1
|
Vacca V, Rossi C, Pieroni L, De Angelis F, Giacovazzo G, Cicalini I, Ciavardelli D, Pavone F, Coccurello R, Marinelli S. Sex-specific adipose tissue's dynamic role in metabolic and inflammatory response following peripheral nerve injury. iScience 2023; 26:107914. [PMID: 37817933 PMCID: PMC10561049 DOI: 10.1016/j.isci.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury. Metabolic assessments, metabolomics, energy expenditure evaluations, AT proteomic analyses, and adipokine mobilization depict distinct AT reactions to nerve damage. Females exhibit altered lipolysis, fatty acid oxidation, heightened energy expenditure, and augmented steroids secretion affecting glucose and insulin metabolism. Conversely, male neuropathy prompts glycolysis, reduced energy expenditure, and lowered unsaturated fatty acid levels. Males' AT promotes regenerative molecules, oxidative stress defense, and stimulates peroxisome proliferator-activated receptors (PPAR-γ) and adiponectin. This study underscores AT's pivotal role in regulating gender-specific inflammatory and metabolic responses to nerve injuries, shedding light on female NeP susceptibility determinants.
Collapse
Affiliation(s)
- Valentina Vacca
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luisa Pieroni
- Departmental Faculty of Medicine, UniCamillus - Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Federica De Angelis
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Università degli studi di Teramo (UniTE) - Facoltà di Medicina Veterinaria, 64100 Teramo, Italy
| | - Ilaria Cicalini
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Domenico Ciavardelli
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
- School of Medicine, University Kore of Enna, Enna, Italy
| | - Flaminia Pavone
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Roberto Coccurello
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| | - Sara Marinelli
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| |
Collapse
|
2
|
Steadman CJ, Hubscher CH. Sexual Function after Spinal Cord Injury: Innervation, Assessment, and Treatment. CURRENT SEXUAL HEALTH REPORTS 2016. [DOI: 10.1007/s11930-016-0067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep 2016; 6:18980. [PMID: 26742647 PMCID: PMC4705539 DOI: 10.1038/srep18980] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17β-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17β-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17β-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Sara Marinelli
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Luisa Pieroni
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Andrea Urbani
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| |
Collapse
|
4
|
Ovarian hormones and chronic pain: A comprehensive review. Pain 2014; 155:2448-2460. [DOI: 10.1016/j.pain.2014.08.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 01/19/2023]
|
5
|
Pan XQ, Malykhina AP. Estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract of female rats upon colon-bladder cross-sensitization. PLoS One 2014; 9:e94872. [PMID: 24788240 PMCID: PMC4006778 DOI: 10.1371/journal.pone.0094872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/20/2014] [Indexed: 12/30/2022] Open
Abstract
Co-morbidity of bladder, bowel, and non-specific pelvic pain symptoms is highly prevalent in women. Little evidence is present on modulation of pelvic pain syndromes by sex hormones, therefore, the objective of this study was to clarify the effects of hormonal fluctuations within the estrous cycle on regulatory neuropeptides in female rats using a model of neurogenic bladder dysfunction. The estrous cycle in female rats (Sprague-Dawley, 230-250 g) was assessed by vaginal smears and weight of uterine horns. Neurogenic bladder dysfunction was induced by a single inflammatory insult to the distal colon. Protein expression of calcitonin gene related peptide (CGRP), substance P (SP), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) in the pelvic organs, sensory ganglia and lumbosacral spinal cord was compared in rats in proestrus (high estrogen) vs diestrus (low estrogen). Under normal physiological conditions, concentration of SP and CGRP was similar in the distal colon and urinary bladder during all phases of the estrous cycle, however, acute colitis induced a significant up-regulation of CGRP content in the colon (by 63%) and urinary bladder (by 54%, p≤0.05 to control) of rats in proestrus. These changes were accompanied by a significant diminution of CGRP content in L6-S2 DRG after colonic treatment, likely associated with its release in the periphery. In rats with high estrogen at the time of testing (proestrus), experimental colitis caused a significant up-regulation of BDNF colonic content from 26.1±8.5 pg/ml to 83.4±32.5 pg/ml (N = 7, p≤0.05 to control) and also induced similar effects on BDNF in the urinary bladder which was also up-regulated by 5-fold in rats in proestrus (p≤0.05 to respective control). Our results demonstrate estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract upon colon-bladder cross-sensitization, which may contribute to pain fluctuations in female patients with neurogenic bladder pain.
