1
|
Suryavanshi P, Sawant-Pokam P, Clair S, Brennan KC. Increased presynaptic excitability in a migraine with aura mutation. Brain 2024; 147:680-697. [PMID: 37831655 PMCID: PMC10834252 DOI: 10.1093/brain/awad326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 10/15/2023] Open
Abstract
Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Punam Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sarah Clair
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
2
|
Guyonnet-Hencke T, Reimann MW. A parcellation scheme of mouse isocortex based on reversals in connectivity gradients. Netw Neurosci 2023; 7:999-1021. [PMID: 37781146 PMCID: PMC10473268 DOI: 10.1162/netn_a_00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 10/03/2023] Open
Abstract
The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex. To that end, we analyzed a publicly available dataset of average mouse brain connectivity, and split the isocortex into disjunct regions. Instead of clustering connectivity based on modularity, our scheme is inspired by methods that split sensory cortices into subregions where gradients of neuronal response properties, such as the location of the receptive field, reverse. We calculated comparable gradients from voxelized brain connectivity data and automatically detected reversals in them. This approach better respects the known presence of functional gradients within brain regions than clustering-based approaches. Placing borders at the reversals resulted in a parcellation into 41 subregions that differs significantly from an established scheme in nonrandom ways, but is comparable in terms of the modularity of connectivity between regions. It reveals unexpected trends of connectivity, such as a tripartite split of somatomotor regions along an anterior to posterior gradient. The method can be readily adapted to other organisms and data sources, such as human functional connectivity.
Collapse
Affiliation(s)
- Timothé Guyonnet-Hencke
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Michael W. Reimann
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
3
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
4
|
Udvary D, Harth P, Macke JH, Hege HC, de Kock CPJ, Sakmann B, Oberlaender M. The impact of neuron morphology on cortical network architecture. Cell Rep 2022; 39:110677. [PMID: 35417720 PMCID: PMC9035680 DOI: 10.1016/j.celrep.2022.110677] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents. Neuronal network architectures reflect the morphologies of their constituents Morphology predicts nonrandom connectivity from subcellular to network scales Morphology predicts connectivity patterns consistent with those observed empirically Neuron morphology is a major source for wiring specificity in the cerebral cortex
Collapse
Affiliation(s)
- Daniel Udvary
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig Erhard Allee 2, 53175 Bonn, Germany
| | - Philipp Harth
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| | - Jakob H Macke
- Machine Learning in Science, Tübingen University, Maria von Linden Straße 6, 72076 Tübingen, Germany
| | - Hans-Christian Hege
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| | - Christiaan P J de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 Amsterdam, the Netherlands
| | - Bert Sakmann
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig Erhard Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
5
|
Ma L, Patel M. A model of lateral interactions as the origin of multiwhisker receptive fields in rat barrel cortex. J Comput Neurosci 2021; 50:181-201. [PMID: 34854018 DOI: 10.1007/s10827-021-00804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).
Collapse
Affiliation(s)
- Linda Ma
- Department of Mathematics, 200 Ukrop Way, Jones Hall, William & Mary, Williamsburg, 23185, VA, USA
| | - Mainak Patel
- Department of Mathematics, 200 Ukrop Way, Jones Hall, William & Mary, Williamsburg, 23185, VA, USA.
| |
Collapse
|
6
|
Domanski APF, Booker SA, Wyllie DJA, Isaac JTR, Kind PC. Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nat Commun 2019; 10:4814. [PMID: 31645553 PMCID: PMC6811545 DOI: 10.1038/s41467-019-12736-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Sensory hypersensitivity is a common and debilitating feature of neurodevelopmental disorders such as Fragile X Syndrome (FXS). How developmental changes in neuronal function culminate in network dysfunction that underlies sensory hypersensitivities is unknown. By systematically studying cellular and synaptic properties of layer 4 neurons combined with cellular and network simulations, we explored how the array of phenotypes in Fmr1-knockout (KO) mice produce circuit pathology during development. We show that many of the cellular and synaptic pathologies in Fmr1-KO mice are antagonistic, mitigating circuit dysfunction, and hence may be compensatory to the primary pathology. Overall, the layer 4 network in the Fmr1-KO exhibits significant alterations in spike output in response to thalamocortical input and distorted sensory encoding. This developmental loss of layer 4 sensory encoding precision would contribute to subsequent developmental alterations in layer 4-to-layer 2/3 connectivity and plasticity observed in Fmr1-KO mice, and circuit dysfunction underlying sensory hypersensitivity.
Collapse
Affiliation(s)
- Aleksander P F Domanski
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Developmental Synaptic Plasticity Section, NINDS, NIH, Bethesda, MD, 20892, USA.
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
| | - John T R Isaac
- Developmental Synaptic Plasticity Section, NINDS, NIH, Bethesda, MD, 20892, USA.
- Janssen Neuroscience, J&J London Innovation Centre, J&J London Innovation Centre, One Chapel Place, London, W1G 0B, UK.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
7
|
Analysis of feedforward mechanisms of multiwhisker receptive field generation in a model of the rat barrel cortex. J Theor Biol 2019; 477:51-62. [PMID: 31201881 DOI: 10.1016/j.jtbi.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
There is substantial anatomical segregation in the organization of the rodent barrel system - each whisker on the mystacial pad sends input to TC cells within a dedicated thalamic barreloid, which in turn innervates a corresponding cortical barrel, and RS cells within a barrel respond primarily to deflections of the corresponding whisker at the beginning of the dedicated transmission line (the principal whisker, PW). However, it is also well-established that barrel cells exhibit multiwhisker receptive fields (RFs), and display lower amplitude, longer latency responses to deflections of non-PWs (or adjacent whiskers, AWs). There is considerable controversy regarding the origin of such multiwhisker RFs; three possibilities include: (i) TC cells within a barreloid respond to multiple whiskers, and barrel RS cells simply inherit multiwhisker responses from their aligned barreloid; (ii) TC cells respond only to the PW, but individual barreloids innervate multiple barrels; (iii) multiwhisker responses of barrel cells arise from lateral corticocortical (barrel-to-barrel) synaptic transmission. Ablation studies attempting to pinpoint the source of RS cell AW responses are often contradictory (though experimental work tends to suggest possibilities (i) or (iii) to be most plausible), and hence it is important to carefully evaluate these hypotheses in terms of available physiological data on barreloid and barrel response dynamics. In this work, I employ a biologically detailed model of the rat barrel cortex to evaluate possibility (i), and I show that, within the model, hypothesis (i) is capable of explaining a broad range of the available physiological data on responses to single (PW or AW) deflections and paired whisker deflections (AW deflection followed by PW deflection), as well as the dependence of such responses on the angular direction of whisker deflection. In particular, the model shows that barrel RS cells can exhibit AW direction tuning despite the fact that barreloid to barrel wiring has no systematic dependence on the AW direction preference of TC cells. Future modeling work will examine the other possibilities for the generation of multiwhisker RS cell RFs, and compare and contrast the different possible mechanisms within the context of available experimental data.
