1
|
Li E, Lin W, Yan Y, Yang H, Wang X, Chen Q, Lv D, Chen G, Chen H, Guo T. Synaptic Transistor Capable of Accelerated Learning Induced by Temperature-Facilitated Modulation of Synaptic Plasticity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46008-46016. [PMID: 31724851 DOI: 10.1021/acsami.9b17227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Neuromorphic computation, which emulates the signal process of the human brain, is considered to be a feasible way for future computation. Realization of dynamic modulation of synaptic plasticity and accelerated learning, which could improve the processing capacity and learning ability of artificial synaptic devices, is considered to further improve energy efficiency of neuromorphic computation. Nevertheless, realization of dynamic regulation of synaptic weight without an external regular terminal and the method that could endow artificial synaptic devices with the ability to modulate learning speed have rarely been reported. Furthermore, finding suitable materials to fully mimic the response of photoelectric stimulation is still challenging for photoelectric synapses. Here, a floating gate synaptic transistor based on an L-type ligand-modified all-inorganic CsPbBr3 perovskite quantum dots is demonstrated. This work provides first clear experimental evidence that the synaptic plasticity can be dynamically regulated by changing the waveforms of action potential and the environment temperature and both of these parameters originate from and are crucial in higher organisms. Moreover, benefiting from the excellent photoelectric properties and stability of quantum dots, a temperature-facilitated learning process is illustrated by the classical conditioning experiment with and without illumination, and the mechanism of synaptic plasticity is also demonstrated. This work offers a feasible way to realize dynamic modulation of synaptic weight and accelerating the learning process of artificial synapses, which showed great potential in the reduction of energy consumption and improvement of efficiency of future neuromorphic computing.
Collapse
Affiliation(s)
- Enlong Li
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Weikun Lin
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Yujie Yan
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Huihuang Yang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Xiumei Wang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Qizhen Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - DongXu Lv
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Gengxu Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology , Fuzhou University , Fuzhou 350002 , China
| |
Collapse
|
2
|
Tashiro N, Nishi S. Short-term facilitation and depression of transmitter release at amphibian sympathetic ganglionic cells - Mathematical/computational modeling. Brain Res 2017; 1672:35-43. [PMID: 28684049 DOI: 10.1016/j.brainres.2017.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 03/01/2017] [Accepted: 06/28/2017] [Indexed: 11/19/2022]
Abstract
There have been few investigations of the short-term plasticity of synaptic transmission at amphibian sympathetic ganglionic cells where the frequency of miniature excitatory postsynaptic potentials is too low to measure an accurate quantum size. This has made it difficult to investigate the mechanism of synaptic transmission at the ganglionic cells by quantal analysis. A theoretical equation, therefore, is proposed. This equation is based on the premise that transmitter release is due to the product of two factors: intracellular calcium ([Ca2+]i) and acetylcholine (ACh), which is a readily releasable transmitter. The equation accounts for the mechanism of synaptic facilitation and depression of transmitter release at the ganglionic cells in the paired-pulse experiments. The purpose of the present experiment is to investigate whether the equation accounts for the mechanism of short-term plasticity of synaptic transmission produced by a train of pulses at the ganglionic cells. Trains of excitatory postsynaptic current (EPSC) were recorded, and the ratios of the nth EPSC induced by the nth pulse to the initial EPSC were analyzed by the equation. The results indicated that the mechanism of short-term facilitation and depression was interpreted by the equation, which met the following two requirements: [Ca2+]i consisting of two components of residual Ca2+ and the mobilization rate of ACh which accelerated as stimulus frequencies increased. The findings were consistent with those clarified by the quantal analysis. It is suggested that the theoretical equation is also useful for the investigation of the effect of chemical substances on synaptic transmission.
