, and then learn the food is depleted, this may create a conflict in what the bee learns and remembers. Individual honey bees differ in their sensitivity to information, thus creating variation in how they learn or do not learn certain environmental stimuli. For example, foraging honey bees exhibit differences in latent inhibition (LI), a learning process through which regular encounter with a stimulus without a consequence such as food can later reduce conditioning to that stimulus. Here, we test whether bees from distinct selected LI genotypes learn differently if reinforced via just antennae or via both antennae + proboscis. We also evaluate whether learned information goes extinct at different rates in these distinct LI genetic lines. We find that high LI bees learned significantly better when they were reinforced both antenna + proboscis, while low LI and control bees learned similarly with the two reinforcement pathways. We also find no differences in the acquisition and extinction of learned information in high LI and low LI bees. Our work provides insight into how underlying cognition may influence how honey bees learn and value information, which may lead to differences in how individuals and colonies make foraging decisions.
Collapse
Affiliation(s)
- Eda Sezen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Alvin Hozan
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Meghan M Bennett
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Carl Hayden Honey Bee Research Laboratory, Tucson, AZ, USA
| | - Cahit Ozturk
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Chelsea N Cook
- Biological Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
13
|
Pegram KV, Fankhauser K, Rutowski RL. Variation in predator response to short-wavelength warning coloration. Behav Processes 2021; 187:104377. [PMID: 33771606 DOI: 10.1016/j.beproc.2021.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022]
Abstract
Warning coloration deters predators from attacking unpalatable prey, and is often characterized by long-wavelength colors, such as orange and red. However, warning colors in nature are more diverse and include short-wavelength colors, like blue. Blue has evolved as a primary defense in some animals but is not common. One hypothesis for the maintenance of this diversity is interspecific variation in predator responses to signals. We tested this hypothesis with galliform birds: Gambel's quail (Callipepla gambelii) and two domestic chicken breeds (Gallus gallus domesticus; Plymouth Rocks, Cochin Bantams). We measured innate avoidance and learning responses to only blue prey, only orange prey, and orange-and-blue prey, where the blue was iridescent to represent the natural coloration of the pipevine swallowtail butterfly (Battus philenor). We predicted birds would have similar responses to orange, but vary in response to blue. Upon first encounter, Cochin Bantams did not attack blue and Gambel's quail readily attacked, indicating innate avoidance by Cochin Bantams. Plymouth Rocks had no innate aversion to any color, lower attack latencies and attacked most prey items. Cochin Bantams and Gambel's quail both learned orange and orange-and-blue quicker than blue. Our results support the hypothesis that interspecific variation in predator response could maintain warning color diversity.
Collapse
Affiliation(s)
- Kimberly V Pegram
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, United States; Desert Botanical Garden, Phoenix, AZ, 85008, United States.
