1
|
Chen WF, Majercak J, Edery I. Clock-gated photic stimulation of timeless expression at cold temperatures and seasonal adaptation in Drosophila. J Biol Rhythms 2007; 21:256-71. [PMID: 16864646 DOI: 10.1177/0748730406289306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous lines of evidence indicate that the initial photoresponse of the circadian clock in Drosophila melanogaster is the light-induced degradation of TIMELESS (TIM). This posttranslational mechanism is in sharp contrast to the well-characterized pacemakers in mammals and Neurospora, where light evokes rapid changes in the transcriptional profiles of 1 or more clock genes. The authors show that light has novel effects on D. melanogaster circadian pacemakers, acutely stimulating the expression of tim at cold but not warm temperatures. This photoinduction occurs in flies defective for the classic visual phototransduction pathway or the circadian-relevant photoreceptor CRYPTOCHROME (CRY). Cold-specific stimulation of tim RNA abundance is regulated at the transcriptional level, and although numerous lines of evidence indicate that period (per) and tim expression are activated by the same mechanism, light has no measurable acute effect on per mRNA abundance. Moreover, light-induced increases in the levels of tim RNA are abolished or greatly reduced in the absence of functional CLOCK (CLK) or CYCLE (CYC) but not PER or TIM. These findings add to a growing number of examples where molecular and behavioral photoresponses in Drosophila are differentially influenced by "positive" (e.g., CLK and CYC) and "negative" (e.g., PER and TIM) core clock elements. The acute effects of light on tim expression are temporally gated, essentially restricted to the daily rising phase in tim mRNA levels. Because the start of the daily upswing in tim expression begins several hours after dawn in long photoperiods (day length), this gating mechanism likely ensures that sunrise does not prematurely stimulate tim expression during unseasonally cold spring/summer days. The results suggest that the photic stimulation of tim expression at low temperatures is part of a seasonal adaptive response that helps advance the phase of the clock on cold days, enabling flies to exhibit preferential daytime activity despite the (usually) earlier onset of dusk. Taken together with prior findings, the ability of temperature and photoperiod to adjust trajectories in the rising phases of 1 or more clock RNAs constitutes a major mechanism contributing to seasonal adaptation of clock function.
Collapse
Affiliation(s)
- Wen-Feng Chen
- Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
2
|
Preuss F, Fan JY, Kalive M, Bao S, Schuenemann E, Bjes ES, Price JL. Drosophila doubletime mutations which either shorten or lengthen the period of circadian rhythms decrease the protein kinase activity of casein kinase I. Mol Cell Biol 2004; 24:886-98. [PMID: 14701759 PMCID: PMC343813 DOI: 10.1128/mcb.24.2.886-898.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In both mammals and fruit flies, casein kinase I has been shown to regulate the circadian phosphorylation of the period protein (PER). This phosphorylation regulates the timing of PER's nuclear accumulation and decline, and it is necessary for the generation of circadian rhythms. In Drosophila melanogaster, mutations affecting a casein kinase I (CKI) ortholog called doubletime (dbt) can produce short or long periods. The effects of both a short-period (dbt(S)) and long-period (dbt(L)) mutation on DBT expression and biochemistry were analyzed. Immunoblot analysis of DBT in fly heads showed that both the dbt(S) and dbt(L) mutants express DBT at constant levels throughout the day. Glutathione S-transferase pull-down assays and coimmunoprecipitation of DBT and PER showed that wild-type DBT, DBT(S), and DBT(L) proteins can bind to PER equivalently and that these interactions are mediated by the evolutionarily conserved N-terminal part of DBT. However, both the dbt(S) and dbt(L) mutations reduced the CKI-7-sensitive kinase activity of an orthologous Xenopus laevis CKIdelta expressed in Escherichia coli. Moreover, expression of DBT in Drosophila S2 cells produced a CKI-7-sensitive kinase activity which was reduced by both the dbt(S) and dbt(L) mutations. Thus, lowered enzyme activity is associated with both short-period and long-period phenotypes.
Collapse
Affiliation(s)
- Fabian Preuss
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Ashmore LJ, Sathyanarayanan S, Silvestre DW, Emerson MM, Schotland P, Sehgal A. Novel insights into the regulation of the timeless protein. J Neurosci 2003; 23:7810-9. [PMID: 12944510 PMCID: PMC6740606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
In the Drosophila circadian clock, period (per) and its partner, timeless (tim), play a central role in the negative limb of an autoregulatory feedback loop. Unlike per, the dosage of which affects the frequency (tau) of the circadian cycle, we found that increasing copies of the tim gene has no effect on clock period length. The use of the tim promoter to express per results in a shortening of circadian period, also indicating that the regulation of tim is different from that of per. Drosophila TIM is similar to the mammalian circadian protein mPER2 in that it shuttles independently between the nucleus and cytoplasm both in vivo and in vitro. Contrary to the current model that PER and TIM heterodimerization is a prerequisite for their nuclear entry, PER is not required to transport TIM into nuclei, although it influences TIM localization and vice versa. Blocking nuclear export led to increased nuclear expression of TIM in S2 cells and in wild-type and per01 larvae, suggesting that PER may be required for nuclear retention of TIM. Unlike PER, nuclear TIM alone has no ability to repress transcription. We propose that TIM drives cycles of PER expression by regulating its stability, and in turn, PER retains TIM in the nucleus, either for the regulation of its own stability or for a novel nuclear role of TIM.
