1
|
Adaptation of Inhibition Mediates Retinal Sensitization. Curr Biol 2019; 29:2640-2651.e4. [PMID: 31378605 DOI: 10.1016/j.cub.2019.06.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/14/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022]
Abstract
In response to a changing sensory environment, sensory systems adjust their neural code for a number of purposes, including an enhanced sensitivity for novel stimuli, prediction of sensory features, and the maintenance of sensitivity. Retinal sensitization is a form of short-term plasticity that elevates local sensitivity following strong, local, visual stimulation and has been shown to create a prediction of the presence of a nearby localized object. The neural mechanism that generates this elevation in sensitivity remains unknown. Using simultaneous intracellular and multielectrode recording in the salamander retina, we show that a decrease in tonic amacrine transmission is necessary for and is correlated spatially and temporally with ganglion cell sensitization. Furthermore, introducing a decrease in amacrine transmission is sufficient to sensitize nearby ganglion cells. A computational model accounting for adaptive dynamics and nonlinear pathways confirms a decrease in steady inhibitory transmission can cause sensitization. Adaptation of inhibition enhances the sensitivity to the sensory feature conveyed by an inhibitory pathway, creating a prediction of future input.
Collapse
|
2
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
3
|
Werblin FS. The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function. J Physiol 2011; 589:3691-702. [PMID: 21669978 PMCID: PMC3171878 DOI: 10.1113/jphysiol.2011.210617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract The vertebrate retina generates a stack of about a dozen different movies that represent the visual world as dynamic neural images or movies. The stack is embodied as separate strata that span the inner plexiform layer (IPL). At each stratum, ganglion cell dendrites reach up to read out inhibitory interactions between three different amacrine cell classes that shape bipolar-to-ganglion cell transmission. The nexus of these five cell classes represents a functional module, a retinal ‘hypercircuit’, that is repeated across the surface of each of the dozen strata that span the depth of the IPL. Individual differences in the characteristics of each cell class at each stratum lead to the unique processing characteristics of each neural image throughout the stack. This review shows how the interactions between the morphological and physiological characteristics of each cell class generate many of the known retinal visual functions including motion detection, directional selectivity, local edge detection, looming detection, object motion and looming detection.
Collapse
Affiliation(s)
- Frank S Werblin
- Division of Neurobiology, Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
4
|
Song Y, Slaughter MM. GABA(B) receptor feedback regulation of bipolar cell transmitter release. J Physiol 2010; 588:4937-49. [PMID: 20974680 DOI: 10.1113/jphysiol.2010.194233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABAergic amacrine cell feedback to bipolar cells in retina has been described, activating both GABA(A) and GABA(C) receptors. We explored whether metabotropic GABA(B) receptors also participate in this feedback pathway. CGP55845, a potent GABA(B) receptor antagonist, was employed to determine the endogenous role of these receptors. Ganglion cell EPSCs and IPSCs were monitored to measure the output of bipolar and amacrine cells. Using the tiger salamander slice preparation, we found that GABA(B) receptor pathways regulate bipolar cell release directly and indirectly. In the direct pathway, the GABA(B) receptor antagonist reduces EPSC amplitude, indicating that GABA(B) receptors cause enhanced glutamate release from bipolar cells to one set of ganglion cells. In the indirect pathway, the GABA(B) receptor antagonist reduces EPSC amplitude in another set of ganglion cells. The indirect pathway is only evident when GABA(A) receptors are inhibited, and is blocked by a glycine receptor antagonist. Thus, this second feedback pathway involves direct glycine feedback to the bipolar cell and this glycinergic amacrine cell is suppressed by GABAergic amacrine cells, through both GABA(A) and GABA(B) but not GABA(C) receptors. Overall, GABA(B) receptors do contribute to feedback regulation of bipolar cell transmitter release. However, unlike the ionotropic GABA receptor pathways, the metabotropic GABA receptor pathways act to enhance bipolar cell transmitter release. Furthermore, there are three discrete subsets of bipolar cell output regulated by GABA(B) receptor feedback (direct, indirect and null), implying three distinct, non-overlapping bipolar cell to ganglion cell circuits.