| | - Kaci Fankhauser
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, United States
| | - Ronald L Rutowski
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, United States
| |
Collapse
|
14
|
Marachlian E, Klappenbach M, Locatelli F. Learning-dependent plasticity in the antennal lobe improves discrimination and recognition of odors in the honeybee. Cell Tissue Res 2021; 383:165-175. [PMID: 33511470 DOI: 10.1007/s00441-020-03396-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Honeybees are extensively used to study olfactory learning and memory processes thanks to their ability to discriminate and remember odors and because of their advantages for optophysiological recordings of the circuits involved in memory and odor perception. There are evidences that the encoding of odors in areas of primary sensory processing is not rigid, but undergoes changes caused by olfactory experience. The biological meaning of these changes is focus of intense discussions. Along this review, we present evidences of plasticity related to different forms of learning and discuss its function in the context of olfactory challenges that honeybees have to solve. So far, results in honeybees are consistent with a model in which changes in early olfactory processing contributes to the ability of an animal to recognize the presence of relevant odors and facilitates the discrimination of odors in a way adjusted to its own experience.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Martin Klappenbach
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Fernando Locatelli
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
16
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
17
|
Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH. Experience-dependent tuning of early olfactory processing in the adult honey bee, Apis mellifera. ACTA ACUST UNITED AC 2020; 223:jeb.206748. [PMID: 31767739 DOI: 10.1242/jeb.206748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Experience-dependent plasticity in the central nervous system allows an animal to adapt its responses to stimuli over different time scales. In this study, we explored the impacts of adult foraging experience on early olfactory processing by comparing naturally foraging honey bees, Apis mellifera, with those that experienced a chronic reduction in adult foraging experience. We placed age-matched sets of sister honey bees into two different olfactory conditions, in which animals were allowed to forage ad libitum In one condition, we restricted foraging experience by placing honey bees in a tent in which both sucrose and pollen resources were associated with a single odor. In the second condition, honey bees were allowed to forage freely and therefore encounter a diversity of naturally occurring resource-associated olfactory experiences. We found that honey bees with restricted foraging experiences had altered antennal lobe development. We measured the glomerular responses to odors using calcium imaging in the antennal lobe, and found that natural olfactory experience also enhanced the inter-individual variation in glomerular response profiles to odors. Additionally, we found that honey bees with adult restricted foraging experience did not distinguish relevant components of an odor mixture in a behavioral assay as did their freely foraging siblings. This study highlights the impacts of individual experience on early olfactory processing at multiple levels.
Collapse
Affiliation(s)
| | - Rachael Halby
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Irina Sinakevitch
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
18
|
Chan HK, Hersperger F, Marachlian E, Smith BH, Locatelli F, Szyszka P, Nowotny T. Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS Comput Biol 2018; 14:e1006536. [PMID: 30532147 PMCID: PMC6287832 DOI: 10.1371/journal.pcbi.1006536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/29/2018] [Indexed: 11/18/2022] Open
Abstract
In natural environments, odors are typically mixtures of several different chemical compounds. However, the implications of mixtures for odor processing have not been fully investigated. We have extended a standard olfactory receptor model to mixtures and found through its mathematical analysis that odorant-evoked activity patterns are more stable across concentrations and first-spike latencies of receptor neurons are shorter for mixtures than for pure odorants. Shorter first-spike latencies arise from the nonlinear dependence of binding rate on odorant concentration, commonly described by the Hill coefficient, while the more stable activity patterns result from the competition between different ligands for receptor sites. These results are consistent with observations from numerical simulations and physiological recordings in the olfactory system of insects. Our results suggest that mixtures allow faster and more reliable olfactory coding, which could be one of the reasons why animals often use mixtures in chemical signaling.
Collapse
Affiliation(s)
- Ho Ka Chan
- Sussex Neuroscience, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Fabian Hersperger
- Department of Neuroscience, University of Konstanz, Konstanz, Germany
| | - Emiliano Marachlian
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Paul Szyszka
- Department of Neuroscience, University of Konstanz, Konstanz, Germany
| | - Thomas Nowotny
- Sussex Neuroscience, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
19
|
Neupert S, Hornung M, Grenwille Millar J, Kleineidam CJ. Learning Distinct Chemical Labels of Nestmates in Ants. Front Behav Neurosci 2018; 12:191. [PMID: 30210320 PMCID: PMC6123487 DOI: 10.3389/fnbeh.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/06/2018] [Indexed: 12/04/2022] Open
Abstract
Colony coherence is essential for eusocial insects because it supports the inclusive fitness of colony members. Ants quickly and reliably recognize who belongs to the colony (nestmates) and who is an outsider (non-nestmates) based on chemical recognition cues (cuticular hydrocarbons: CHCs) which as a whole constitute a chemical label. The process of nestmate recognition often is described as matching a neural template with the label. In this study, we tested the prevailing view that ants use commonalities in the colony odor that are present in the CHC profile of all individuals of a colony or whether different CHC profiles are learned independently. We created and manipulated sub-colonies by adding one or two different hydrocarbons that were not present in the original colony odor of our Camponotus floridanus colony and later tested workers of the sub-colonies in one-on-one encounters for aggressive responses. We found that workers adjust their nestmate recognition by learning novel, manipulated CHC profiles, but still accept workers with the previous CHC profile. Workers from a sub-colony with two additional components showed aggression against workers with only one of the two components added to their CHC profile. Thus, additional components as well as the lack of a component can alter a label as “non-nestmate.” Our results suggest that ants have multiple-templates to recognize nestmates carrying distinct labels. This finding is in contrast to what previously has been proposed, i.e., a widening of the acceptance range of one template. We conclude that nestmate recognition in ants is a partitioned (multiple-template) process of the olfactory system that allows discrimination and categorization of nestmates by differences in their CHC profiles. Our findings have strong implications for our understanding of the underlying mechanisms of colony coherence and task allocation because they illustrate the importance of individual experience and task associated differences in the CHC profiles that can be instructive for the organization of insect societies.