Collapse
Affiliation(s)
- Lesley J Ashmore
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
4
|
Hall JC. Genetics and molecular biology of rhythms in Drosophila and other insects. ADVANCES IN GENETICS 2003; 48:1-280. [PMID: 12593455 DOI: 10.1016/s0065-2660(03)48000-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Application of generic variants (Sections II-IV, VI, and IX) and molecular manipulations of rhythm-related genes (Sections V-X) have been used extensively to investigate features of insect chronobiology that might not have been experimentally accessible otherwise. Most such tests of mutants and molecular-genetic xperiments have been performed in Drosophila melanogaster. Results from applying visual-system variants have revealed that environmental inputs to the circadian clock in adult flies are mediated by external photoreceptive structures (Section II) and also by direct light reception chat occurs in certain brain neurons (Section IX). The relevant light-absorbing molecuLes are rhodopsins and "blue-receptive" cryptochrome (Sections II and IX). Variations in temperature are another clock input (Section IV), as has been analyzed in part by use of molecular techniques and transgenes involving factors functioning near the heart of the circadian clock (Section VIII). At that location within the fly's chronobiological system, approximately a half-dozen-perhaps up to as many as 10-clock genes encode functions that act and interact to form the circadian pacemaker (Sections III and V). This entity functions in part by transcriptional control of certain clock genes' expressions, which result in the production of key proteins that feed back negatively to regulate their own mRNA production. This occurs in part by interactions of such proteins with others that function as transcriptional activators (Section V). The implied feedback loop operates such that there are daily variations in the abundances of products put out by about one-half of the core clock genes. Thus, the normal expression of these genes defines circadian rhythms of their own, paralleling the effects of mutations at the corresponding genetic loci (Section III), which are to disrupt or apparently eliminate clock functioning. The fluctuations in the abundance of gene products are controlled transciptionally and posttranscriptionally. These clock mechanisms are being analyzed in ways that are increasingly complex and occasionally obscure; not all panels of this picture are comprehensive or clear, including problems revolving round the biological meaning or a given features of all this molecular cycling (Section V). Among the complexities and puzzles that have recently arisen, phenomena that stand out are posttranslational modifications of certain proteins that are circadianly regulated and regulating; these biochemical events form an ancillary component of the clock mechanism, as revealed in part by genetic identification of Factors (Section III) that turned out to encode protein kinases whose substrates include other pacemaking polypeptides (Section V). Outputs from insect circadian clocks have been long defined on formalistic and in some cases concrete criteria, related to revealed rhythms such as periodic eclosion and daily fluctuations of locomotion (Sections II and III). Based on the reasoning that if clock genes can regulate circadian cyclings of their own products, they can do the same for genes that function along output pathways; thus clock-regulated genes have been identified in part by virtue of their products' oscillations (Section X). Those studied most intensively have their expression influenced by circadian-pacemaker mutations. The clock-regulated genes discovered on molecular criteria have in some instances been analyzed further in their mutant forms and found to affect certain features of overt whole-organismal rhythmicity (Sections IV and X). Insect chronogenetics touches in part on naturally occurring gene variations that affect biological rhythmicity or (in some cases) have otherwise informed investigators about certain features of the organism's rhythm system (Section VII). Such animals include at least a dozen insect species other than D. melanogaster in which rhythm variants have been encountered (although usually not looked for systematically). The chronobiological "system" in the fruit fly might better be graced with a plural appellation because there is a myriad of temporally related phenomena that have come under the sway of one kind of putative rhythm variant or the other (Section IV). These phenotypes, which range well beyond the bedrock eclosion and locomotor circadian rhythms, unfortunately lead to the creation of a laundry list of underanalyzed or occult phenomena that may or may not be inherently real, whether or not they might be meaningfully defective under the influence of a given chronogenetic variant. However, such mutants seem to lend themselves to the interrogation of a wide variety of time-based attributes-those that fall within the experimental confines of conventionally appreciated circadian rhythms (Sections II, III, VI, and X); and others that consist of 24-hr or nondaily cycles defined by many kinds of biological, physiological, or biochemical parameters (Section IV).