Collapse
Affiliation(s)
- Yunbo Song
- Department of Physiology & Biophysics, Center for Neuroscience, 124 Sherman Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
5
|
Shen W. Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons. J Neurophysiol 2005; 94:2231-8. [PMID: 16105957 DOI: 10.1152/jn.01099.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotransmitter receptor plasticity is a mechanism that can regulate the temporal and intensity encoding of a synapse. While this has been extensively studied as a mechanism of learning, less is known about such processes in sensory systems. This study examines modulation of glycine receptor function at the first synapse in the retina. It was found that horizontal cells, which are postsynaptic to photoreceptors, have glycine receptor currents that are enhanced when internal calcium is elevated. This can be achieved by glutamatergic synaptic input or by activation of voltage-gated calcium channels. When the retina was maintained in a dark-adapted state, the calcium levels in horizontal cells were relatively low. After a series of brief light stimuli, the internal calcium concentration in horizontal cells was elevated, and the glycine currents were faster and greater in amplitude. The increase of internal calcium levels was caused by increased transmitter release from photoreceptors. Thus glycine receptor function is state dependent and can be rapidly altered by synaptic input from photoreceptors. Light stimulation drives glycine receptor plasticity in the retinal neural network.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Florida Atlantic Univ., Bldg. BC-71, Rm. 229, 777 Glades Rd., Boca Raton, Florida 33431, USA.
| |
Collapse
|
6
|
Vigh J, Li GL, Hull C, von Gersdorff H. Long-term plasticity mediated by mGluR1 at a retinal reciprocal synapse. Neuron 2005; 46:469-82. [PMID: 15882646 PMCID: PMC3572841 DOI: 10.1016/j.neuron.2005.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/10/2005] [Accepted: 03/17/2005] [Indexed: 11/26/2022]
Abstract
The flow of information across the retina is controlled by reciprocal synapses between bipolar cell terminals and amacrine cells. However, the synaptic delays and properties of plasticity at these synapses are not known. Here we report that glutamate release from goldfish Mb-type bipolar cell terminals can trigger fast (delay of 2-3 ms) and transient GABA(A) IPSCs and a much slower and more sustained GABA(C) feedback. Synaptically released glutamate activated mGluR1 receptors on amacrine cells and, depending on the strength of presynaptic activity, potentiated subsequent feedback. This poststimulus enhancement of GABAergic feedback lasted for up to 10 min. This form of mGluR1-mediated long-term synaptic plasticity may provide retinal reciprocal synapses with adaptive capabilities.
Collapse
|
7
|
Hosoya T, Baccus SA, Meister M. Dynamic predictive coding by the retina. Nature 2005; 436:71-7. [PMID: 16001064 DOI: 10.1038/nature03689] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 04/27/2005] [Indexed: 11/09/2022]
Abstract
Retinal ganglion cells convey the visual image from the eye to the brain. They generally encode local differences in space and changes in time rather than the raw image intensity. This can be seen as a strategy of predictive coding, adapted through evolution to the average image statistics of the natural environment. Yet animals encounter many environments with visual statistics different from the average scene. Here we show that when this happens, the retina adjusts its processing dynamically. The spatio-temporal receptive fields of retinal ganglion cells change after a few seconds in a new environment. The changes are adaptive, in that the new receptive field improves predictive coding under the new image statistics. We show that a network model with plastic synapses can account for the large variety of observed adaptations.