Collapse
Affiliation(s)
- Stefanie Neupert
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | - Manuel Hornung
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
20
|
Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx. eNeuro 2018; 5:eN-NWR-0128-18. [PMID: 29938214 PMCID: PMC6011417 DOI: 10.1523/eneuro.0128-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.
Collapse
|
21
|
Müller J, Nawrot M, Menzel R, Landgraf T. A neural network model for familiarity and context learning during honeybee foraging flights. BIOLOGICAL CYBERNETICS 2018; 112:113-126. [PMID: 28917001 DOI: 10.1007/s00422-017-0732-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
How complex is the memory structure that honeybees use to navigate? Recently, an insect-inspired parsimonious spiking neural network model was proposed that enabled simulated ground-moving agents to follow learned routes. We adapted this model to flying insects and evaluate the route following performance in three different worlds with gradually decreasing object density. In addition, we propose an extension to the model to enable the model to associate sensory input with a behavioral context, such as foraging or homing. The spiking neural network model makes use of a sparse stimulus representation in the mushroom body and reward-based synaptic plasticity at its output synapses. In our experiments, simulated bees were able to navigate correctly even when panoramic cues were missing. The context extension we propose enabled agents to successfully discriminate partly overlapping routes. The structure of the visual environment, however, crucially determines the success rate. We find that the model fails more often in visually rich environments due to the overlap of features represented by the Kenyon cell layer. Reducing the landmark density improves the agents route following performance. In very sparse environments, we find that extended landmarks, such as roads or field edges, may help the agent stay on its route, but often act as strong distractors yielding poor route following performance. We conclude that the presented model is valid for simple route following tasks and may represent one component of insect navigation. Additional components might still be necessary for guidance and action selection while navigating along different memorized routes in complex natural environments.
Collapse
Affiliation(s)
- Jurek Müller
- Institute for Computer Science, Free University Berlin, Berlin, Germany
| | - Martin Nawrot
- Computational Systems Neuroscience, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Randolf Menzel
- Institute for Neurobiology, Free University Berlin, Berlin, Germany
| | - Tim Landgraf
- Institute for Computer Science, Free University Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Sinakevitch I, Bjorklund GR, Newbern JM, Gerkin RC, Smith BH. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. BIOLOGICAL CYBERNETICS 2018; 112:127-140. [PMID: 28852854 PMCID: PMC5832527 DOI: 10.1007/s00422-017-0728-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Despite divergent evolutionary origins, the organization of olfactory systems is remarkably similar across phyla. In both insects and mammals, sensory input from receptor cells is initially processed in synaptically dense regions of neuropil called glomeruli, where neural activity is shaped by local inhibition and centrifugal neuromodulation prior to being sent to higher-order brain areas by projection neurons. Here we review both similarities and several key differences in the neuroanatomy of the olfactory system in honey bees, mice, and humans, using a combination of literature review and new primary data. We have focused on the chemical identity and the innervation patterns of neuromodulatory inputs in the primary olfactory system. Our findings show that serotonergic fibers are similarly distributed across glomeruli in all three species. Octopaminergic/tyraminergic fibers in the honey bee also have a similar distribution, and possibly a similar function, to noradrenergic fibers in the mammalian OBs. However, preliminary evidence suggests that human OB may be relatively less organized than its counterparts in honey bee and mouse.
