1
|
Dolique T, Baudet S, Charron F, Ferent J. A central role for Numb/Nbl in multiple Shh-mediated axon repulsion processes. iScience 2025; 28:112293. [PMID: 40276749 PMCID: PMC12018091 DOI: 10.1016/j.isci.2025.112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Sonic hedgehog (Shh) is an axon guidance molecule that can act as either a chemorepellent or a chemoattractant, depending on the neuron type and their developmental stage. In the developing spinal cord, Shh initially attracts commissural axons to the floor plate and later repels them after they cross the midline. In the developing visual system, Shh repels ipsilateral retinal ganglion cell (iRGC) axons at the optic chiasm. Although Shh requires the endocytic adaptor Numb for attraction of spinal commissural axons, the molecular mechanisms underlying Shh dual function in attraction and repulsion are still unclear. In this study, we show that Numb is essential for two Shh-mediated repulsion processes: iRGC axon repulsion at the optic chiasm and antero-posterior commissural axon repulsion in the spinal cord. Therefore, Numb is required for Shh-mediated attraction and repulsion. These results position Numb as a central player in the non-canonical Shh signaling pathway mediating axon repulsion.
Collapse
Affiliation(s)
- Tiphaine Dolique
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Inovarion, 75005 Paris, France
| | - Sarah Baudet
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
- Sorbonne Université, CNRS, Inserm, Center of Neuroscience Neuro-SU, 75005 Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, 75005 Paris, France
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal QC H3T 1J4, Canada
| | - Julien Ferent
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
- Sorbonne Université, CNRS, Inserm, Center of Neuroscience Neuro-SU, 75005 Paris, France
- Sorbonne Université, CNRS, Inserm, Institut de Biologie Paris-Seine, IBPS, 75005 Paris, France
| |
Collapse
|
2
|
Muangkram Y, Himeno Y, Amano A. Clarifying the composition of the ATP consumption factors required for maintaining ion homeostasis in mouse rod photoreceptors. Sci Rep 2023; 13:14161. [PMID: 37644037 PMCID: PMC10465610 DOI: 10.1038/s41598-023-40663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
To date, no effective treatment has been established for photoreceptor loss due to energy imbalances, but numerous therapeutic approaches have reported some success in slowing photoreceptor degeneration by downregulating energy demand. However, the detailed mechanisms remain unclear. This study aimed to clarify the composition of ATP consumption factors in photoreceptors in darkness and in light. We introduced mathematical formulas for ionic current activities combined with a phototransduction model to form a new mathematical model for estimating the energy expenditure of each ionic current. The proposed model included various ionic currents identified in mouse rods using a gene expression database incorporating an available electrophysiological recording of each specific gene. ATP was mainly consumed by Na+/K+-ATPase and plasma membrane Ca2+-ATPase pumps to remove excess Na+ and Ca2+. The rod consumed 7 [Formula: see text] 107 molecules of ATP s-1, where 65% was used to remove ions from the cyclic nucleotide-gated channel and 20% from the hyperpolarization-activated current in darkness. Increased light intensity raised the energy requirements of the complex phototransduction cascade mechanisms. Nevertheless, the overall energy consumption was less than that in darkness due to the significant reduction in ATPase activities, where the hyperpolarization-activated current proportion increased to 83%. A better understanding of energy demand/supply may provide an effective tool for investigating retinal pathophysiological changes and analyzing novel therapeutic treatments related to the energy consumption of photoreceptors.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
3
|
Lacomme M, Hales SC, Brown TW, Stevanovic K, Jolicoeur C, Cai J, Bois T, Desrosiers M, Dalkara D, Cayouette M. Numb regulates Tau levels and prevents neurodegeneration in tauopathy mouse models. SCIENCE ADVANCES 2022; 8:eabm4295. [PMID: 36260685 PMCID: PMC9581485 DOI: 10.1126/sciadv.abm4295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/07/2022] [Indexed: 06/01/2023]
Abstract
Accumulation of the microtubule-associated protein Tau is linked to neuronal cell death in tauopathies, but how intraneuronal Tau levels are regulated in health and disease remains unclear. Here, we show that conditional inactivation of the trafficking adaptor protein Numb in retinal ganglion cells (RGCs) increases Tau levels and leads to axonal blebbing, which is followed by neuronal cell loss in aged mice. In the TauP301S mouse model of tauopathy, conditional inactivation of Numb in RGCs and spinal motoneurons accelerates neurodegeneration, and loss of Numb in motoneurons also leads to precocious hindlimb paralysis. Conversely, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels and reduces axonal blebbing in TauP301S RGCs, leading to improved electrical activity in cultured neurons and improves performance in a visually guided behavior test in vivo. These results uncover Numb as a key regulator of intracellular Tau levels and identify Numb-72 as a potential therapeutic factor for tauopathies.