Collapse
|
8
|
Scala F, Kobak D, Shan S, Bernaerts Y, Laturnus S, Cadwell CR, Hartmanis L, Froudarakis E, Castro JR, Tan ZH, Papadopoulos S, Patel SS, Sandberg R, Berens P, Jiang X, Tolias AS. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nat Commun 2019; 10:4174. [PMID: 31519874 PMCID: PMC6744474 DOI: 10.1038/s41467-019-12058-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/06/2019] [Indexed: 01/13/2023] Open
Abstract
Layer 4 (L4) of mammalian neocortex plays a crucial role in cortical information processing, yet a complete census of its cell types and connectivity remains elusive. Using whole-cell recordings with morphological recovery, we identified one major excitatory and seven inhibitory types of neurons in L4 of adult mouse visual cortex (V1). Nearly all excitatory neurons were pyramidal and all somatostatin-positive (SOM+) non-fast-spiking interneurons were Martinotti cells. In contrast, in somatosensory cortex (S1), excitatory neurons were mostly stellate and SOM+ interneurons were non-Martinotti. These morphologically distinct SOM+ interneurons corresponded to different transcriptomic cell types and were differentially integrated into the local circuit with only S1 neurons receiving local excitatory input. We propose that cell type specific circuit motifs, such as the Martinotti/pyramidal and non-Martinotti/stellate pairs, are used across the cortex as building blocks to assemble cortical circuits.
Collapse
Affiliation(s)
- Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Shen Shan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yves Bernaerts
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sophie Laturnus
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Cathryn Rene Cadwell
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Leonard Hartmanis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Froudarakis
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jesus Ramon Castro
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Huan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Stelios Papadopoulos
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Surendra Patel
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| | - Andreas Savas Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Naka A, Veit J, Shababo B, Chance RK, Risso D, Stafford D, Snyder B, Egladyous A, Chu D, Sridharan S, Mossing DP, Paninski L, Ngai J, Adesnik H. Complementary networks of cortical somatostatin interneurons enforce layer specific control. eLife 2019; 8:43696. [PMID: 30883329 PMCID: PMC6422636 DOI: 10.7554/elife.43696] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/08/2019] [Indexed: 12/03/2022] Open
Abstract
The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input.
Collapse
Affiliation(s)
- Alexander Naka
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Julia Veit
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Ben Shababo
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Rebecca K Chance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Davide Risso
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Statistical Sciences, University of Padova, Padova, Italy.,Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, United States
| | - David Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Benjamin Snyder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andrew Egladyous
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Desiree Chu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Savitha Sridharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel P Mossing
- Department of Biophysics, University of California, Berkeley, Berkeley, United States
| | - Liam Paninski
- Neurobiology and Behavior Program, Columbia University, New York, United States.,Center for Theoretical Neuroscience, Columbia University, New York, United States.,Departments of Statistics and Neuroscience, Columbia University, New York, United States.,Grossman Center for the Statistics of Mind, Columbia University, New York, United States
| | - John Ngai
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, United States
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
10
|
The development of synaptic transmission is time-locked to early social behaviors in rats. Nat Commun 2019; 10:1195. [PMID: 30867422 PMCID: PMC6416358 DOI: 10.1038/s41467-019-09156-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 02/24/2019] [Indexed: 11/19/2022] Open
Abstract
The development of functional synapses is a sequential process preserved across many brain areas. Here, we show that glutamatergic postsynaptic currents anticipated GABAergic currents in Layer II/III of the rat neocortex, in contrast to the pattern described for other brain areas. The frequencies of both glutamatergic and GABAergic currents increased abruptly at the beginning of the second postnatal week, supported by a serotonin upsurge. Integrative behaviors arose on postnatal day (P)9, while most motor and sensory behaviors, which are fundamental for pup survival, were already in place at approximately P7. A reduction in serotonin reuptake accelerated the development of functional synapses and integrative huddling behavior, while sparing motor and sensory function development. A decrease in synaptic transmission in Layer II/III induced by a chemogenetic approach only inhibited huddling. Thus, precise developmental sequences mediate early, socially directed behaviors for which neurotransmission and its modulation in supragranular cortical layers play key roles. The development of functional synapses is a key milestone in neurodevelopment. Here, the authors show how serotonin signalling coordinates development of glutamatergic and GABAergic currents and triggers the emergence of integrative behavior (huddling) in rat pups.
Collapse
|
11
|
Wang Y, Ye M, Kuang X, Li Y, Hu S. A simplified morphological classification scheme for pyramidal cells in six layers of primary somatosensory cortex of juvenile rats. IBRO Rep 2018; 5:74-90. [PMID: 30450442 PMCID: PMC6222978 DOI: 10.1016/j.ibror.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
The majority of neurons in the neocortex are excitatory pyramidal cells (PCs). Many systematic classification schemes have been proposed based the neuronal morphology, the chemical composition, and the synaptic connectivity, etc. Recently, a cortical column of primary somatosensory cortex (SSC) has been reconstruction and functionally simulated (Markram et al., 2015). Putting forward from this study, here we proposed a simplified classification scheme for PCs in all layers of the SSC by mainly identifying apical dendritic morphology based on a large data set of 3D neuron reconstructions. We used this scheme to classify three types in layer 2, two in layer 3, three in layer 4, four in layer 5, and six types in layer 6. These PC types were visually distinguished and confirmed by quantitative differences in their morphometric properties. The classes yielded using this scheme largely corresponded with PC classes that were defined previously based on other neuronal and synaptic properties such as long-range projects and synaptic innervations, further validating its applicability. Therefore, the morphology information of apical dendrites is sufficient for a simple scheme to classify a spectrum of anatomical types of PCs in the SSC.
Collapse
Affiliation(s)
- Yun Wang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Min Ye
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xiuli Kuang
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yaoyao Li
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Shisi Hu
- School of Optometry & Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
12
|
Bieler M, Xu X, Marquardt A, Hanganu-Opatz IL. Multisensory integration in rodent tactile but not visual thalamus. Sci Rep 2018; 8:15684. [PMID: 30356135 PMCID: PMC6200796 DOI: 10.1038/s41598-018-33815-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Behavioural performance requires a coherent perception of environmental features that address multiple senses. These diverse sensory inputs are integrated in primary sensory cortices, yet it is still largely unknown whether their convergence occurs even earlier along the sensory tract. Here we investigate the role of putatively modality-specific first-order (FO) thalamic nuclei (ventral posteromedial nucleus (VPM), dorsal lateral geniculate nucleus (dLGN)) and their interactions with primary sensory cortices (S1, V1) for multisensory integration in pigmented rats in vivo. We show that bimodal stimulation (i.e. simultaneous light flash and whisker deflection) enhances sensory evoked activity in VPM, but not dLGN. Moreover, cross-modal stimuli reset the phase of thalamic network oscillations and strengthen the coupling efficiency between VPM and S1, but not between dLGN and V1. Finally, the information flow from VPM to S1 is enhanced. Thus, FO tactile, but not visual, thalamus processes and relays sensory inputs from multiple senses, revealing a functional difference between sensory thalamic nuclei during multisensory integration.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany. .,Laboratory for Neural Computation, Department of Physiology, University of Oslo, 0372, Oslo, Norway.