Collapse
Affiliation(s)
- Irina Sinakevitch
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| | - George R Bjorklund
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| |
Collapse
|
23
|
Aguiar JMRBV, Roselino AC, Sazima M, Giurfa M. Can honey bees discriminate between floral-fragrance isomers? J Exp Biol 2018; 221:jeb.180844. [DOI: 10.1242/jeb.180844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity.
Collapse
Affiliation(s)
- João Marcelo Robazzi Bignelli Valente Aguiar
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Ana Carolina Roselino
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marlies Sazima
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| |
Collapse
|
24
|
Strube-Bloss MF, Nawrot MP, Menzel R. Neural correlates of side-specific odour memory in mushroom body output neurons. Proc Biol Sci 2017; 283:rspb.2016.1270. [PMID: 27974514 DOI: 10.1098/rspb.2016.1270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/10/2016] [Indexed: 11/12/2022] Open
Abstract
Humans and other mammals as well as honeybees learn a unilateral association between an olfactory stimulus presented to one side and a reward. In all of them, the learned association can be behaviourally retrieved via contralateral stimulation, suggesting inter-hemispheric communication. However, the underlying neuronal circuits are largely unknown and neural correlates of across-brain-side plasticity have yet not been demonstrated. We report neural plasticity that reflects lateral integration after side-specific odour reward conditioning. Mushroom body output neurons that did not respond initially to contralateral olfactory stimulation developed a unique and stable representation of the rewarded compound stimulus (side and odour) predicting its value during memory retention. The encoding of the reward-associated compound stimulus is delayed by about 40 ms compared with unrewarded neural activity, indicating an increased computation time for the read-out after lateral integration.
Collapse
Affiliation(s)
- Martin F Strube-Bloss
- Department of Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute of Bioscience, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin P Nawrot
- Martin Paul Nawrot, Computational Systems Neuroscience, Institute for Zoology, Department of Biology, University of Cologne, Biocenter University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Randolf Menzel
- Randolf Menzel, Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28/30, 14195 Berlin, Germany
| |
Collapse
|
25
|
Chen YC, Mishra D, Gläß S, Gerber B. Behavioral Evidence for Enhanced Processing of the Minor Component of Binary Odor Mixtures in Larval Drosophila. Front Psychol 2017; 8:1923. [PMID: 29163299 PMCID: PMC5672140 DOI: 10.3389/fpsyg.2017.01923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/17/2017] [Indexed: 02/02/2023] Open
Abstract
A fundamental problem in deciding between mutually exclusive options is that the decision needs to be categorical although the properties of the options often differ but in grade. We developed an experimental handle to study this aspect of behavior organization. Larval Drosophila were trained such that in one set of animals odor A was rewarded, but odor B was not (A+/B), whereas a second set of animals was trained reciprocally (A/B+). We then measured the preference of the larvae either for A, or for B, or for "morphed" mixtures of A and B, that is for mixtures differing in the ratio of the two components. As expected, the larvae showed higher preference when only the previously rewarded odor was presented than when only the previously unrewarded odor was presented. For mixtures of A and B that differed in the ratio of the two components, the major component dominated preference behavior-but it dominated less than expected from a linear relationship between mixture ratio and preference behavior. This suggests that a minor component can have an enhanced impact in a mixture, relative to such a linear expectation. The current paradigm may prove useful in understanding how nervous systems generate discrete outputs in the face of inputs that differ only gradually.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Genetik und Neurobiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Dushyant Mishra
- Genetik und Neurobiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Sebastian Gläß
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie, Magdeburg, Germany
| | - Bertram Gerber
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie, Magdeburg, Germany.,Genetik und Neurobiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.,Center for Behavioral and Brain Sciences, Magdeburg, Germany.,Institut für Biologie, Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
26
|
MaBouDi H, Shimazaki H, Giurfa M, Chittka L. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Comput Biol 2017. [PMID: 28640825 PMCID: PMC5480824 DOI: 10.1371/journal.pcbi.1005551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Collapse
Affiliation(s)
- HaDi MaBouDi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Perez M, Nowotny T, d'Ettorre P, Giurfa M. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis. Proc Biol Sci 2016; 283:20160551. [PMID: 27581883 PMCID: PMC5013785 DOI: 10.1098/rspb.2016.0551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity.