Collapse
Affiliation(s)
- Nobutada Tashiro
- Neurophysiology Laboratory, Departments of Pharmacology and Therapeutics, Loyola University Medical Center, Maywood, IL 60153, USA.
| | - Shogoro Nishi
- Neurophysiology Laboratory, Departments of Pharmacology and Therapeutics, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
3
|
Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron 2011; 70:991-1004. [PMID: 21658590 PMCID: PMC3148031 DOI: 10.1016/j.neuron.2011.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
The release of neurotransmitter-filled vesicles after action potentials occurs with discrete time courses: submillisecond phasic release that can be desynchronized by activity followed by "delayed release" that persists for tens of milliseconds. Delayed release has a well-established role in synaptic integration, but it is not clear whether desynchronization of phasic release has physiological consequences. At the climbing fiber to Purkinje cell synapse, the synchronous fusion of multiple vesicles is critical for generating complex spikes. Here we show that stimulation at physiological frequencies drives the temporal dispersion of vesicles undergoing multivesicular release, resulting in a slowing of the EPSC on the millisecond timescale. Remarkably, these changes in EPSC kinetics robustly alter the Purkinje cell complex spike in a manner that promotes axonal propagation of individual spikelets. Thus, desynchronization of multivesicular release enhances the precise and efficient information transfer by complex spikes.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Biology, University of Freiburg, 79104 Freiburg, Germany
- Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham; Birmingham, AL 35294 USA
| | - Linda Overstreet-Wadiche
- Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham; Birmingham, AL 35294 USA
| | - Jacques I. Wadiche
- Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham; Birmingham, AL 35294 USA
| |
Collapse
|
4
|
Tolnai S, Englitz B, Scholbach J, Jost J, Rübsamen R. Spike transmission delay at the calyx of Held in vivo: rate dependence, phenomenological modeling, and relevance for sound localization. J Neurophysiol 2009; 102:1206-17. [PMID: 19515955 DOI: 10.1152/jn.00275.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmission at central synapses exhibits rapid changes in response amplitude under different patterns of stimulation. Whether the delay associated with the transmission of action potentials is similarly modifiable is important for temporally precise computations. We address this question at the calyx of Held of the medial nucleus of the trapezoid body (MNTB) in Mongolian gerbils in vivo using extracellular recordings. Here the pre- and postsynaptic activity can be observed simultaneously, allowing the definition of an action potential transmission delay (ATD) from the pre- to the postsynaptic side. We find the ATD to increase as a function of spike rate (10-40%). The temporal dynamics of the ATD increase exhibit an exponential shape with activity-dependent time constants ( approximately 15-25 ms). Recovery dynamics of ATD were mono- (20-70 ms) or biexponential with fast (3-20 ms) and slow time constants (50-500 ms). Using a phenomenological model to capture ATD dynamics, we estimated DeltaATD = 5-30 micros per transmitted action potential. Using vocalizations and cage noise stimuli, we confirm that substantial changes in ATD occur in natural situations. Because the ATD changes cover the behaviorally relevant range of interaural time differences in gerbils, these results could provide constraints for models of sound localization.
Collapse
Affiliation(s)
- Sandra Tolnai
- Institute of Biology II, University of Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
5
|
Allana TN, Lin JW. Effects of increasing Ca2+ channel-vesicle separation on facilitation at the crayfish inhibitory neuromuscular junction. Neuroscience 2008; 154:1242-54. [PMID: 18541384 PMCID: PMC2577849 DOI: 10.1016/j.neuroscience.2008.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/04/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