Collapse
Affiliation(s)
- Marine Lacomme
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Sarah C. Hales
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Thomas W. Brown
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Katarina Stevanovic
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Jenny Cai
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Therence Bois
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
4
|
Schmid V, Wurzel A, Wetzel CH, Plössl K, Bruckmann A, Luckner P, Weber BHF, Friedrich U. Retinoschisin and novel Na/K-ATPase interaction partners Kv2.1 and Kv8.2 define a growing protein complex at the inner segments of mammalian photoreceptors. Cell Mol Life Sci 2022; 79:448. [PMID: 35876901 PMCID: PMC9314279 DOI: 10.1007/s00018-022-04409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.
Collapse
Affiliation(s)
- Verena Schmid
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Alexander Wurzel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patricia Luckner
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Yan J, Li Y, Zhang T, Shen Y. Numb deficiency impairs retinal structure and visual function in mice. Exp Eye Res 2022; 219:109066. [DOI: 10.1016/j.exer.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
|
6
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
7
|
The GARP Domain of the Rod CNG Channel's β1-Subunit Contains Distinct Sites for Outer Segment Targeting and Connecting to the Photoreceptor Disk Rim. J Neurosci 2021; 41:3094-3104. [PMID: 33637563 DOI: 10.1523/jneurosci.2609-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Vision begins when light is captured by the outer segment organelle of photoreceptor cells in the retina. Outer segments are modified cilia filled with hundreds of flattened disk-shaped membranes. Disk membranes are separated from the surrounding plasma membrane, and each membrane type has unique protein components. The mechanisms underlying this protein sorting remain entirely unknown. In this study, we investigated the outer segment delivery of the rod cyclic nucleotide-gated (CNG) channel, which is located in the outer segment plasma membrane, where it mediates the electrical response to light. Using Xenopus and mouse models of both sexes, we now show that the targeted delivery of the CNG channel to the outer segment uses the conventional secretory pathway, including protein processing in both ER and Golgi, and requires preassembly of its constituent α1 and β1 subunits. We further demonstrate that the N-terminal glutamic acid-rich protein (GARP) domain of CNGβ1 contains two distinct functional regions. The glutamic acid-rich region encodes specific information targeting the channel to rod outer segments. The adjacent proline-enriched region connects the CNG channel to photoreceptor disk rims, likely through an interaction with peripherin-2. These data reveal fine functional specializations within the structural domains of the CNG channel and suggest that its sequestration to the outer segment plasma membrane requires an interaction with peripherin-2.SIGNIFICANCE STATEMENT Neurons and other differentiated cells have a remarkable ability to deliver and organize signaling proteins at precise subcellular locations. We now report that the CNG channel, mediating the electrical response to light in rod photoreceptors, contains two specialized regions within the N terminus of its β-subunit: one responsible for delivery of this channel to the ciliary outer segment organelle and another for subsequent channel sequestration into the outer segment plasma membrane. These findings expand our understanding of the molecular specializations used by neurons to populate their critical functional compartments.