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Annette Marquardt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
13
|
Abstract
Somatosensory areas containing topographic maps of the body surface are a major feature of parietal cortex. In primates, parietal cortex contains four somatosensory areas, each with its own map, with the primary cutaneous map in area 3b. Rodents have at least three parietal somatosensory areas. Maps are not isomorphic to the body surface, but magnify behaviorally important skin regions, which include the hands and face in primates, and the whiskers in rodents. Within each map, intracortical circuits process tactile information, mediate spatial integration, and support active sensation. Maps may also contain fine-scale representations of touch submodalities, or direction of tactile motion. Functional representations are more overlapping than suggested by textbook depictions of map topography. The whisker map in rodent somatosensory cortex is a canonic system for studying cortical microcircuits, sensory coding, and map plasticity. Somatosensory maps are plastic throughout life in response to altered use or injury. This chapter reviews basic principles and recent findings in primate, human, and rodent somatosensory maps.
Collapse
Affiliation(s)
- Samuel Harding-Forrester
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| | - Daniel E Feldman
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
14
|
Condamine S, Lavoie R, Verdier D, Kolta A. Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia 2017; 66:311-326. [DOI: 10.1002/glia.23244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Steven Condamine
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Raphaël Lavoie
- Douglas Mental Health University Institute, 6875 boulevard LaSalle; Montreal Québec H4H 1R3 Canada
| | - Dorly Verdier
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| | - Arlette Kolta
- Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Département de Neurosciences; Université de Montréal, Pavillon Paul-G.Desmarais, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, succursale Centre-ville; Montréal Québec H3C 3J7 Canada
| |
Collapse
|
15
|
Neurochemical correlates of functional plasticity in the mature cortex of the brain of rodents. Behav Brain Res 2017; 331:102-114. [DOI: 10.1016/j.bbr.2017.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023]
|
16
|
Aksenov DP, Miller MJ, Li L, Wyrwicz AM. Eyeblink classical conditioning and BOLD fMRI of anesthesia-induced changes in the developing brain. Physiol Behav 2016; 167:10-15. [PMID: 27591109 DOI: 10.1016/j.physbeh.2016.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/21/2016] [Accepted: 08/29/2016] [Indexed: 01/19/2023]
Abstract
Millions of children undergo general anesthesia each year in the USA alone, and a growing body of literature from animals and humans suggests that exposure to anesthesia at an early age can impact neuronal development, leading to learning and memory impairments later in childhood. Although a number of studies have reported behavioral and structural effects of anesthesia exposure during infancy, the functional manifestation of these changes has not been previous examined. In this study we used BOLD fMRI to measure the functional response to stimulation in the whisker barrel cortex of awake rabbits before and after learning a trace eyeblink classical conditioning paradigm. The functional changes, in terms of activated volume and time course, in rabbits exposed to isoflurane anesthesia during infancy was compared to unanesthetized controls when both groups reached young adulthood. Our findings show that whereas both groups exhibited decreased BOLD response duration after learning, the anesthesia-exposed group also showed a decrease in BOLD response volume in the whisker barrel cortex, particularly in the deeper infragranular layer. These results suggest that anesthesia exposure during infancy may affect the intracortical processes that mediate learning-related plasticity.
Collapse
Affiliation(s)
| | | | - Limin Li
- NorthShore University HealthSystem, Evanston, IL, 60201, USA
| | - Alice M Wyrwicz
- NorthShore University HealthSystem, Evanston, IL, 60201, USA
| |
Collapse
|
17
|
Eilam R, Aharoni R, Arnon R, Malach R. Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from mice to human. eLife 2016; 5. [PMID: 27282388 PMCID: PMC4945151 DOI: 10.7554/elife.15915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Cortical blood flow can be modulated by local activity across a range of species; from barrel-specific blood flow in the rodent somatosensory cortex to the human cortex, where BOLD-fMRI reveals numerous functional borders. However, it appears that the distribution of blood capillaries largely ignores these functional boundaries. Here we report that, by contrast, astrocytes, a major player in blood-flow control, show a striking morphological sensitivity to functional borders. Specifically, we show that astrocyte processes are structurally confined by barrel boundaries in the mouse, by the border of primary auditory cortex in the rat and by layers IIIa/b and Cytochrome Oxidase (CO)-blobs boundaries in the human primary visual cortex. Thus, astrocytes which are critical elements in neuro-hemodynamic coupling show a significant anatomical segregation along functional boundaries across different mammalian species. These results may open a new anatomical marker for delineating functional borders across species, including post-mortem human brains. DOI:http://dx.doi.org/10.7554/eLife.15915.001 The brain is subdivided into many specialized regions that each has distinct roles. A key aim of brain research is to define the boundaries of these areas. Researchers have attempted to map the transitions between brain regions by identifying changes in the properties and activity of neurons (the cells that transmit information around the brain). However, these approaches cannot be used in some circumstances, such as when studying the living human brain, where only non-invasive experimental techniques can be used. Cells other than neurons are also present in the brain. Astrocytes (a sub-type of glia cells) are support cells that have an extensive array of branches that project from each astrocyte’s cell body, often giving it a characteristic star shape. Now, using high-magnification light microscopy, Eliam et al. show that the branches of individual astrocytes tend to avoid crossing the borders of brain regions with different roles. These changes in crossing densities define measurable boundaries between such subdivisions. These density-change boundaries formed by the astrocytes are present in multiple species – mouse, rat and human – and in multiple systems: touch, auditory and visual. This discovery could provide a new window into the functional organization of the brain. It may also offer insights into how the brain optimizes its blood-flow control across different subregions. The results of this study raise an additional question: is the confinement of astrocytes to single regions of the brain shaped by experience or is it present from birth? Exposing animals to different sensory experiences at different developmental stages will hopefully shed further light on this phenomenon. DOI:http://dx.doi.org/10.7554/eLife.15915.002
Collapse
Affiliation(s)
- Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Rafael Malach
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
Kim H, Lee Y, Kim JE, Han PL. Reversal of an Unconditioned Behavioral Preference for Specific Food Pellets by Intervention of Whisker Sensory Inputs. Exp Neurobiol 2016; 25:79-85. [PMID: 27122994 PMCID: PMC4844566 DOI: 10.5607/en.2016.25.2.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022] Open
Abstract
Adenylyl cyclase type-5 (AC5) is preferentially expressed in the dorsal striatum. Recently, we reported that AC5 knockout (KO) mice preferred food pellets carrying an olfactory cue produced by AC5 KO mice during food consumption (AC5 KO pellets) over food pellets that had been taken by wildtype (WT) mice. In the present study, we demonstrated that whisker trimming on the right side of the face but not the left in AC5 KO mice blocked the behavioral preference for AC5 KO pellets. Conversely, whisker trimming on the right but not the left in WT mice induced a behavioral preference for AC5 KO pellets. Mice lacking D2 dopamine receptor (D2 KO mice) also showed a behavioral preference for AC5 KO pellets. In D2 mice, whisker trimming on the right side of the face but not the left blocked a behavioral preference for AC5 KO food pellets. AC5 KO mice had increased level of phospho-CaMKIIα in the dorsal striatum, and WT mice with whiskers cut on either side also showed increased p-CaMKIIα level in the dorsal striatum. The siRNA-mediated inhibition of CaMKIIα in the dorsal striatum in either the right or the left hemisphere in AC5 KO mice and D2 KO mice blocked the behavioral preference for AC5 KO pellets. However, behavioral changes induced by this inhibition on each side showed asymmetrical time courses. These results suggest that an unconditioned behavioral preference for specific food pellets can be switched on or off based on the balance of states of neural activity in the dorsal striatum regulated by a signaling pathway centered on AC5 and D2 and the sensory inputs of whiskers from the right side of the face.