We investigated the mechanism of facilitation at the crayfish inhibitory neuromuscular junction before and after blocking P-type Ca(2+) channels. P-type channels have been shown to be closer to releasable synaptic vesicles than non-P-type channels at this synapse. Prior to the block of P-type channels, facilitation evoked by a train of 10 action potentials at 100 Hz was increased by application of 40 mM [Mg(2+)](o), but decreased by pressure-injected EGTA. Blocking P-type channels with 5 nM omega-Aga IVA, which reduced total Ca(2+) influx and release to levels comparable to that recorded in 40 mM [Mg(2+)](o), did not change the magnitude of facilitation. We explored whether this observation could be attributed to the buffer saturation model of facilitation, since increasing the Ca(2+) channel-vesicle separation could potentially enhance the role of endogenous buffers. The characteristics of facilitation in synapses treated with omega-Aga IVA were probed with broad action potentials in the presence of K(+) channel blockers. After Ca(2+) channel-vesicle separation was increased by omega-Aga IVA, facilitation probed with broad action potential was still decreased by EGTA injection and increased by 40 mM [Mg(2+)](o). EGTA-AM perfusion was used to test the impact of EGTA over a range of concentration in omega-Aga IVA-poisoned preparations. The results showed a concentration dependent decrease in facilitation as EGTA concentration rose. Thus, probing facilitation with EGTA and reduced Ca(2+) influx showed that characteristics of facilitation are not changed after the role of endogenous buffer is enhanced by increasing Ca(2+) channel-vesicle separation. There is no clear indication that buffer saturation has become the dominant mechanism for facilitation after omega-Aga IVA poisoning. Finally, we sought correlation between residual Ca(2+) and the magnitude of facilitation. Using fluorescence transients of a low affinity Ca(2+) indicator, we calculated the ratio of fluorescence amplitude measured immediately before test pulse (residual Ca(2+)) to that evoked during action potential (local Ca(2+)). This ratio provides an estimate of relative changes between residual Ca(2+) and local Ca(2+) important for release. There is a significant increase in the ratio when Ca(2+) influx is reduced by 40 mM [Mg(2+)](o). The magnitude of facilitation exhibited a clear and positive correlation with the ratio, regardless of separation between Ca(2+) channels and releasable vesicles. This correlation suggests the importance of relative changes between residual and local Ca(2+) and lends support to the residual Ca(2+) hypothesis of facilitation.
Collapse
Affiliation(s)
- T N Allana
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
6
|
Release-dependent variations in synaptic latency: a putative code for short- and long-term synaptic dynamics. Neuron 2008; 56:1048-60. [PMID: 18093526 DOI: 10.1016/j.neuron.2007.10.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 07/30/2007] [Accepted: 10/29/2007] [Indexed: 11/23/2022]
Abstract
In the cortex, synaptic latencies display small variations ( approximately 1-2 ms) that are generally considered to be negligible. We show here that the synaptic latency at monosynaptically connected pairs of L5 and CA3 pyramidal neurons is determined by the presynaptic release probability (Pr): synaptic latency being inversely correlated with the amplitude of the postsynaptic current and sensitive to manipulations of Pr. Changes in synaptic latency were also observed when Pr was physiologically regulated in short- and long-term synaptic plasticity. Paired-pulse depression and facilitation were respectively associated with increased and decreased synaptic latencies. Similarly, latencies were prolonged following induction of presynaptic LTD and reduced after LTP induction. We show using the dynamic-clamp technique that the observed covariation in latency and synaptic strength is a synergistic combination that significantly affects postsynaptic spiking. In conclusion, amplitude-related variation in latency represents a putative code for short- and long-term synaptic dynamics in cortical networks.
Collapse
|
7
|
Abstract
Proper functioning of the nervous system requires precise control of neurotransmitter release. Synaptotagmin, a synaptic vesicle protein, is crucial for the temporal control of neurotransmitter release. The mechanism of synaptotagmin function is still under debate. To investigate the mechanism by which synaptotagmin controls neurotransmitter release, we injected an antibody of rat synaptotagmin I into a crayfish motor axon. We found that the antibody enhanced synaptic transmission at crayfish neuromuscular junctions by increasing the amplitude of the evoked synaptic response. This effect was antibody-dose dependent. The antibody also reduced the rise time of the synaptic potentials. These effects were accompanied by a reduction in the Hill coefficient for Ca(2+)-dependence of synaptic transmission. Our findings support the hypothesis that synaptotagmin inhibits neurotransmitter release in the absence of Ca(2+).