Collapse
Affiliation(s)
- Margot Perez
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| |
Collapse
|
29
|
Hambäck PA. Getting the smell of it--odour cues structure pollinator networks. J Anim Ecol 2016; 85:315-7. [PMID: 26899420 DOI: 10.1111/1365-2656.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
Abstract
Floral visitors vary greatly among plant species and depend on the volatiles emitted by the flowers. Creeping thistle is normally visited by bees and bumblebees while common yarrow is rather visited by flies. Manipulating the flower volatiles caused pollinator communities to become more similar among the two plant species. Image credit: Robert Junker and Anna-Amelie Larue. In Focus: Larue, A.-A.C., Raguso, R.A. & Junker, R.R. (2015) Experimental manipulation of floral scent bouquets restructures flower-visitor interactions in the field. Journal of Animal Ecology, 85, 396-408. Pollinators use multiple cues to locate suitable flowers, and recent studies argue that flower volatiles are more important than previously believed. However, the role of volatiles is seldom separated from other cues. Larue, Raguso & Junker (2015) manipulated the volatile profile of two plants that are normally visited by different pollinators. Achillea millefolium is normally not visited by honeybees and bumblebees, but these pollinator groups did visit plants that were sprayed with volatiles from Cirsium arvense. Cirsium arvense, on the other hand, was less visited by honeybees and bumblebees when sprayed with volatiles from A. millefolium. These findings highlight the potential role of volatiles in structuring pollinator communities on plants.
Collapse
Affiliation(s)
- Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
30
|
Locatelli FF, Fernandez PC, Smith BH. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. ACTA ACUST UNITED AC 2016; 219:2752-62. [PMID: 27412003 DOI: 10.1242/jeb.141465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Natural odors are typically mixtures of several chemical components. Mixtures vary in composition among odor objects that have the same meaning. Therefore a central 'categorization' problem for an animal as it makes decisions about odors in natural contexts is to correctly identify odor variants that have the same meaning and avoid variants that have a different meaning. We propose that identified mechanisms of associative and non-associative plasticity in early sensory processing in the insect antennal lobe and mammalian olfactory bulb are central to solving this problem. Accordingly, this plasticity should work to improve categorization of odors that have the opposite meanings in relation to important events. Using synthetic mixtures designed to mimic natural odor variation among flowers, we studied how honey bees learn about and generalize among floral odors associated with food. We behaviorally conditioned honey bees on a difficult odor discrimination problem using synthetic mixtures that mimic natural variation among snapdragon flowers. We then used calcium imaging to measure responses of projection neurons of the antennal lobe, which is the first synaptic relay of olfactory sensory information in the brain, to study how ensembles of projection neurons change as a result of behavioral conditioning. We show how these ensembles become 'tuned' through plasticity to improve categorization of odors that have the different meanings. We argue that this tuning allows more efficient use of the immense coding space of the antennal lobe and olfactory bulb to solve the categorization problem. Our data point to the need for a better understanding of the 'statistics' of the odor space.