Collapse
Affiliation(s)
- Hannah Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ji-Eun Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.; Brain Disease Research Institute, Ewha Womans University, Seoul 03760, Korea.; Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Valiullina F, Akhmetshina D, Nasretdinov A, Mukhtarov M, Valeeva G, Khazipov R, Rozov A. Developmental Changes in Electrophysiological Properties and a Transition from Electrical to Chemical Coupling between Excitatory Layer 4 Neurons in the Rat Barrel Cortex. Front Neural Circuits 2016; 10:1. [PMID: 26834567 PMCID: PMC4720737 DOI: 10.3389/fncir.2016.00001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/02/2016] [Indexed: 11/22/2022] Open
Abstract
During development, sensory systems switch from an immature to an adult mode of function along with the emergence of the active cortical states. Here, we used patch-clamp recordings from neocortical slices in vitro to characterize the developmental changes in the basic electrophysiological properties of excitatory L4 neurons and their connectivity before and after the developmental switch, which occurs in the rat barrel cortex in vivo at postnatal day P8. Prior to the switch, L4 neurons had higher resting membrane potentials, higher input resistance, lower membrane capacity, as well as action potentials (APs) with smaller amplitudes, longer durations and higher AP thresholds compared to the neurons after the switch. A sustained firing pattern also emerged around the switch. Dual patch-clamp recordings from L4 neurons revealed that recurrent connections between L4 excitatory cells do not exist before and develop rapidly across the switch. In contrast, electrical coupling between these neurons waned around the switch. We suggest that maturation of electrophysiological features, particularly acquisition of a sustained firing pattern, and a transition from the immature electrical to mature chemical synaptic coupling between excitatory L4 neurons, contributes to the developmental switch in the cortical mode of function.
Collapse
Affiliation(s)
- Fliza Valiullina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Dinara Akhmetshina
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Marat Mukhtarov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Guzel Valeeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia; Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale UMR901Marseille, France; Aix-Marseille UniversityMarseille, France
| | - Andrei Rozov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia; Department of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
20
|
Reimann MW, King JG, Muller EB, Ramaswamy S, Markram H. An algorithm to predict the connectome of neural microcircuits. Front Comput Neurosci 2015; 9:120. [PMID: 26500529 PMCID: PMC4597796 DOI: 10.3389/fncom.2015.00120] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
Experimentally mapping synaptic connections, in terms of the numbers and locations of their synapses and estimating connection probabilities, is still not a tractable task, even for small volumes of tissue. In fact, the six layers of the neocortex contain thousands of unique types of synaptic connections between the many different types of neurons, of which only a handful have been characterized experimentally. Here we present a theoretical framework and a data-driven algorithmic strategy to digitally reconstruct the complete synaptic connectivity between the different types of neurons in a small well-defined volume of tissue—the micro-scale connectome of a neural microcircuit. By enforcing a set of established principles of synaptic connectivity, and leveraging interdependencies between fundamental properties of neural microcircuits to constrain the reconstructed connectivity, the algorithm yields three parameters per connection type that predict the anatomy of all types of biologically viable synaptic connections. The predictions reproduce a spectrum of experimental data on synaptic connectivity not used by the algorithm. We conclude that an algorithmic approach to the connectome can serve as a tool to accelerate experimental mapping, indicating the minimal dataset required to make useful predictions, identifying the datasets required to improve their accuracy, testing the feasibility of experimental measurements, and making it possible to test hypotheses of synaptic connectivity.
Collapse
Affiliation(s)
- Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - James G King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL) Biotech Campus Geneva, Switzerland
| |
Collapse
|
21
|
Che A, Truong DT, Fitch RH, LoTurco JJ. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex. Cereb Cortex 2015; 26:3705-3718. [PMID: 26250775 DOI: 10.1093/cercor/bhv168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology.,Current address: Weill Cornell Medical College, Brain & Mind Research Institute, New York, NY 10021, USA
| | - Dongnhu T Truong
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.,Current address: Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
22
|
Simons DJ, Carvell GE, Kyriazi HT. Alterations in functional thalamocortical connectivity following neonatal whisker trimming with adult regrowth. J Neurophysiol 2015; 114:1912-22. [PMID: 26245317 DOI: 10.1152/jn.00488.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/05/2015] [Indexed: 11/22/2022] Open
Abstract
Neonatal whisker trimming followed by adult whisker regrowth leads to higher responsiveness and altered receptive field properties of cortical neurons in corresponding layer 4 barrels. Studies of functional thalamocortical (TC) connectivity in normally reared adult rats have provided insights into how experience-dependent TC synaptic plasticity could impact the establishment of feedforward excitatory and inhibitory receptive fields. The present study employed cross-correlation analyses to investigate lasting effects of neonatal whisker trimming on functional connections between simultaneously recorded thalamic neurons and regular-spike (RS), presumed excitatory, and fast-spike (FS), presumed inhibitory, barrel neurons. We find that, as reported previously, RS and FS cells in whisker-trimmed animals fire more during the earliest phase of their whisker-evoked responses, corresponding to the arrival of TC inputs, despite a lack of change or even a slight decrease in the firing of thalamic cells that contact them. Functional connections from thalamus to cortex are stronger. The probability of finding TC-RS connections was twofold greater in trimmed animals and similar to the frequency of TC-FS connections in control and trimmed animals, the latter being unaffected by whisker trimming. Unlike control cases, trimmed RS units are more likely to receive inputs from TC units (TCUs) and have mismatched angular tuning and even weakly responsive TCUs make strong functional connections on them. Results indicate that developmentally appropriate tactile experience early in life promotes the differential thalamic engagement of excitatory and inhibitory cortical neurons that underlies normal barrel function.
Collapse
Affiliation(s)
- D J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - G E Carvell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H T Kyriazi
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
23
|
Egger R, Dercksen VJ, Udvary D, Hege HC, Oberlaender M. Generation of dense statistical connectomes from sparse morphological data. Front Neuroanat 2014; 8:129. [PMID: 25426033 PMCID: PMC4226167 DOI: 10.3389/fnana.2014.00129] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results.