Collapse
Affiliation(s)
- Toshihiko Hosoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
8
|
Yu D, Eldred WD. Nitric oxide stimulates gamma-aminobutyric acid release and inhibits glycine release in retina. J Comp Neurol 2005; 483:278-91. [PMID: 15682393 PMCID: PMC1464839 DOI: 10.1002/cne.20416] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) modulates the uptake and/or release of neurotransmitters through a variety of cellular mechanisms. However, the pharmacological and biochemical processes underlying these neurochemical effects of NO often remain unclear. In our study, we used immunocytochemical methods to study the effects of NO, cyclic guanosine monophosphate (cGMP), and peroxynitrite on the uptake and release of gamma-aminobutyric acid (GABA) and glycine in the turtle retina. In addition, we examined the involvement of glutamate receptors, calcium, and the GABA transporter in this GABA uptake and release. We also tested for interactions between the GABAergic and glycinergic systems. In general, we show that NO stimulated GABA release and inhibited glycine release. The NO-stimulated GABA release involved calcium-dependent or calcium-independent synaptic release or reversal of the GABA transporter. Some effects of NO on GABA release involved glutamate, cGMP, or peroxynitrite. NO promoted glycine uptake and inhibited its release, and this inhibition of glycine release was influenced by GABAergic modulation. These findings indicate that NO modulates the levels of the inhibitory transmitters GABA and glycine through several specific biochemical mechanisms in different retinal cell types and layers. Thus it appears that some of the previously described reciprocal interactions between GABA and glycine in the retina function through specific NO signaling pathways.
Collapse
Affiliation(s)
- Dou Yu
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
9
|
Frech MJ, Backus KH. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina. Vis Neurosci 2005; 21:645-52. [PMID: 15579227 DOI: 10.1017/s0952523804214134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Indexed: 11/07/2022]
Abstract
The synaptic terminals of mammalian rod bipolar cells are the targets of multiple presynaptic inhibitory inputs arriving from glycinergic and GABAergic amacrine cells. To investigate the contribution of these different inhibitory receptor types, we have applied the patch-clamp technique in acutely isolated slices of the adult mouse retina. By using the whole-cell configuration, we measured and analyzed the spontaneous postsynaptic currents (PSCs) in rod bipolar cells. The spontaneous synaptic activity of rod bipolar cells was very low. However, when amacrine cells were depolarized by AMPA or kainate, the PSC frequency in rod bipolar cells increased significantly. These PSCs comprised several types that could be distinguished by pharmacological and kinetic criteria. Strychnine-sensitive, glycinergic PSCs were characterized by a mean peak amplitude of -43.5 pA and a weighted decay time constant (tauw) of 10.9 ms. PSCs that persisted in the presence of strychnine, but were completely inhibited by bicuculline, were mediated by GABAARs. They had a mean peak amplitude of -20.0 pA and a significantly faster tauw of 5.8 ms. Few PSCs remained in the presence of strychnine and bicuculline, suggesting that they were mediated by GABACRs. These PSCs were characterized by much smaller amplitudes (-6.2 pA) and a significantly slower decay kinetics (tauw=51.0 ms). We conclude that rod bipolar cells express at least three types of functionally different inhibitory receptors, namely GABAARs, GABACRs, and GlyRs that may ultimately regulate the Ca2+ influx into rod bipolar cell terminals, thereby modulating their glutamate release.