Collapse
Affiliation(s)
- Shao-Ying Hua
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | | | |
Collapse
|
8
|
Fedchyshyn MJ, Wang LY. Activity-dependent changes in temporal components of neurotransmission at the juvenile mouse calyx of Held synapse. J Physiol 2007; 581:581-602. [PMID: 17347264 PMCID: PMC2075169 DOI: 10.1113/jphysiol.2007.129833] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The temporal fidelity of synaptic transmission is constrained by the reproducibility of time delays such as axonal conduction delay and synaptic delay, but very little is known about the modulation of these distinct components. In particular, synaptic delay is not generally considered to be modifiable under physiological conditions. Using simultaneous paired patch-clamp recordings from pre- and postsynaptic elements of the calyx of Held synapse, in juvenile mouse auditory brainstem slices, we show here that synaptic activity (20-200 Hz) leads to activity-dependent increases in synaptic delay and its variance as well as desynchronization of evoked responses. Such changes were most robust at 200 Hz in 2 mM extracellular Ca(2+) ([Ca(2+)](o)), and could be attenuated by lowering [Ca(2+)](o) to 1 mM, increasing temperature to 35 degrees C, or application of the GABA(B)R agonist baclofen, which inhibits presynaptic Ca(2+) currents (I(Ca)). Conduction delay also exhibited slight activity-dependent prolongation, but this prolongation was only sensitive to temperature, and not to [Ca(2+)](o) or baclofen. Direct voltage-clamp recordings of I(Ca) evoked by repeated action potential train template (200 Hz) revealed little jitter in the timing and kinetics of I(Ca) under various conditions, suggesting that increases in synaptic delay and its variance occur downstream of Ca(2+) entry. Loading the Ca(2+) chelator EGTA-AM into terminals reduced the progression rate, the extent of activity-dependent increases in various delay components, and their variance, implying that residual Ca(2+) accumulation in the presynaptic nerve terminal induces these changes. Finally, by applying a test pulse at different intervals following a 200 Hz train (150 ms), we demonstrated that prolongation in the various delay components reverses in parallel with recovery in synaptic strength. These observations suggest that a depletion of the readily releasable pool of SVs during high-frequency activity may downregulate not only synaptic strength but also decrease the temporal fidelity of neurotransmission at this and other central synapses.
Collapse
Affiliation(s)
- Michael J Fedchyshyn
- Division of Neurology, The Hospital for Sick Children, Department of Physiology, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Lin JW, Fu Q, Allana T. Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. J Neurophysiol 2005; 94:377-86. [PMID: 15985697 DOI: 10.1152/jn.00617.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca2+ indicators of varying affinity and mobility were pressure injected into the presynaptic axon of the inhibitor of the crayfish neuromuscular junction (NMJ). Fluorescence transients recorded at a 2-kHz resolution were used to probe physiological parameters governing the decay of fluorescence transients within 100 ms after an action potential (early decay). Blocking Ca2+ extrusion or Ca2+ sequestration processes did not significantly alter early decay, arguing against a role for either mechanism. Fluorescence transients recorded with low mobility or fixed indicators exhibited early decay similar to that recorded with indicators of comparable affinity but high mobility, suggesting that early decay was not due to the rate of Ca2+-indicator diffusion. The extent of early decay correlated closely with the affinity, but not mobility, of the Ca2+ sensitive dyes tested. These results implicate intrinsic buffers with slow Ca2+ binding kinetics as the most likely determinants of early decay. However, computer simulations showed that intrinsic buffers with a slow binding rate are unlikely to be the only ones present in the system because the slow kinetics would be unable to buffer incoming Ca2+ during an action potential and would result in momentary indicator saturation. In fact, experimental data show that the peak amplitude of an action potential activated Ca+ transient is about 20% of the maximal fluorescence intensity activated by prolonged Ca2+ influx. We conclude that endogenous buffering at the crayfish NMJ includes both fast and slow components, the former being fast enough to compete with fast Ca2+ indicators, and the latter dictating the early decay.