Collapse
Affiliation(s)
- Fernando F Locatelli
- School of Life Sciences, PO Box 874501, Arizona State University, Tempe, AZ 85287, USA
| | - Patricia C Fernandez
- School of Life Sciences, PO Box 874501, Arizona State University, Tempe, AZ 85287, USA
| | - Brian H Smith
- School of Life Sciences, PO Box 874501, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
31
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
32
|
Effects of directionality, signal intensity, and short-wavelength components on iridescent warning signal efficacy. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Carcaud J, Giurfa M, Sandoz JC. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract. Front Integr Neurosci 2016; 9:75. [PMID: 26834589 PMCID: PMC4717326 DOI: 10.3389/fnint.2015.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance.
Collapse
Affiliation(s)
- Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris-SaclayGif-sur-Yvette, France; Research Center on Animal Cognition, Université Toulouse III - Paul SabatierToulouse, France; Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition, Université Toulouse III - Paul SabatierToulouse, France; Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Jean Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris-Saclay Gif-sur-Yvette, France
| |
Collapse
|
34
|
Experience shapes our odor perception but depends on the initial perceptual processing of the stimulus. Atten Percept Psychophys 2015; 77:1794-806. [PMID: 25832188 DOI: 10.3758/s13414-015-0883-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The questions of whether configural and elemental perceptions are competitive or exclusive perceptual processes and whether they rely on independent or dependent mechanisms are poorly understood. To examine these questions, we modified perceptual experience through preexposure to mixed or single odors and measured the resulting variation in the levels of configural and elemental perception of target odor mixtures. We used target mixtures that were spontaneously processed in a configural or an elemental manner. The AB binary mixture spontaneously involved the configural perception of a pineapple odor, whereas component A smelled like strawberry and component B smelled like caramel. The CD mixture produced the elemental perceptions of banana (C) and smoky (D) odors. Perceptual experience was manipulated through repeated exposure to either a mixture (AB or CD) or the components (A and B or C and D). The odor typicality rating data recorded after exposure revealed different influences of experience on odor mixtures and single-component perception, depending both on the type of exposure (components or mixture) and the mixture's initial perceptual property (configural or elemental). Although preexposure to A and B decreased the pineapple typicality of the configural AB mixture, preexposure to AB did not modify its odor quality. In contrast, preexposure to the CD elemental mixture induced a quality transfer between the components. These results emphasize the relative plasticity of odor mixture perception, which is prone to experience-induced modulations but depends on the stimulus's initial perceptual properties, suggesting that configural and elemental forms of odor mixture perception rely on rather independent processes.
Collapse
|
35
|
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci Rep 2015; 5:16223. [PMID: 26531238 PMCID: PMC4632027 DOI: 10.1038/srep16223] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022] Open
Abstract
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee.
Collapse
|
36
|
Barron AB, Gurney KN, Meah LFS, Vasilaki E, Marshall JAR. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front Behav Neurosci 2015; 9:216. [PMID: 26347627 PMCID: PMC4539514 DOI: 10.3389/fnbeh.2015.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Effective decision-making, one of the most crucial functions of the brain, entails the analysis of sensory information and the selection of appropriate behavior in response to stimuli. Here, we consider the current state of knowledge on the mechanisms of decision-making and action selection in the insect brain, with emphasis on the olfactory processing system. Theoretical and computational models of decision-making emphasize the importance of using inhibitory connections to couple evidence-accumulating pathways; this coupling allows for effective discrimination between competing alternatives and thus enables a decision maker to reach a stable unitary decision. Theory also shows that the coupling of pathways can be implemented using a variety of different mechanisms and vastly improves the performance of decision-making systems. The vertebrate basal ganglia appear to resolve stable action selection by being a point of convergence for multiple excitatory and inhibitory inputs such that only one possible response is selected and all other alternatives are suppressed. Similar principles appear to operate within the insect brain. The insect lateral protocerebrum (LP) serves as a point of convergence for multiple excitatory and inhibitory channels of olfactory information to effect stable decision and action selection, at least for olfactory information. The LP is a rather understudied region of the insect brain, yet this premotor region may be key to effective resolution of action section. We argue that it may be beneficial to use models developed to explore the operation of the vertebrate brain as inspiration when considering action selection in the invertebrate domain. Such an approach may facilitate the proposal of new hypotheses and furthermore frame experimental studies for how decision-making and action selection might be achieved in insects.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biological Sciences, Macquarie University North Ryde, NSW, Australia
| | - Kevin N Gurney
- Department of Psychology, The University of Sheffield Sheffield, UK
| | - Lianne F S Meah
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - Eleni Vasilaki
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - James A R Marshall
- Department of Computer Science, The University of Sheffield Sheffield, UK
| |
Collapse
|
37
|
Abstract
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors.