Collapse
Affiliation(s)
- Jeffrey C Hall
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
5
|
Constance CM, Green CB, Tei H, Block GD. Bulla gouldiana period exhibits unique regulation at the mRNA and protein levels. J Biol Rhythms 2002; 17:413-27. [PMID: 12375618 DOI: 10.1177/074873002237136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors cloned the period (per) gene from the marine mollusk Bulla gouldiana, a well-characterized circadian model system. This allowed them to examine the characteristics of the per gene in a new phylum, and to make comparisons with the conserved PER domains previously characterized in insects and vertebrates. Only one copy of the per gene is present in the Bulla genome, and it is most similar to PER in two insects: the cockroach, Periplaneta americana, and silkmoth, Antheraea pernyi. Comparison with Drosophila PER (dPER) and murine PER 1 (mPER1) sequence reveals that there is greater sequence homology between Bulla PER (bPER) and dPER in the regions of dPER shown to be important to heterodimerization between dPER and Drosophila timeless. Although the structure suggests conservation between dPER and bPER, expression patterns differ. In all cells and tissues examined that are peripheral to the clock neurons in Bulla, bPer mRNA and protein are expressed constitutively in light:dark (LD) cycles. In the identified clock neurons, the basal retinal neurons (BRNs), a rhythm in bPer expression could be detected in LD cycles with a peak at zeitgeber time (ZT) 5 and trough expression at ZT 13. This temporal profile of expression more closely resembles that of mPER1 than that of dPER. bPer rhythms in the BRNs were not detected in continuous darkness. These analyses suggest that clock genes may be uniquely regulated in different circadian systems, but lead to similar control of rhythms at the cellular, tissue, and organismal levels.
Collapse
Affiliation(s)
- Cara M Constance
- National Science Foundation Center for Biological Timing, Department of Biology, University of Virginia, Charlottesville 22903-2477, USA
| | | | | | | |
Collapse
|
6
|
Bloch G, Toma DP, Robinson GE. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms 2001; 16:444-56. [PMID: 11669418 DOI: 10.1177/074873001129002123] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Young adult honey bees work inside the beehive "nursing" brood around the clock with no circadian rhythms; older bees forage for nectar and pollen outside with strong circadian rhythms. Previous research has shown that the development of an endogenous rhythm of activity is also seen in the laboratory in a constant environment. Newly emerging bees maintained in isolation are typically arrhythmic during the first few days of adult life and develop strong circadian rhythms by about a few days of age. In addition, average daily levels of period (per) mRNA in the brain are higher in foragers or forager-age bees (> 21 days of age) relative to young nest bees (approximately 7 days of age). The authors used social manipulations to uncouple behavioral rhythmicity, age, and task to determine the relationship between these factors and per. There was no obligate link between average daily levels of per brain mRNA and either behavioral rhythmicity or age. There also were no differences in per brain mRNA levels between nurse bees and foragers in social environments that promote precocious or reversed behavioral development. Nurses and other hive-age bees can have high or low levels of per mRNA levels in the brain, depending on the social environment, while foragers and foraging-age bees always have high levels. These findings suggest a link between honey bee foraging behavior and per up-regulation. Results also suggest task-related differences in the amplitude of per mRNA oscillation in the brain, with foragers having larger diurnal fluctuation in per than nurses, regardless of age. Taken together, these results suggest that social factors may exert potent influences on the regulation of clock genes.
Collapse
Affiliation(s)
- G Bloch
- Department of Entomology, University of Illinois, Urbana 61801, USA.
| | | | | |
Collapse
|
7
|
Bao S, Rihel J, Bjes E, Fan JY, Price JL. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA. J Neurosci 2001; 21:7117-26. [PMID: 11549722 PMCID: PMC6762998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
The Drosophila double-time (dbt) gene, which encodes a protein similar to vertebrate epsilon and delta isoforms of casein kinase I, is essential for circadian rhythmicity because it regulates the phosphorylation and stability of period (per) protein. Here, the circadian phenotype of a short-period dbt mutant allele (dbt(S)) was examined. The circadian period of the dbt(S) locomotor activity rhythm varied little when tested at constant temperatures ranging from 20 to 29 degrees C. However, per(L);dbt(S) flies exhibited a lack of temperature compensation like that of the long-period mutant (per(L)) flies. Light-pulse phase-response curves were obtained for wild-type, the short-period (per(S)), and dbt(S) genotypes. For the per(S) and dbt(S) genotypes, phase changes were larger than those for wild-type flies, the transition period from delays to advances was shorter, and the light-insensitive period was shorter. Immunohistochemical analysis of per protein levels demonstrated that per protein accumulates in photoreceptor nuclei later in dbt(S) than in wild-type and per(S) flies, and that it declines to lower levels in nuclei of dbt(S) flies than in nuclei of wild-type flies. Immunoblot analysis of per protein levels demonstrated that total per protein accumulation in dbt(S) heads is neither delayed nor reduced, whereas RNase protection analysis demonstrated that per mRNA accumulates later and declines sooner in dbt(S) heads than in wild-type heads. These results suggest that dbt can regulate the feedback of per protein on its mRNA by delaying the time at which it is translocated to nuclei and altering the level of nuclear PER during the declining phase of the cycle.