Collapse
Affiliation(s)
- Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington St., Boston, Massachuetts 02215, USA.
| | | | | |
Collapse
|
10
|
Lin JW, Fu Q. Modulation of available vesicles and release kinetics at the inhibitor of the crayfish neuromuscular junction. Neuroscience 2005; 130:889-95. [PMID: 15652987 DOI: 10.1016/j.neuroscience.2004.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 11/21/2022]
Abstract
We have investigated the effect of serotonin (5-HT) and okadaic acid (OA) on presynaptic processes at the crayfish inhibitory neuromuscular junction. Two different physiological parameters of transmitter release were examined: release kinetics and the size of the readily releasable pool of vesicles (RRP). Using a paired pulse stimulus and high frequency trains, we established that a single broad action potential, recorded in 20 mM tetraethylammonium and 1 mM 4-amino-pyridine, released the RRP in its entirety. Thus, by measuring the amplitude of inhibitory postsynaptic potential (IPSC) we were able to directly assess the effects of 5-HT and OA on the RRP. Serotonin at 200 nM and OA at 2.5 microM each significantly increased IPSC above control levels and the effects of these two modulators were comparable. Both modulators also induced a leftward shift in the rising phase of IPSC, i.e. an apparent acceleration in release kinetics. The shift caused by OA was significantly more pronounced than that induced by 5-HT. This apparent acceleration in release was not associated with a corresponding change in the presynaptic Ca2+ transient measured at a 2 kHz resolution, suggesting that modulation was not due to an acceleration in Ca2+ channel kinetics. In view of the comparable increase in the size of the RRP by the modulators, the differential modulation of release kinetics suggests that these two parameters may be modulated by separate biochemical processes.
Collapse
Affiliation(s)
- J-W Lin
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
11
|
Bykhovskaia M, Polagaeva E, Hackett JT. Mechnisms underlying different facilitation forms at the lobster neuromuscular synapse. Brain Res 2004; 1019:10-21. [PMID: 15306233 DOI: 10.1016/j.brainres.2004.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2004] [Indexed: 11/25/2022]
Abstract
At the crustacean neuromuscular junction, facilitation elicited by a repetitive stimulation reaches a plateau level that is proportional to the stimulation frequency. In the present study we demonstrated that plateau facilitation (F(plateau)) does not depend on Ca(2+) manipulations. We manipulated Ca(2+) concentration in the following ways: (1) applying cell permeable chelators BAPTA-AM or EGTA-AM; (2) decreasing Ca(2+) concentration in the extracellular media; (3) enhancing Ca(2+) influx by 4-aminipyridin. We found that neither F(plateau) is decreased by lowering Ca(2+) nor it is increased by enhancing Ca(2+) influx. In contrast, facilitation elicited by a short train of stimuli (F(growth)) was altered by Ca(2+) manipulations. These results suggested that F(plateau) does not result from accumulation of free intracellular Ca(2+). We hypothesized that F(plateau) results from the accumulation of synaptic vesicles properly activated for transmitter release, the readily releasable pool (RRP). To test this hypothesis, we measured the increase in RRP employing local applications of hypertonic solutions (HS). We found that the size of RRP was significantly increased after F(plateau) was induced. Our results suggest that facilitation is mediated by two mechanisms: the increase in the residual Ca(2+) and the increase in RRP. Frequency facilitation during continuous stimulation, F(plateau), is primarily controlled by the increase in RRP.
Collapse
Affiliation(s)
- Maria Bykhovskaia
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA 18015, USA.
| | | | | |
Collapse
|
12
|
Allana TN, Lin JW. Relative distribution of Ca2+ channels at the crayfish inhibitory neuromuscular junction. J Neurophysiol 2004; 92:1491-500. [PMID: 15140907 DOI: 10.1152/jn.00287.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the Ca(2+) channel-synaptic vesicle topography at the inhibitor of the crayfish (Procambarus Clarkii) neuromuscular junction (NMJ) by analyzing the effect of different modes of Ca(2+) channel block on transmitter release. Initial identification of Ca(2+) channels revealed the presence of two classes, P and non-P-type with P-type channels governing approximately 70% of the total Ca(2+) influx. The remaining Ca(2+) influx was completely blocked by Cd(2+) but not by saturating concentrations of omega-conotoxins MVIIC and GVIA, or nifedipine and SNX-482. To examine the relative spatial distribution of Ca(2+) channels with respect to synaptic vesicles, we compared changes in inhibitory postsynaptic current amplitude and synaptic delay resulting from different spatial profiles of [Ca(2+)](i) around release sites. Specifically, addition of either [Mg(2+)](o), which decreases single-channel current, or omega-Aga IVA, which completely blocks P-type channels, prolonged synaptic delay by a similar amount when Ca(2+) influx block was <40%. Because non-P-type channels are able to compensate for blocked P-type channels, it suggests that these channels overlap considerably in their distribution. However, when Ca(2+) influx was blocked by approximately 50%, omega-Aga IVA increased delay significantly more than Mg(2+), suggesting that P-type channels are located closer than non-P-type channels to synaptic vesicles. This distribution of Ca(2+) channels was further supported by the observations that non-P-type channels are unable to trigger release in physiological saline and EGTA preferentially prolongs synaptic delay dominated by non-P-type channels when transmitter release is evoked with broad action potentials. We therefore conclude that although non-P-type channels do not directly trigger release under physiological conditions, their distribution partially overlaps with P-type channels.