Collapse
Affiliation(s)
- Robert Egger
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics Tuebingen, Germany ; Graduate School of Neural Information Processing, University of Tuebingen Tuebingen, Germany ; Bernstein Center for Computational Neuroscience Tuebingen, Germany
| | - Vincent J Dercksen
- Department of Visual Data Analysis, Zuse Institute Berlin Berlin, Germany
| | - Daniel Udvary
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics Tuebingen, Germany ; Graduate School of Neural Information Processing, University of Tuebingen Tuebingen, Germany ; Bernstein Center for Computational Neuroscience Tuebingen, Germany
| | | | - Marcel Oberlaender
- Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics Tuebingen, Germany ; Bernstein Center for Computational Neuroscience Tuebingen, Germany ; Digital Neuroanatomy Group, Max Planck Florida Institute for Neuroscience Jupiter, FL, USA
| |
Collapse
|
24
|
Kim H, Kim TK, Kim JE, Park JY, Lee Y, Kang M, Kim KS, Han PL. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices. Mol Brain 2014; 7:77. [PMID: 25378213 PMCID: PMC4233066 DOI: 10.1186/s13041-014-0077-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Behavioral choices in habits and innate behaviors occur automatically in the absence of conscious selection. These behaviors are not easily modified by learning. Similar types of behaviors also occur in various mental illnesses including drug addiction, obsessive-compulsive disorder, schizophrenia, and autism. However, underlying mechanisms are not clearly understood. In the present study, we investigated the molecular mechanisms regulating unconditioned preferred behaviors in food-choices. Results Mice lacking adenylyl cyclase-5 (AC5 KO mice), which is preferentially expressed in the dorsal striatum, consumed food pellets nearly one after another in cages. AC5 KO mice showed aversive behaviors to bitter tasting quinine, but they compulsively chose quinine-containing AC5 KO-pellets over fresh pellets. The unusual food-choice behaviors in AC5 KO mice were due to the gain of behavioral preferences for food pellets containing an olfactory cue, which wild-type mice normally ignored. Such food-choice behaviors in AC5 KO mice disappeared when whiskers were trimmed. Conversely, whisker trimming in wildtype mice induced behavioral preferences for AC5 KO food pellets, indicating that preferred food-choices were not learned through prior experience. Both AC5 KO mice and wildtype mice with trimmed whiskers had increased glutamatergic input from the barrel cortex into the dorsal striatum, resulting in an increase in the mGluR1-dependent signaling cascade. The siRNA-mediated inhibition of mGluR1 in the dorsal striatum in AC5 KO mice and wildtype mice with trimmed whiskers abolished preferred choices for AC5 KO food pellets, whereas siRNA-mediated inhibition of mGluR3 glutamate receptors in the dorsal striatum in wildtype mice induced behavioral preferences for AC5 KO food pellets, thus mimicking AC5 KO phenotypes. Conclusions Our results show that the gain and loss of behavioral preferences for a specific cue-directed option were regulated by specific cellular factors in the dorsal striatum, such that the preferred food choices were switched on when either the mGluR3-AC5 pathway was inactive or the mGluR1 pathway was active, whereas the preferred food-choices were switched off when mGluR1 or its downstream pathway was suppressed. These results identify the AC5 and mGluR system in the dorsal striatum as molecular on/off switches to direct decisions on behavioral preferences for cue-oriented options.
Collapse
Affiliation(s)
- Hannah Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Tae-Kyung Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Ji-Eun Kim
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Minkyung Kang
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea. .,Brain Disease Research Institute, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea. .,Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
25
|
Vélez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA, Brown APY, Strom M, Margrie TW. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 2014; 83:1431-43. [PMID: 25175879 PMCID: PMC4175007 DOI: 10.1016/j.neuron.2014.08.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
Abstract
Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. L6 cortico-cortical neurons are broadly tuned to stimulus orientation L6 cortico-thalamic neurons are sparse firing and highly tuned to stimulus orientation L6 cortico-cortical neurons receive input from cells located mostly within V1 L6 cortico-thalamic neurons receive input from higher order cortical areas
Collapse
Affiliation(s)
- Mateo Vélez-Fort
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Charly V Rousseau
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Christian J Niedworok
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Ian R Wickersham
- Genetic Neuroengineering Group, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ede A Rancz
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Alexander P Y Brown
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Molly Strom
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Troy W Margrie
- The Division of Neurophysiology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
27
|
Vitali I, Jabaudon D. Synaptic biology of barrel cortex circuit assembly. Semin Cell Dev Biol 2014; 35:156-64. [PMID: 25080022 DOI: 10.1016/j.semcdb.2014.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/10/2014] [Accepted: 07/17/2014] [Indexed: 02/04/2023]
Abstract
Mature neuronal circuits arise from the coordinated interplay of cell-intrinsic differentiation programs, target-derived signals and activity-dependent processes. Typically, cell-intrinsic mechanisms predominate at early stages of differentiation, while input-dependent processes modulate circuit formation at later stages of development. The whisker barrel cortex of rodents is particularly well suited to study this latter phase. During the first few days after birth, thalamocortical axons (TCA) from the somatosensory ventral posteromedial nucleus (VPM) form synapses onto layer 4 (L4) neurons, which aggregate to form barrels, whose spatial organization corresponds to the distribution of the whiskers on the snout. Besides specific genetic programs, which control TCA and L4 neuron specification, the establishment of the barrel pattern also depends on the information resulting from whisker activation. The plasticity of this system during the first few days after birth is critical for barrel formation: damage to the sensory periphery impairs TCA patterning, while lesions after this period have less pronounced effects. Here, we will review the role and position of L4 neurons within cortical columnar circuits and synaptogenesis during barrel formation.
Collapse
Affiliation(s)
- Ilaria Vitali
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Switzerland.
| |
Collapse
|
28
|
Elstrott J, Clancy KB, Jafri H, Akimenko I, Feldman DE. Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex. J Neurophysiol 2014; 112:233-48. [PMID: 24740854 DOI: 10.1152/jn.00848.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.
Collapse
Affiliation(s)
- Justin Elstrott
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| | - Kelly B Clancy
- Biophysics PhD Program, University of California, Berkeley, California
| | - Haani Jafri
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| | - Igor Akimenko
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California; and
| |
Collapse
|
29
|
Sarid L, Feldmeyer D, Gidon A, Sakmann B, Segev I. Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cereb Cortex 2013; 25:849-58. [PMID: 24165834 PMCID: PMC4379993 DOI: 10.1093/cercor/bht268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This computational study integrates anatomical and physiological data to assess the functional role of the lateral excitatory connections between layer 2/3 (L2/3) pyramidal cells (PCs) in shaping their response during early stages of intracortical processing of a whisker deflection (WD). Based on in vivo and in vitro recordings, and 3D reconstructions of connected pairs of L2/3 PCs, our model predicts that: 1) AMPAR and NMDAR conductances/synapse are 0.52 ± 0.24 and 0.40 ± 0.34 nS, respectively; 2) following WD, connection between L2/3 PCs induces a composite EPSPs of 7.6 ± 1.7 mV, well below the threshold for action potential (AP) initiation; 3) together with the excitatory feedforward L4-to-L2/3 connection, WD evoked a composite EPSP of 16.3 ± 3.5 mV and a probability of 0.01 to generate an AP. When considering the variability in L4 spiny neurons responsiveness, it increased to 17.8 ± 11.2 mV; this 3-fold increase in the SD yielded AP probability of 0.35; 4) the interaction between L4-to-L2/3 and L2/3-to-L2/3 inputs is highly nonlinear; 5) L2/3 dendritic morphology significantly affects L2/3 PCs responsiveness. We conclude that early stages of intracortical signaling of WD are dominated by a combination of feedforward L4-L2/3 and L2/3-L2/3 lateral connections.