Collapse
Affiliation(s)
- Moritz J Frech
- Max-Planck-Institut für Hirnforschung, Neuroanatomical Department, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Yu D, Eldred WD. GABA(A) and GABA(C) receptor antagonists increase retinal cyclic GMP levels through nitric oxide synthase. Vis Neurosci 2004; 20:627-37. [PMID: 15088716 DOI: 10.1017/s0952523803206052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signal transduction pathway plays a role in every retinal cell type. Previous studies have shown that excitatory glutamatergic synaptic pathways can increase cGMP-like immunoreactivity (cGMP-LI) in retina through stimulation of NO production, but little is known about the role of synaptic inhibition in the modulation of cGMP-LI. Gamma-amino-n-butyric acid (GABA) plays critical roles in modulating excitatory synaptic pathways in the retina. Therefore, we used GABA receptor antagonists to explore the role of GABAergic inhibitory synaptic pathways on the modulation of the NO/cGMP signal-transduction system. Cyclic GMP immunocytochemistry was used to investigate the effects of the GABA receptor antagonists bicuculline, picrotoxin, and (1,2,5,6-tetrahyropyridin-4-yl) methylphosphinic acid (TPMPA) on levels of cGMP-LI. Cyclic GMP-LI was strongly increased in response to the GABA(A) receptor antagonist bicuculline, while the GABA(C) receptor antagonist TPMPA had little effect on cGMP-LI. The GABA(A)/GABA(C) receptor antagonist, picrotoxin, caused a moderate increase in cGMP-LI, which was mimicked by the combination of bicuculline and TPMPA. The nitric oxide synthase inhibitor, S-methyl-L-thiocitrulline (SMTC), blocked the increased cGMP-LI in response to stimulation with either bicuculline or picrotoxin. Treatments with either of the glutamate receptor antagonists (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) partially blocked the increases in cGMP-LI seen in response to bicuculline, but a combination of MK-801 and CNQX completely eliminated these increases. These results suggest that inhibitory synaptic pathways involving both types of GABA receptors work through excitatory glutamatergic receptors to regulate the NO/cGMP signal-transduction pathway in retina.
Collapse
Affiliation(s)
- Dou Yu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
11
|
O'Brien BJ, Richardson RC, Berson DM. Inhibitory network properties shaping the light evoked responses of cat alpha retinal ganglion cells. Vis Neurosci 2004; 20:351-61. [PMID: 14658764 DOI: 10.1017/s0952523803204016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cat retinal ganglion cells of the Y (or alpha) type respond to luminance changes opposite those preferred by their receptive-field centers with a transient hyperpolarization. Here, we examine the spatial organization and synaptic basis of this light response by means of whole-cell current-clamp recordings made in vitro. The hyperpolarization was largest when stimulus spots approximated the size of the receptive-field center, and diminished substantially for larger spots. The hyperpolarization was largely abolished by bath application of strychnine, a blocker of glycinergic inhibition. Picrotoxin, an antagonist of ionotropic GABA receptors, greatly reduced the attenuation of the hyperpolarizing response for large spots. The data are consistent with a model in which (1) the hyperpolarization reflects inhibition by glycinergic amacrine cells of bipolar terminals presynaptic to the alpha cells, and perhaps direct inhibition of the alpha cell as well; and (2) the attenuation of the hyperpolarization by large spots reflects surround inhibition of the glycinergic amacrine by GABAergic amacrine cells. This circuitry may moderate nonlinearities in the alpha-cell light response and could account for some excitatory and inhibitory influences on alpha cells known to arise from outside the classical receptive field.