Collapse
Affiliation(s)
- Tariq N Allana
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | |
Collapse
|
13
|
Sippy T, Cruz-Martín A, Jeromin A, Schweizer FE. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 2003; 6:1031-8. [PMID: 12947410 PMCID: PMC3132582 DOI: 10.1038/nn1117] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 07/25/2003] [Indexed: 11/08/2022]
Abstract
Short-term synaptic plasticity is a defining feature of neuronal activity, but the underlying molecular mechanisms are poorly understood. Depression of synaptic activity might be due to limited vesicle availability, whereas facilitation is thought to result from elevated calcium levels. However, it is unclear whether the strength and direction (facilitation versus depression) of plasticity at a given synapse result from preexisting synaptic strength or whether they are regulated by separate mechanisms. Here we show, in rat hippocampal cell cultures, that increases in the calcium binding protein neuronal calcium sensor-1 (NCS-1) can switch paired-pulse depression to facilitation without altering basal synaptic transmission or initial neurotransmitter release probability. Facilitation persisted during high-frequency trains of stimulation, indicating that NCS-1 can recruit 'dormant' vesicles. Our results suggest that NCS-1 acts as a calcium sensor for short-term plasticity by facilitating neurotransmitter output independent of initial release. We conclude that separate mechanisms are responsible for determining basal synaptic strength and short-term plasticity.
Collapse
Affiliation(s)
- Tanya Sippy
- Department of Neurobiology and The Brain Research Institute, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | - Alberto Cruz-Martín
- Department of Neurobiology and The Brain Research Institute, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, California 90095, USA
- Interdepartmental Ph.D. Program for Neuroscience, UCLA, Los Angeles, California 90095, USA
| | - Andreas Jeromin
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Felix E Schweizer
- Department of Neurobiology and The Brain Research Institute, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive South, Los Angeles, California 90095, USA
- Interdepartmental Ph.D. Program for Neuroscience, UCLA, Los Angeles, California 90095, USA
- Correspondence should be addressed to F.E.S. ()
| |
Collapse
|
14
|
Diana MA, Marty A. Characterization of depolarization-induced suppression of inhibition using paired interneuron--Purkinje cell recordings. J Neurosci 2003; 23:5906-18. [PMID: 12843295 PMCID: PMC6741228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Depolarization-induced suppression of inhibition (DSI) is a retrograde form of synaptic inhibition involving the Ca2+-dependent release of cannabinoids from the postsynaptic cell. DSI exerts multiple effects on presynaptic neurons: here, we establish the breakdown of DSI in its individual components at the synapses between basket and stellate cells and Purkinje cells. In the presence of tetrodotoxin, the change in IPSC frequency entirely accounted for the decrease of transmission during DSI; in contrast, without tetrodotoxin, the reductions of frequency and average amplitude gave equal contributions. In paired recordings, transmission displayed an irreversible rundown unless interneurons were recorded from with the perforated patch method. Under these conditions, a DSI of 68.8% was measured; the failure rate and the paired pulse ratio (at 20 msec intervals) increased from 1.2 to 20.2 and 95.6 to 132.6%, respectively, and the variance to mean ratio augmented 2.17-fold. Presynaptic dialysis with Cs+ led to a major potentiation of synaptic strength and to a marked reduction of DSI with respect to control potassium conditions; DSI recovered only partially when decreasing the extracellular Ca2+ concentration to match the control IPSC amplitudes. These results, combined with those of Kreitzer et al. (2002), indicate that three distinct presynaptic processes contribute to DSI: reductions of miniature frequency (13.4% of total DSI), of presynaptic action potential frequency (23.2%), and of the probability that presynaptic depolarizations elicit transmitter release (63.4%). The latter component involves a modulation of K+ channels and trial-to-trial modifications of the presynaptic signal.