Collapse
|
38
|
Perez M, Giurfa M, d'Ettorre P. The scent of mixtures: rules of odour processing in ants. Sci Rep 2015; 5:8659. [PMID: 25726692 PMCID: PMC4345350 DOI: 10.1038/srep08659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/29/2015] [Indexed: 11/08/2022] Open
Abstract
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.
Collapse
Affiliation(s)
- Margot Perez
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Martin Giurfa
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
39
|
Smith BH, Burden CM. A proboscis extension response protocol for investigating behavioral plasticity in insects: application to basic, biomedical, and agricultural research. J Vis Exp 2014:e51057. [PMID: 25225822 PMCID: PMC4828057 DOI: 10.3791/51057] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Collapse
|
40
|
Thoma M, Hansson BS, Knaden M. Compound valence is conserved in binary odor mixtures in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 217:3645-55. [PMID: 25189369 DOI: 10.1242/jeb.106591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most naturally occurring olfactory signals do not consist of monomolecular odorants but, rather, are mixtures whose composition and concentration ratios vary. While there is ample evidence for the relevance of complex odor blends in ecological interactions and for interactions of chemicals in both peripheral and central neuronal processing, a fine-scale analysis of rules governing the innate behavioral responses of Drosophila melanogaster towards odor mixtures is lacking. In this study we examine whether the innate valence of odors is conserved in binary odor mixtures. We show that binary mixtures of attractants are more attractive than individual mixture constituents. In contrast, mixing attractants with repellents elicits responses that are lower than the responses towards the corresponding attractants. This decrease in attraction is repellent-specific, independent of the identity of the attractant and more stereotyped across individuals than responses towards the repellent alone. Mixtures of repellents are either less attractive than the individual mixture constituents or these mixtures represent an intermediate. Within the limits of our data set, most mixture responses are quantitatively predictable on the basis of constituent responses. In summary, the valence of binary odor mixtures is predictable on the basis of valences of mixture constituents. Our findings will further our understanding of innate behavior towards ecologically relevant odor blends and will serve as a powerful tool for deciphering the olfactory valence code.
Collapse
Affiliation(s)
- Michael Thoma
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
41
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
42
|
Affiliation(s)
- Paul Szyszka
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
43
|
Tong MT, Peace ST, Cleland TA. Properties and mechanisms of olfactory learning and memory. Front Behav Neurosci 2014; 8:238. [PMID: 25071492 PMCID: PMC4083347 DOI: 10.3389/fnbeh.2014.00238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 02/05/2023] Open
Abstract
Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system—particularly olfactory bulb—comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal) and cumulative (adult appetitive) odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.
Collapse
Affiliation(s)
- Michelle T Tong
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| | - Shane T Peace
- Computational Physiology Lab, Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | - Thomas A Cleland
- Computational Physiology Lab, Department of Psychology, Cornell University Ithaca, NY, USA
| |
Collapse
|
44
|
Relative effectiveness of blue and orange warning colours in the contexts of innate avoidance, learning and generalization. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Claudianos C, Lim J, Young M, Yan S, Cristino AS, Newcomb RD, Gunasekaran N, Reinhard J. Odor memories regulate olfactory receptor expression in the sensory periphery. Eur J Neurosci 2014; 39:1642-54. [PMID: 24628891 DOI: 10.1111/ejn.12539] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
Abstract
Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system.