Collapse
Affiliation(s)
- Brendan J O'Brien
- Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912-1953, USA
| | | | | |
Collapse
|
12
|
Popova E, Mitova L, Vitanova L, Kupenova P. Effect of GABAergic blockade on light responses of frog retinal ganglion cells. Comp Biochem Physiol C Toxicol Pharmacol 2003; 134:175-87. [PMID: 12600677 DOI: 10.1016/s1532-0456(02)00246-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of GABAergic blockade by picrotoxin on ganglion cells (GC) activity was investigated in perfused dark adapted eyecups of frog (Rana ridibunda). PT had diverse effects on the light responses of GC in contrast to its uniform potentiating effect on the amplitude of the ERG b- and d-wave. In some (n=32) of PT-sensitive ON-OFF GC the ON and OFF responses were changed in a similar manner (both responses were potentiated or both were inhibited), but in the other (n=10) the both responses were changed in a different manner. PT influenced differentially the activity of OFF GC (n=17) as well. It not only potentiated or inhibited their light responses, but changed also the temporal characteristics of the responses. Some tonic cells became phasic ones and in some phasic cells a late component appeared under the influence of PT. In some cases (n=4) the GABAergic blockade changed the apparent cell's type, because of appearance of a new type of response (ON or OFF) non-existing before the blockade. Our results indicate that the GABAergic interneurons are involved in different networks in the inner plexiform layer of frog retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
13
|
Rieke F. Temporal contrast adaptation in salamander bipolar cells. J Neurosci 2001; 21:9445-54. [PMID: 11717378 PMCID: PMC6763932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
This work investigates how the light responses of salamander bipolar cells adapt to changes in temporal contrast: changes in the depth of the temporal fluctuations in light intensity about the mean. Contrast affected the sensitivity of bipolar cells but not of photoreceptors or horizontal cells, suggesting that adaptation occurred in signal transfer from photoreceptors to bipolars. This suggestion was confirmed by recording from photoreceptor-bipolar pairs and observing a direct dependence of the gain of signal transfer on the contrast of the light input. After an increase in contrast, the onset of adaptation in the bipolar cell had a time constant of 1-2 sec, similar to a fast component of contrast adaptation in the light responses of retinal ganglion cells (Kim and Rieke, 2001). Contrast adaptation was mediated by processes in the dendrites of both on and off bipolars. The functional properties of adaptation differed for the two bipolar types, however, with contrast having a much more pronounced effect on the kinetics of the responses of off cells than on cells.
Collapse
Affiliation(s)
- F Rieke
- Department of Physiology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
14
|
Qian H, Ripps H, Schuette E, Chappell RL. Responses of small- and large-field bipolar cells to GABA and glycine. Brain Res 2001; 893:273-7. [PMID: 11223017 DOI: 10.1016/s0006-8993(00)03282-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Morphologically distinct subtypes of retinal bipolar cells transmit information along parallel pathways to convey different aspects of the visual scene, but the synaptic mechanisms that regulate signal transmission are largely unknown. The all-rod retina of skate provides a comparatively simple system in which to correlate bipolar cell morphology with responses to the inhibitory neurotransmitters GABA and glycine. Two subtypes of bipolar cells can be identified when isolated in culture: large-field bipolar cells with extensive dendritic arbors, and small-field bipolar cells with one or two dendritic branches. Under voltage-clamp, glycine elicited significant current responses from small-field cells, but not from large-field bipolar cells. Although all bipolar cells displayed GABA-activated chloride currents mediated by both GABA(A) and GABA(C) receptors, the small-field bipolar cells showed a significantly greater contribution from GABA(A) receptors. The results of the present study reveal for the first time that the relative expression of the two classes of GABA receptor on each bipolar cell type correlates with cell morphology and the presence of the glycine receptor.
Collapse
Affiliation(s)
- H Qian
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
15
|
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 2001; 22:121-32. [PMID: 11239575 DOI: 10.1016/s0165-6147(00)01625-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In less than a decade our knowledge of the GABA(C) receptor, a new type of Cl(-)-permeable ionotropic GABA receptor, has greatly increased based on studies of both native and recombinant receptors. Careful comparison of properties of native and recombinant receptors has provided compelling evidence that GABA receptor rho-subunits are the major molecular components of GABA(C) receptors. Three distinct rho-subunits from various species have been cloned and the pattern of their expression in the retina, as well as in various brain regions, has been established. The pharmacological profile of GABA(C) receptors has been refined and more specific drugs have been developed. Molecular determinants that underlie functional properties of the receptors have been assigned to specific amino acid residues in rho-subunits. This information has helped determine the subunit composition of native receptors, as well as the molecular basis underlying subtle variations among GABA(C) receptors in different species. Finally, GABA(C) receptors play a unique functional role in retinal signal processing via three mechanisms: (1) slow activation; (2) segregation from other inhibitory receptors; and (3) contribution to multi-neuronal pathways.
Collapse
Affiliation(s)
- D Zhang
- Center for Neuroscience and Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|