Collapse
Affiliation(s)
- Leora Sarid
- Department of Neurobiology, Institute of Life Sciences, Jerusalem Il-91904, Israel
| | - Dirk Feldmeyer
- Institute for Neuroscience and Medicine, INM-2 Research Centre Jülich, Jülich D-52425, Germany Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen D-52074, Germany Jülich-Aachen Research Alliance (JARA)-Brain, Aachen D-52074, Germany
| | - Albert Gidon
- Department of Neurobiology, Institute of Life Sciences, Jerusalem Il-91904, Israel
| | - Bert Sakmann
- Digital Neuroanatomy, Max Planck Florida Institute, Jupiter, FL 33458-2906, USA
| | - Idan Segev
- Department of Neurobiology, Institute of Life Sciences, Jerusalem Il-91904, Israel Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem Il-91904, Israel and Edmond and Lily Safra Center for Brain Sciences, Jerusalem Il-91904, Israel
| |
Collapse
|
30
|
Feldmeyer D, Brecht M, Helmchen F, Petersen CC, Poulet JF, Staiger JF, Luhmann HJ, Schwarz C. Barrel cortex function. Prog Neurobiol 2013. [DOI: 10.1016/j.pneurobio.2012.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Efficient associative memory storage in cortical circuits of inhibitory and excitatory neurons. Proc Natl Acad Sci U S A 2012; 109:E3614-22. [PMID: 23213221 DOI: 10.1073/pnas.1211467109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many features of synaptic connectivity are ubiquitous among cortical systems. Cortical networks are dominated by excitatory neurons and synapses, are sparsely connected, and function with stereotypically distributed connection weights. We show that these basic structural and functional features of synaptic connectivity arise readily from the requirement of efficient associative memory storage. Our theory makes two fundamental predictions. First, we predict that, despite a large number of neuron classes, functional connections between potentially connected cells must be realized with <50% probability if the presynaptic cell is excitatory and >50% probability if the presynaptic cell is inhibitory. Second, we establish a unique relation between probability of connection and coefficient of variation in connection weights. These predictions are consistent with a dataset of 74 published experiments reporting connection probabilities and distributions of postsynaptic potential amplitudes in various cortical systems. What is more, our theory explains the shapes of the distributions obtained in these experiments.
Collapse
|
32
|
Ohana O, Portner H, Martin KAC. Fast recruitment of recurrent inhibition in the cat visual cortex. PLoS One 2012; 7:e40601. [PMID: 22848386 PMCID: PMC3405110 DOI: 10.1371/journal.pone.0040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 06/12/2012] [Indexed: 11/18/2022] Open
Abstract
Neurons of the same column in L4 of the cat visual cortex are likely to share the same sensory input from the same region of the visual field. Using visually-guided patch clamp recordings we investigated the biophysical properties of the synapses of neighboring layer 4 neurons. We recorded synaptic connections between all types of excitatory and inhibitory neurons in L4. The E–E, E–I, and I–E connections had moderate CVs and failure rates. However, E–I connections had larger amplitudes, faster rise-times, and shorter latencies. Identification of the sites of putative synaptic contacts together with compartmental simulations on 3D reconstructed cells, suggested that E–I synapses tended to be located on proximal dendritic branches, which would explain their larger EPSP amplitudes and faster kinetics. Excitatory and inhibitory synapses were located at the same distance on distal dendrites of excitatory neurons. We hypothesize that this co-localization and the fast recruitment of local inhibition provides an efficient means of modulating excitation in a precisely timed way.
Collapse
Affiliation(s)
- Ora Ohana
- Institute for Molecular and Cellular Cognition, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
33
|
Wu CS, Ballester Rosado CJ, Lu HC. What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits. Eur J Neurosci 2012; 34:1663-76. [PMID: 22103423 DOI: 10.1111/j.1460-9568.2011.07892.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory inputs triggered by external stimuli are projected into discrete arrays of neuronal modules in the primary sensory cortex. This whisker-to-barrel pathway has gained in popularity as a model system for studying the development of cortical circuits and sensory processing because its clear patterns facilitate the identification of genetically modified mice with whisker map deficits and make possible coordinated in vitro and in vivo electrophysiological studies. Numerous whisker map determinants have been identified in the past two decades. In this review, we summarize what have we learned from the detailed studies conducted in various mutant mice with cortical whisker map deficits. We will specifically focus on the anatomical and functional establishment of the somatosensory thalamocortical circuits.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
34
|
Wilson SP, Bednar JA, Prescott TJ, Mitchinson B. Neural computation via neural geometry: a place code for inter-whisker timing in the barrel cortex? PLoS Comput Biol 2011; 7:e1002188. [PMID: 22022245 PMCID: PMC3192806 DOI: 10.1371/journal.pcbi.1002188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
The place theory proposed by Jeffress (1948) is still the dominant model of how the brain represents the movement of sensory stimuli between sensory receptors. According to the place theory, delays in signalling between neurons, dependent on the distances between them, compensate for time differences in the stimulation of sensory receptors. Hence the location of neurons, activated by the coincident arrival of multiple signals, reports the stimulus movement velocity. Despite its generality, most evidence for the place theory has been provided by studies of the auditory system of auditory specialists like the barn owl, but in the study of mammalian auditory systems the evidence is inconclusive. We ask to what extent the somatosensory systems of tactile specialists like rats and mice use distance dependent delays between neurons to compute the motion of tactile stimuli between the facial whiskers (or ‘vibrissae’). We present a model in which synaptic inputs evoked by whisker deflections arrive at neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing of synaptic inputs to each neuron depends on its location relative to sources of input in layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and timing of projections from L4 to L2/3, the model can account for a range of experimentally measured responses to two-whisker stimuli. Consistent with that data, responses of model neurons located between the barrels to paired stimulation of two whiskers are greater than the sum of the responses to either whisker input alone. The model predicts that for neurons located closer to either barrel these supralinear responses are tuned for longer inter-whisker stimulation intervals, yielding a topographic map for the inter-whisker deflection interval across the surface of L2/3. This map constitutes a neural place code for the relative timing of sensory stimuli. To perceive how stimuli move over sensor surfaces like the retina or the fingertips, neurons in the brain must report the relative timing of signals arriving at different locations on the sensor surface. The rat whisker system is ideal for exploring how the brain performs this computation, because the layout of a small number of sensors (whiskers) maps directly onto the layout of corresponding columns of neurons in the sensory cortex. Previous studies have found that neurons located between adjacent cortical columns are most likely to respond when the corresponding adjacent whiskers are stimulated in rapid succession. These results suggest a link between the location of the neuron and the relative timing of sensory signals reported by its activity. We hypothesized that, if the time taken for whisker signals to arrive at a neuron is related to its distance from each cortical column, then neurons closer to a particular column will report stimuli moving towards that particular whisker. In a model approximating the geometry of cortical connections, responses of artificial neurons matched those of real neurons on a wide range of details. These results suggest an important role for neural geometry in neural computation.
Collapse
Affiliation(s)
- Stuart P Wilson
- Active Touch Laboratory, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Surmeier DJ, Carrillo-Reid L, Bargas J. Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience 2011; 198:3-18. [PMID: 21906660 DOI: 10.1016/j.neuroscience.2011.08.051] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a great deal of progress toward understanding the role of the striatum and dopamine in action selection. The advent of new animal models and the development of optical techniques for imaging and stimulating select neuronal populations have provided the means by which identified synapses, cells, and circuits can be reliably studied. This review attempts to summarize some of the key advances in this broad area, focusing on dopaminergic modulation of intrinsic excitability and synaptic plasticity in canonical microcircuits in the striatum as well as recent work suggesting that there are neuronal assemblies within the striatum devoted to particular types of computation and possibly action selection.