Collapse
Affiliation(s)
- Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Schubert M, Hansson BS, Sachse S. The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster. Front Physiol 2014; 5:59. [PMID: 24600405 PMCID: PMC3929855 DOI: 10.3389/fphys.2014.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.
Collapse
Affiliation(s)
- Marco Schubert
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
47
|
Barth J, Dipt S, Pech U, Hermann M, Riemensperger T, Fiala A. Differential associative training enhances olfactory acuity in Drosophila melanogaster. J Neurosci 2014; 34:1819-37. [PMID: 24478363 PMCID: PMC6827587 DOI: 10.1523/jneurosci.2598-13.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/21/2022] Open
Abstract
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
Collapse
Affiliation(s)
- Jonas Barth
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Shubham Dipt
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Ulrike Pech
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Moritz Hermann
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - Thomas Riemensperger
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| | - André Fiala
- Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Molecular Neurobiology of Behavior, 37077 Göttingen, Germany
| |
Collapse
|
48
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
49
|
Byers KJRP, Bradshaw HD, Riffell JA. Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). ACTA ACUST UNITED AC 2013; 217:614-23. [PMID: 24198269 DOI: 10.1242/jeb.092213] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flowering plants employ a wide variety of signals, including scent, to attract the attention of pollinators. In this study we investigated the role of floral scent in mediating differential attraction between two species of monkeyflowers (Mimulus) reproductively isolated by pollinator preference. The emission rate and chemical identity of floral volatiles differ between the bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis. Mimulus lewisii flowers produce an array of volatiles dominated by d-limonene, β-myrcene and E-β-ocimene. Of these three monoterpenes, M. cardinalis flowers produce only d-limonene, released at just 0.9% the rate of M. lewisii flowers. Using the Bombus vosnesenskii bumblebee, an important pollinator of M. lewisii, we conducted simultaneous gas chromatography with extracellular recordings in the bumblebee antennal lobe. Results from these experiments revealed that these three monoterpenes evoke significant neural responses, and that a synthetic mixture of the three volatiles evokes the same responses as the natural scent. Furthermore, the neural population shows enhanced responses to the M. lewisii scent over the scent of M. cardinalis. This neural response is reflected in behavior; in two-choice assays, bumblebees investigate artificial flowers scented with M. lewisii more frequently than ones scented with M. cardinalis, and in synthetic mixtures the three monoterpenes are necessary and sufficient to recapitulate responses to the natural scent of M. lewisii. In this system, floral scent alone is sufficient to elicit differential visitation by bumblebees, implying a strong role of scent in the maintenance of reproductive isolation between M. lewisii and M. cardinalis.
Collapse
Affiliation(s)
- Kelsey J R P Byers
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|
50
|
Strauch M, Rein J, Lutz C, Galizia CG. Signal extraction from movies of honeybee brain activity: the ImageBee plugin for KNIME. BMC Bioinformatics 2013; 14 Suppl 18:S4. [PMID: 24564238 PMCID: PMC3817809 DOI: 10.1186/1471-2105-14-s18-s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to record these activity patterns and to gain insight into olfactory information processing in the brain. Method We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach. Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals. Results Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data from the honeybee AL, as well as it can recover implanted source signals from artificial data. Conclusions ImageBee enables automated data processing and visualisation for optical imaging data from the insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where modules can be rearranged or added depending on the particular application. Availability ImageBee can be installed via the KNIME update service. Installation instructions are available at http://tech.knime.org/imagebee-analysing-imaging-data-from-the-honeybee-brain.
Collapse
|