Collapse
|
8
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
9
|
Barnes CL, Malhotra H, Calvert PD. Compartmentalization of Photoreceptor Sensory Cilia. Front Cell Dev Biol 2021; 9:636737. [PMID: 33614665 PMCID: PMC7889997 DOI: 10.3389/fcell.2021.636737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Functional compartmentalization of cells is a universal strategy for segregating processes that require specific components, undergo regulation by modulating concentrations of those components, or that would be detrimental to other processes. Primary cilia are hair-like organelles that project from the apical plasma membranes of epithelial cells where they serve as exclusive compartments for sensing physical and chemical signals in the environment. As such, molecules involved in signal transduction are enriched within cilia and regulating their ciliary concentrations allows adaptation to the environmental stimuli. The highly efficient organization of primary cilia has been co-opted by major sensory neurons, olfactory cells and the photoreceptor neurons that underlie vision. The mechanisms underlying compartmentalization of cilia are an area of intense current research. Recent findings have revealed similarities and differences in molecular mechanisms of ciliary protein enrichment and its regulation among primary cilia and sensory cilia. Here we discuss the physiological demands on photoreceptors that have driven their evolution into neurons that rely on a highly specialized cilium for signaling changes in light intensity. We explore what is known and what is not known about how that specialization appears to have driven unique mechanisms for photoreceptor protein and membrane compartmentalization.
Collapse
Affiliation(s)
| | | | - Peter D. Calvert
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
10
|
Javed A, Mattar P, Lu S, Kruczek K, Kloc M, Gonzalez-Cordero A, Bremner R, Ali RR, Cayouette M. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 2020; 147:dev.188730. [DOI: 10.1242/dev.188730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022]
Abstract
Multipotent retinal progenitor cells (RPCs) generate various cell types in a precise chronological order, but how exactly cone photoreceptor production is restricted to early stages remains unclear. Here, we show that the POU-homeodomain factors Pou2f1/Pou2f2, the homologs of Drosophila temporal identity factors nub/pdm2, regulate the timely production of cones in mice. Forcing sustained expression of Pou2f1 or Pou2f2 in RPCs expands the period of cone production, whereas misexpression in late-stage RPCs triggers ectopic cone production at the expense of late-born fates. Mechanistically, we report that Pou2f1 induces Pou2f2 expression, which binds to a POU motif in the promoter of the rod-inducing factor Nrl to repress its expression. Conversely, conditional inactivation of Pou2f2 in RPCs increases Nrl expression and reduces cone production. Finally, we provide evidence that Pou2f1 is part of a cross-regulatory cascade with the other temporal identity factors Ikzf1 and Casz1. These results uncover Pou2f1/2 as regulators of the temporal window for cone genesis and, given their widespread expression in the nervous system, raise the possibility of a general role in temporal patterning.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
| | - Suying Lu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | | | | | | | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | - Robin R. Ali
- UCL Institute of Ophthalmology, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
- Department of Medicine, Université de Montréal, Canada
- Department of Anatomy and Cell Biology; Division of Experimental Medicine, McGill University, Canada
| |
Collapse
|
11
|
Abstract
Rods and cones are retinal photoreceptor neurons required for our visual sensation. Because of their highly polarized structures and well-characterized processes of G protein-coupled receptor-mediated phototransduction signaling, these photoreceptors have been excellent models for studying the compartmentalization and sorting of proteins. Rods and cones have a modified ciliary compartment called the outer segment (OS) as well as non-OS compartments. The distinct membrane protein compositions between OS and non-OS compartments suggest that the OS is separated from the rest of the cellular compartments by multiple barriers or gates that are selectively permissive to specific cargoes. This review discusses the mechanisms of protein sorting and compartmentalization in photoreceptor neurons. Proper sorting and compartmentalization of membrane proteins are required for signal transduction and transmission. This review also discusses the roles of compartmentalized signaling, which is compromised in various retinal ciliopathies.