Collapse
Affiliation(s)
- D J Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
36
|
Kim G, Kandler K. Paired recordings from distant inhibitory neuron pairs by a sequential scanning approach. J Neurosci Methods 2011; 200:185-9. [PMID: 21704076 DOI: 10.1016/j.jneumeth.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/27/2022]
Abstract
Simultaneous recordings from connected neuron pairs have brought important insights into synaptic communication between neurons. However, patch clamp recordings from neuron pairs have been largely restricted to brain areas in which connections among nearby neurons exist at a relatively high probability. In the case of more distant connections or in areas in which neurons are connected with low probability, recordings from synaptically connected neuron pairs have remained scarce. Here, we present a method that allows dual recordings from remotely connected neuron pairs by scanning potential presynaptic neurons. The applicability of this new approach was tested in the inhibitory pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO), a sound localization pathway in the auditory brainstem. Using a three-step approach that sequentially combines focal uncaging of glutamate, pressure application of glutamate, and loose patch recordings allowed us to reliably achieve recordings from distant, synaptically connected GABA/glycinergic MNTB-LSO neuron pairs. Our results demonstrate that single MNTB neurons evoke highly variable mono-synaptic responses in developing LSO neurons, and heterogeneous short term synaptic dynamics, suggesting local variations in the refinement of these inhibitory connections. Paired recordings, enabled by scanning of remotely connected pairs, will be highly useful to perform detailed investigations of the synaptic function and plasticity from these circuits during the period of developmental refinement. In general, this method should provide a valuable tool to find connected neurons in other brain areas in which recording from candidate pairs has a low success rate.
Collapse
Affiliation(s)
- Gunsoo Kim
- Department of Neurobiology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
37
|
Mishchenko Y, Vogelstein JT, Paninski L. A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Ann Appl Stat 2011. [DOI: 10.1214/09-aoas303] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Favorov OV, Kursun O. Neocortical layer 4 as a pluripotent function linearizer. J Neurophysiol 2011; 105:1342-60. [PMID: 21248059 DOI: 10.1152/jn.00708.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A highly effective kernel-based strategy used in machine learning is to transform the input space into a new "feature" space where nonlinear problems become linear and more readily solvable with efficient linear techniques. We propose that a similar "problem-linearization" strategy is used by the neocortical input layer 4 to reduce the difficulty of learning nonlinear relations between the afferent inputs to a cortical column and its to-be-learned upper layer outputs. The key to this strategy is the presence of broadly tuned feed-forward inhibition in layer 4: it turns local layer 4 domains into functional analogs of radial basis function networks, which are known for their universal function approximation capabilities. With the use of a computational model of layer 4 with feed-forward inhibition and Hebbian afferent connections, self-organized on natural images to closely match structural and functional properties of layer 4 of the cat primary visual cortex, we show that such layer-4-like networks have a strong intrinsic tendency to perform input transforms that automatically linearize a broad repertoire of potential nonlinear functions over the afferent inputs. This capacity for pluripotent function linearization, which is highly robust to variations in network parameters, suggests that layer 4 might contribute importantly to sensory information processing as a pluripotent function linearizer, performing such a transform of afferent inputs to a cortical column that makes it possible for neurons in the upper layers of the column to learn and perform their complex functions using primarily linear operations.
Collapse
Affiliation(s)
- Oleg V Favorov
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
39
|
Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat Neurosci 2010; 13:1240-8. [PMID: 20871602 PMCID: PMC2950257 DOI: 10.1038/nn.2639] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/18/2010] [Indexed: 11/22/2022]
Abstract
Feed–forward GABAergic inhibition sets dendritic integration window thereby controlling timing and output in cortical circuits. However, it is unclear how feed–forward inhibitory circuits emerge, even though this is a critical step for neocortical development and function. Here we show that sensory–experience drives plasticity of the feed–forward inhibitory circuit in mouse layer 4 somatosensory “barrel” cortex in the second postnatal week by two distinct mechanisms. Firstly, sensory–experience selectively strengthens thalamocortical to feed–forward interneuron inputs via a presynaptic mechanism, but does not regulate other inhibitory circuit components. Secondly, experience drives a postsynaptic mechanism in which a down–regulation of a prominent thalamocortical NMDA EPSP in stellate cells regulates final expression of functional feed–forward inhibitory input. Thus, experience is required for specific, coordinated changes at thalamocortical synapses onto both inhibitory and excitatory neurons producing a circuit plasticity that results in maturation of functional feed–forward inhibition in layer 4.
Collapse
|
40
|
Just N, Petersen C, Gruetter R. BOLD responses to trigeminal nerve stimulation. Magn Reson Imaging 2010; 28:1143-51. [DOI: 10.1016/j.mri.2010.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 02/08/2010] [Indexed: 02/07/2023]
|
41
|
Wang DD, Li Z, Chang Y, Wang RR, Chen XF, Zhao ZY, Cao FL, Jin JH, Liu MG, Chen J. Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices. Neurosci Bull 2010; 26:175-87. [PMID: 20502495 DOI: 10.1007/s12264-010-0308-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area). METHODS Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O(2) and 5% CO(2)), and were mounted on a Med64 probe (64 electrodes, 8x8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes. RESULTS The local intracortical connection, which is involved in mediation of downward information flow across layers II-VI, was identified by electrical stimulation (ES) at layers II-III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II-IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could successfully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%), while the same CS application at layers II-III induced no LTP in any of the 6 tested slices. CONCLUSION The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II-III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pereanu W, Kumar A, Jennett A, Reichert H, Hartenstein V. Development-based compartmentalization of the Drosophila central brain. J Comp Neurol 2010; 518:2996-3023. [PMID: 20533357 DOI: 10.1002/cne.22376] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms.
Collapse
Affiliation(s)
- Wayne Pereanu
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
43
|
Popescu MV, Ebner FF. Neonatal sensory deprivation and the development of cortical function: unilateral and bilateral sensory deprivation result in different functional outcomes. J Neurophysiol 2010; 104:98-107. [PMID: 20427621 DOI: 10.1152/jn.00120.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The normal development of sensory perception in mammals depends on appropriate sensory experience between birth and maturity. Numerous reports have shown that trimming some or all of the large mystacial vibrissa (whiskers) on one side of the face after birth has a detrimental effect on the maturation of cortical function. The objective of the present study was to understand the differences that occur after unilateral whisker trimming compared with those that occur after bilateral deprivation. Physiological deficits produced by bilateral trimming (BD) of all whiskers for 2 mo after birth were compared with the deficits produced by unilateral trimming (UD) for the same period of time using extracellular recording under urethan anesthesia from single cells in rat barrel cortex. Fast spiking (FSUs) and regular spiking (RSUs) units were separated and their properties compared in four subregions identified by histological reconstructions of the electrode penetrations, namely: layer IV barrel and septum, and layers II/III above a barrel and above a septum. UD upregulated responses in layer IV septa and in layers II/III above septa and perturbed the timing of responses to whisker stimuli. After BD, nearly all responses were decreased, and poststimulus latencies were increased. Circuit changes are proposed as an argument for how inputs arising from the spared whiskers project to the undeprived cortex and, via commissural fibers, could upregulate septal responses after UD. Following BD, more global neural deficits create a signature difference in the outcome of UD and BD in rat barrel cortex.
Collapse
Affiliation(s)
- Maria V Popescu
- Department of Psychology, Vanderbilt University, Nashville Tennessee 37240, USA
| | | |
Collapse
|
44
|
Pesavento MJ, Rittenhouse CD, Pinto DJ. Response sensitivity of barrel neuron subpopulations to simulated thalamic input. J Neurophysiol 2010; 103:3001-16. [PMID: 20375248 DOI: 10.1152/jn.01053.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.