Collapse
Affiliation(s)
- Marco A Diana
- Laboratoire de Physiologie Cérébrale, Université Paris 5, 75006 Paris, France
| | | |
Collapse
|
15
|
Felmy F, Neher E, Schneggenburger R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 2003; 37:801-11. [PMID: 12628170 DOI: 10.1016/s0896-6273(03)00085-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In nerve terminals, residual Ca(2+) remaining from previous activity can cause facilitation of transmitter release by a mechanism that is still under debate. Here we show that the intracellular Ca(2+) sensitivity of transmitter release at the calyx of Held is largely unchanged during facilitation, which leaves an increased microdomain Ca(2+) signal as a possible mechanism for facilitation. We measured the Ca(2+) dependencies of facilitation, as well as of transmitter release, to estimate the required increment in microdomain Ca(2+). These measurements show that linear summation of residual and microdomain Ca(2+) accounts for only 30% of the observed facilitation. However, a small degree of supralinearity in the summation of intracellular Ca(2+) signals, which might be caused by saturation of cytosolic Ca(2+) buffer(s), is sufficient to explain facilitation at this CNS synapse.
Collapse
Affiliation(s)
- Felix Felmy
- Abteilung Membranbiophysik and AG Synaptische Dynamik und Modulation, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
16
|
Abstract
At most synapses, information about the processes underlying transmitter release evoked by a presynaptic action potential has been gathered indirectly, based on characterization of the postsynaptic response. Traditionally, the two electrophysiological parameters used for this indirect investigation are the amplitude and latency of the response. The amplitude measures amount of transmitter released; the latency (synaptic delay) reflects the kinetics of a sequence of events that culminates in release. The latency distribution of quantal events, or the time course of composite evoked responses, can be used to infer the time course of the elevated release probability following a stimulus. Recent studies have demonstrated that synaptic delay is not invariant, but is modifiable during several forms of short-term synaptic plasticity. This suggests that the step of transmitter secretion can be modulated directly. Several models for short-term synaptic plasticity are evaluated in the context of the observed changes in synaptic delay.
Collapse
Affiliation(s)
- Jen-Wei Lin
- Dept of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
17
|
Abstract
Synaptic transmission is a dynamic process. Postsynaptic responses wax and wane as presynaptic activity evolves. This prominent characteristic of chemical synaptic transmission is a crucial determinant of the response properties of synapses and, in turn, of the stimulus properties selected by neural networks and of the patterns of activity generated by those networks. This review focuses on synaptic changes that result from prior activity in the synapse under study, and is restricted to short-term effects that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation, augmentation, and post-tetanic potentiation, are usually attributed to effects of a residual elevation in presynaptic [Ca(2+)]i, acting on one or more molecular targets that appear to be distinct from the secretory trigger responsible for fast exocytosis and phasic release of transmitter to single action potentials. We discuss the evidence for this hypothesis, and the origins of the different kinetic phases of synaptic enhancement, as well as the interpretation of statistical changes in transmitter release and roles played by other factors such as alterations in presynaptic Ca(2+) influx or postsynaptic levels of [Ca(2+)]i. Synaptic depression dominates enhancement at many synapses. Depression is usually attributed to depletion of some pool of readily releasable vesicles, and various forms of the depletion model are discussed. Depression can also arise from feedback activation of presynaptic receptors and from postsynaptic processes such as receptor desensitization. In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity. Finally, we summarize the recent literature on putative molecular players in synaptic plasticity and the effects of genetic manipulations and other modulatory influences.
Collapse
Affiliation(s)
- Robert S Zucker
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|