Collapse
Affiliation(s)
- Yoshikazu Imanishi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
12
|
Ferent J, Giguère F, Jolicoeur C, Morin S, Michaud JF, Makihara S, Yam PT, Cayouette M, Charron F. Boc Acts via Numb as a Shh-Dependent Endocytic Platform for Ptch1 Internalization and Shh-Mediated Axon Guidance. Neuron 2019; 102:1157-1171.e5. [PMID: 31054872 DOI: 10.1016/j.neuron.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/08/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023]
Abstract
During development, Shh attracts commissural axons toward the floor plate through a non-canonical, transcription-independent signaling pathway that requires the receptor Boc. Here, we find that Shh induces Boc internalization into early endosomes and that endocytosis is required for Shh-mediated growth-cone turning. Numb, an endocytic adaptor, binds to Boc and is required for Boc internalization, Shh-mediated growth-cone turning in vitro, and commissural axon guidance in vivo. Similar to Boc, Ptch1 is also internalized by Shh in a Numb-dependent manner; however, the binding of Shh to Ptch1 alone is not sufficient to induce Ptch1 internalization nor growth-cone turning. Therefore, the binding of Shh to Boc is required for Ptch1 internalization and growth-cone turning. Our data support a model where Boc endocytosis via Numb is required for Ptch1 internalization and Shh signaling in axon guidance. Thus, Boc acts as a Shh-dependent endocytic platform gating Ptch1 internalization and Shh signaling.
Collapse
Affiliation(s)
- Julien Ferent
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Neuroscience, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Fanny Giguère
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Jean-Francois Michaud
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Shirin Makihara
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Michel Cayouette
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Frederic Charron
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
13
|
The Late Endosomal Pathway Regulates the Ciliary Targeting of Tetraspanin Protein Peripherin 2. J Neurosci 2019; 39:3376-3393. [PMID: 30819798 PMCID: PMC6495125 DOI: 10.1523/jneurosci.2811-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Peripherin 2 (PRPH2) is a tetraspanin protein concentrated in the light-sensing cilium (called the outer segment) of the vertebrate photoreceptor. The mechanism underlying the ciliary targeting of PRPH2 and the etiology of cone dystrophy caused by PRPH2 mutations remain elusive. Here we show that the late endosome (LE) is the main waystation that critically sorts newly synthesized PRPH2 to the cilium. PRPH2 is expressed in the luminal membrane of the LE. We delineate multiple C-terminal motifs of PRPH2 that distinctively regulate its LE and ciliary targeting through ubiquitination and binding to ESCRT (Endosomal Sorting Complexes Required for Transport) component Hrs. Using the newly developed TetOn-inducible system in transfected male and female mouse cones in vivo, we show that the entry of nascent PRPH2 into the cone outer segment can be blocked by either cone dystrophy-causing C-terminal mutations of PRPH2, or by short-term perturbation of the LE or recycling endosomal traffic. These findings open new avenues of research to explore the biological role of the LE in the biosynthetic pathway and the etiology of cone dystrophy caused by PRPH2 mutations and/or malfunctions of the LE.SIGNIFICANCE STATEMENT Peripherin 2 (PRPH2) is a tetraspanin protein abundantly expressed in the light-sensing cilium, the outer segment, of the vertebrate photoreceptor. The mechanism underlying the ciliary transport of PRPH2 is unclear. The present study reveals a novel ciliary targeting pathway, in which the newly synthesized PRPH2 is first targeted to the lumen of the late endosome (LE) en route to the cilia. We deciphered the protein motifs and the machinery that regulates the LE trafficking of PRPH2. Using a novel TetOn-inducible system in transfected mouse cones, we showed that the LE pathway of PRPH2 is critical for its outer segment expression. A cone dystrophy-causing mutation impairs the LE and ciliary targeting of PRPH2, implicating the relevance of LE to cone/macular degenerative diseases.