Collapse
Affiliation(s)
- S Bao
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | |
Collapse
|
8
|
Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr Biol 2001; 11:909-17. [PMID: 11448767 DOI: 10.1016/s0960-9822(01)00259-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The biological clock synchronizes the organism with the environment, responding to changes in light and temperature. Drosophila CRYPTOCHROME (CRY), a putative circadian photoreceptor, has previously been reported to interact with the clock protein TIMELESS (TIM) in a light-dependent manner. Although TIM dimerizes with PERIOD (PER), no association between CRY and PER has previously been revealed, and aspects of the light dependence of the TIM/CRY interaction are still unclear. RESULTS Behavioral analysis of double mutants of per and cry suggested a genetic interaction between the two loci. To investigate whether this was reflected in a physical interaction, we employed a yeast-two-hybrid system that revealed a dimerization between PER and CRY. This was further supported by a coimmunoprecipitation assay in tissue culture cells. We also show that the light-dependent nuclear interactions of PER and TIM with CRY require the C terminus of CRY and may involve a trans-acting repressor. CONCLUSIONS This study shows that, as in mammals, Drosophila CRY interacts with PER, and, as in plants, the C terminus of CRY is involved in mediating light responses. A model for the light dependence of CRY is discussed.
Collapse
Affiliation(s)
- E Rosato
- Department of Biology, University of Leicester, University Road, LE1 7RH, Leicester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Much of our current understanding of how circadian rhythms are generated is based on work done with Drosophila melanogaster. Molecular mechanisms used to assemble an endogenous clock in this organism are now known to underlie circadian rhythms in many other species, including mammals. The genetic amenability of Drosophila has led to the identification of some genes that encode components of the clock (so-called clock genes) and others that either link the clock to the environment or act downstream of it. The clock provides time-of-day cues by regulating levels of specific gene products such that they oscillate with a circadian rhythm. The mechanisms that synchronize these oscillations to light are understood to some extent. However, there are still large gaps in our knowledge, in particular with respect to the mechanisms used by the clock to control overt rhythms. It has, however, become clear that in addition to the brain clock, autonomous or semi-autonomous clocks occur in peripheral tissues where they confer circadian regulation on specific functions.
Collapse
Affiliation(s)
- J A Williams
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
10
|
Ivanchenko M, Stanewsky R, Giebultowicz JM. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 2001; 16:205-15. [PMID: 11407780 DOI: 10.1177/074873040101600303] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Drosophila melanogaster, disruption of night by even short light exposures results in degradation of the clock protein TIMELESS (TIM), leading to shifts in the fly molecular and behavioral rhythms. Several lines of evidence indicate that light entrainment of the brain clock involves the blue-light photoreceptor cryptochrome (CRY). In cryptochrome-depleted Drosophila (cry(b)), the entrainment of the brain clock by short light pulses is impaired but the clock is still entrainable by light-dark cycles, probably due to light input from the visual system. Whether cryptochrome and visual transduction pathways play a role in entrainment of noninnervated, directly photosensitive peripheral clocks is not known and the subject of this study. The authors monitored levels of the clock protein TIM in the lateral neurons (LNs) of larval brains and in the renal Malpighian tubules (MTs) of flies mutant for the cryptochrome gene (cry(b)) and in mutants that lack signaling from the visual photopigments (norpA(P41)). In cry(b) flies, light applied during the dark period failed to induce degradation of TIM both in MTs and in LNs, yet attenuated cycling of TIM was observed in both tissues in LD. This cycling was abolished in LNs, but persisted in MTs, of norpA(P41);cry(b) double mutants. Furthermore, the activity of the tim gene in the MTs of cry(b) flies, reported by luciferase, seemed stimulated by lights-on and suppressed by lights-off, suggesting that the absence of functional cryptochrome uncovered an additional light-sensitive pathway synchronizing the expression of TIM in this tissue. In constant darkness, cycling of TIM was abolished in MTs; however, it persisted in LNs of cry(b) flies. The authors conclude that cryptochrome is involved in TIM-mediated entrainment of both central LN and peripheral MT clocks. Cryptochrome is also an indispensable component of the endogenous clock mechanism in the examined peripheral tissue, but not in the brain. Thus, although neural and epithelial cells share the core clock mechanism, some clock components and light-entrainment pathways appear to have tissue-specific roles.
Collapse
Affiliation(s)
- M Ivanchenko
- Department of Entomology, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|