Collapse
Affiliation(s)
- Michael J Pesavento
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Box 603, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | |
Collapse
|
45
|
Plasticity of horizontal connections at a functional border in adult rat somatosensory cortex. Neural Plast 2010; 2009:294192. [PMID: 20204080 PMCID: PMC2832108 DOI: 10.1155/2009/294192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/30/2009] [Accepted: 11/23/2009] [Indexed: 11/17/2022] Open
Abstract
Horizontal connections in superficial cortical layers integrate information across sensory maps by connecting related functional columns. It has been hypothesized that these connections mediate cortical reorganization via synaptic plasticity. However, it is not known if the horizontal connections from discontinuous cortical regions can undergo plasticity in the adult. Here we located the border between two discontinuous cortical representations in vivo and used either pairing or low-frequency stimulation to induce synaptic plasticity in the horizontal connections surrounding this border in vitro. Individual neurons revealed significant and diverse forms of synaptic plasticity for horizontal connections within a continuous representation and discontinuous representations. Interestingly, both enhancement and depression were observed following both plasticity paradigms. Furthermore, plasticity was not restricted by the border's presence. Depolarization in the absence of synaptic stimulation also produced synaptic plasticity, but with different characteristics. These experiments suggest that plasticity of horizontal connections may mediate functional reorganization.
Collapse
|
46
|
Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 2009; 110:1717-36. [PMID: 19627442 DOI: 10.1111/j.1471-4159.2009.06288.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes are a major component of the resident non-neuronal glial cell population of the CNS. They are ubiquitously distributed throughout the brain and spinal cord, where they were initially thought to function in both structural and homeostatic capacities, providing the framework and environment in which neurons performed their parenchymal duties. However, this stroma-like view of astrocytes is no longer satisfactory. Mounting evidence particularly within the last decade indicates that astrocytes do not simply support neuronal activity but directly contribute to it. Congruent with this evolving view of astrocyte function in information processing is the emergent notion that these glial cells are not a homogeneous population of cells. Thus, astrocytes in various anatomically distinct regions of the normal CNS possess unique phenotypic characteristics that may directly influence the particular neuronal activities that define these regions. Remarkably, regional populations of astrocytes appear to exhibit local heterogeneity as well. Many phenotypic traits of the astrocyte lineage are responsive to local environmental cues (i.e., are adaptable), suggesting that plasticity contributes to this diversity. However, compelling evidence suggests that astrocytes arise from multiple distinct progenitor pools in the developing CNS, raising the intriguing possibility that some astrocyte heterogeneity may result from intrinsic differences between these progenitors. The purpose of this review is to explore the evidence for and mechanistic determinants of regional and local astrocyte diversity.
Collapse
Affiliation(s)
- James A Hewett
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
47
|
Hickmott PW. Synapses of horizontal connections in adult rat somatosensory cortex have different properties depending on the source of their axons. Cereb Cortex 2009; 20:591-601. [PMID: 19571271 DOI: 10.1093/cercor/bhp125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In somatosensory cortex (S1) tactile stimulation activates specific regions. The borders between representations of different body parts constrain the spread of excitation and inhibition: connections that cross from one representation to another (cross-border, CB) are weaker than those remaining within the representation (noncross border, NCB). Thus, physiological properties of CB and NCB synapses onto layer 2/3 pyramidal neurons were compared using whole-cell recordings in layer 2/3 neurons close to the border between the forepaw and lower jaw representations. Electrical stimulation of CB and NCB connections was used to activate synaptic potentials. Properties of excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials (PSP) were determined using 3 methods: 1) minimal stimulation to elicit single-fiber responses; 2) stimulation in the presence of extracellular Sr(2+) to elicit asynchronous quantal responses; 3) short trains of stimulation at various frequencies to examine postsynaptic potential (PSP) dynamics. Both minimal and asynchronous quantal EPSPs were smaller when evoked by CB than NCB stimulation. However, the dynamics of EPSP and IPSP trains were not different between CB and NCB stimulation. These data suggest that individual excitatory synapses from connections that cross a border (CB) have smaller amplitudes than those that come from within a representation (NCB), and suggest a postsynaptic locus for the difference.
Collapse
Affiliation(s)
- Peter W Hickmott
- Department of Psychology and Interdepartmental Neuroscience Program, University of California Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Lefort S, Tomm C, Floyd Sarria JC, Petersen CCH. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 2009; 61:301-16. [PMID: 19186171 DOI: 10.1016/j.neuron.2008.12.020] [Citation(s) in RCA: 608] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 02/07/2023]
Abstract
Local microcircuits within neocortical columns form key determinants of sensory processing. Here, we investigate the excitatory synaptic neuronal network of an anatomically defined cortical column, the C2 barrel column of mouse primary somatosensory cortex. This cortical column is known to process tactile information related to the C2 whisker. Through multiple simultaneous whole-cell recordings, we quantify connectivity maps between individual excitatory neurons located across all cortical layers of the C2 barrel column. Synaptic connectivity depended strongly upon somatic laminar location of both presynaptic and postsynaptic neurons, providing definitive evidence for layer-specific signaling pathways. The strongest excitatory influence upon the cortical column was provided by presynaptic layer 4 neurons. In all layers we found rare large-amplitude synaptic connections, which are likely to contribute strongly to reliable information processing. Our data set provides the first functional description of the excitatory synaptic wiring diagram of a physiologically relevant and anatomically well-defined cortical column at single-cell resolution.
Collapse
Affiliation(s)
- Sandrine Lefort
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Federale de Lausanne, CH1015, Switzerland
| | | | | | | |
Collapse
|
49
|
Schrader S, Grün S, Diesmann M, Gerstein GL. Detecting synfire chain activity using massively parallel spike train recording. J Neurophysiol 2008; 100:2165-76. [PMID: 18632888 PMCID: PMC2576207 DOI: 10.1152/jn.01245.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 07/14/2008] [Indexed: 11/22/2022] Open
Abstract
The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these chains. Experimental evidence for synfire chains has so far been limited to inference from detection of a few repeating spatiotemporal neuronal firing patterns in multiple single-unit recordings. Demonstration that such patterns actually come from synfire activity would require finding a meta organization among many detected patterns, as yet an untried approach. In contrast we present here a new method that directly visualizes the repetitive occurrence of synfire activity even in very large data sets of multiple single-unit recordings. We achieve reliability and sensitivity by appropriately averaging over neuron space (identities) and time. We test the method with data from a large-scale balanced recurrent network simulation containing 50 randomly activated synfire chains. The sensitivity is high enough to detect synfire chain activity in simultaneous single-unit recordings of 100 to 200 neurons from such data, enabling application to experimental data in the near future.
Collapse
Affiliation(s)
- Sven Schrader
- Bernstein Center for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | |
Collapse
|
50
|
Nakamura K, Watakabe A, Hioki H, Fujiyama F, Tanaka Y, Yamamori T, Kaneko T. Transiently increased colocalization of vesicular glutamate transporters 1 and 2 at single axon terminals during postnatal development of mouse neocortex: a quantitative analysis with correlation coefficient. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2008.06449.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|