Collapse
|
14
|
Zhou Y, Qiu L, Sterpka A, Wang H, Chu F, Chen X. Comparative Phosphoproteomic Profiling of Type III Adenylyl Cyclase Knockout and Control, Male, and Female Mice. Front Cell Neurosci 2019; 13:34. [PMID: 30814930 PMCID: PMC6381875 DOI: 10.3389/fncel.2019.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary cilia throughout the central nervous system (CNS). Genome-wide association studies in humans have associated ADCY3 with major depressive disorder and autistic spectrum disorder, both of which exhibit sexual dimorphism. To date, it is unclear how AC3 affects protein phosphorylation and signal networks in central neurons, and what causes the sexual dimorphism of autism. We employed a mass spectrometry (MS)-based phosphoproteomic approach to quantitatively profile differences in phosphorylation between inducible AC3 knockout (KO) and wild type (WT), male and female mice. In total, we identified 4,655 phosphopeptides from 1,756 proteins, among which 565 phosphopeptides from 322 proteins were repetitively detected in all samples. Over 46% phosphopeptides were identified in at least three out of eight biological replicas. Comparison of AC3 KO and WT datasets revealed that phosphopeptides with motifs matching proline-directed kinases' recognition sites had a lower abundance in the KO dataset than in WTs. We detected 14 phosphopeptides restricted to WT dataset (i.e., Rabl6, Spast and Ppp1r14a) and 35 exclusively in KOs (i.e., Sptan1, Arhgap20, Arhgap44, and Pde1b). Moreover, 95 phosphopeptides (out of 90 proteins) were identified only in female dataset and 26 only in males. Label-free MS spectrum quantification using Skyline further identified phosphopeptides that had higher abundance in each sample group. In total, 204 proteins had sex-biased phosphorylation and 167 of them had increased expression in females relative to males. Interestingly, among the 204 gender-biased phosphoproteins, 31% were found to be associated with autism, including Dlg1, Dlgap2, Syn1, Syngap1, Ctnna1, Ctnnd1, Ctnnd2, Pkp4, and Arvcf. Therefore, this study also provides the first phosphoproteomics evidence suggesting that gender-biased post-translational phosphorylation may be implicated in the sexual dimorphism of autism.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Liyan Qiu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Haiying Wang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
15
|
Abstract
Eukaryotic cells depend on precise genome organization within the nucleus to maintain an appropriate gene-expression profile. Critical to this process is the packaging of functional domains of open and closed chromatin to specific regions of the nucleus, but how this is regulated remains unclear. In this study, we show that the zinc finger protein Casz1 regulates higher-order nuclear organization of rod photoreceptors in the mouse retina by repressing nuclear lamina function, which leads to central localization of heterochromatin. Loss of Casz1 in rods leads to an abnormal transcriptional profile followed by degeneration. These results identify Casz1 as a regulator of higher-order genome organization. Genome organization plays a fundamental role in the gene-expression programs of numerous cell types, but determinants of higher-order genome organization are poorly understood. In the developing mouse retina, rod photoreceptors represent a good model to study this question. They undergo a process called “chromatin inversion” during differentiation, in which, as opposed to classic nuclear organization, heterochromatin becomes localized to the center of the nucleus and euchromatin is restricted to the periphery. While previous studies showed that the lamin B receptor participates in this process, the molecular mechanisms regulating lamina function during differentiation remain elusive. Here, using conditional genetics, we show that the zinc finger transcription factor Casz1 is required to establish and maintain the inverted chromatin organization of rod photoreceptors and to safeguard their gene-expression profile and long-term survival. At the mechanistic level, we show that Casz1 interacts with the polycomb repressor complex in a splice variant-specific manner and that both are required to suppress the expression of the nuclear envelope intermediate filament lamin A/C in rods. Lamin A is in turn sufficient to regulate heterochromatin organization and nuclear position. Furthermore, we show that Casz1 is sufficient to expand and centralize the heterochromatin of fibroblasts, suggesting a general role for Casz1 in nuclear organization. Together, these data support a model in which Casz1 cooperates with polycomb to control rod genome organization, in part by silencing lamin A/C.
Collapse
|
16
|
Falk N, Lösl M, Schröder N, Gießl A. Specialized Cilia in Mammalian Sensory Systems. Cells 2015; 4:500-19. [PMID: 26378583 PMCID: PMC4588048 DOI: 10.3390/cells4030500] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
Collapse
Affiliation(s)
- Nathalie Falk
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Marlene Lösl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Nadja Schröder
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
Cyclops. Can J Ophthalmol 2015. [DOI: 10.1016/j.jcjo.2015.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|