Collapse
Affiliation(s)
- Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania, United States of America
| | - Anna P. Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lu Y, Jiang Q, Yu L, Lu ZY, Meng SP, Su D, Burnstock G, Ma B. 17β-estradiol rapidly attenuates P2X3 receptor-mediated peripheral pain signal transduction via ERα and GPR30. Endocrinology 2013; 154:2421-33. [PMID: 23610132 DOI: 10.1210/en.2012-2119] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen has been reported to affect pain perception, although the underlying mechanisms remain unclear. In this investigation, pain behavior testing, patch clamp recording, and immunohistochemistry were used on rats and transgenic mice to determine which estrogen receptors (ERs) and the related signaling pathway are involved in the rapid modulation of estrogen on P2X3 receptor-mediated events. The results showed that 17β-estradiol (E2) rapidly inhibited pain induced by α,β-methylene ATP (α,β-me-ATP), a P2X1 and P2X3 receptor agonist in ovariectomized rats and normal rats in diestrus. The ERα agonist 4,49,499-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) and G protein-coupled receptor 30 (GPR30) agonist G-1 mimicked the estrogen effect, whereas the ERβ agonist diarylpropionitrile (DPN) had no effect. In cultured rat dorsal root ganglion (DRG) neurons, PPT and G-1 but not DPN significantly attenuated α,β-me-ATP-mediated currents, with the dose-response curve of these currents shifted to the right. The inhibitory effect of E2 on P2X3 currents was blocked by G-15, a selective antagonist to the GPR30 estrogen receptor. E2 lacked this effect in DRG neurons from ERα-knockout mice but partly remained in those from ERβ-knockout mice. The P2X3 and GPR30 receptors were coexpressed in the rat DRG neurons. Furthermore, the ERK1/2 inhibitor U0126 reversed the inhibitory effect of E2 on α,β-me-ATP-induced pain and of PPT or G-1 on P2X3 receptor-mediated currents. The cAMP-protein kinase A (PKA) agonist forskolin, but not the PKC agonist phorbol-12-myristate-13-acetate (PMA), mimicked the estrogen-inhibitory effect on P2X3 receptor currents, which was blocked by another ERK1/2 inhibitor, PD98059. These results suggest that estrogen regulates P2X3-mediated peripheral pain by acting on ERα and GPR30 receptors expressed in primary afferent neurons, which probably involves the intracellular cAMP-PKA-ERK1/2 pathway.
Collapse
Affiliation(s)
- Yi Lu
- Department of Physiology, School of Pharmacy, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cao DY, Ji Y, Tang B, Traub RJ. Estrogen receptor β activation is antinociceptive in a model of visceral pain in the rat. THE JOURNAL OF PAIN 2012; 13:685-94. [PMID: 22698981 DOI: 10.1016/j.jpain.2012.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 01/31/2023]
Abstract
UNLABELLED The mechanism underlying estrogen modulation of visceral pain remains unclear. Our previous studies indicate that activation of estrogen receptor α (ERα) enhances visceral pain. The purpose of the present study was to investigate the role of estrogen receptor β (ERβ) activation in spinal processing of visceral stimuli. The effects of selective ERβ agonists on the visceromotor response (VMR) and dorsal horn neuronal responses to colorectal distention (CRD) were tested in ovariectomized and intact female rats. The magnitude of the VMR to CRD was significantly attenuated by ERβ agonists diarylpropionitrile (DPN) and WAY-200070 4 hours after subcutaneous injection. Pretreatment with the estrogen receptor antagonist ICI 182,780 obscured the DPN-evoked attenuation. There was no effect of DPN on the VMR at earlier time points. Subcutaneous and spinal administration of DPN attenuated the response of visceroceptive dorsal horn neurons with a comparable time course. DPN attenuated the VMR in intact rats regardless of estrous cycle stage. The time course of effect of ERβ activation on the visceromotor response and neuronal activity is consistent with transcriptional or translational modulation of neuronal activity. PERSPECTIVE Activation of ERβ is antinociceptive in the colorectal distention model of visceral pain, which may provide a therapeutic target to manage irritable bowel syndrome in the clinic.
Collapse
Affiliation(s)
- Dong-Yuan Cao
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
8
|
Malykhina AP, Wyndaele JJ, Andersson KE, De Wachter S, Dmochowski RR. Do the urinary bladder and large bowel interact, in sickness or in health? ICI-RS 2011. Neurourol Urodyn 2012; 31:352-8. [PMID: 22378593 DOI: 10.1002/nau.21228] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022]
Abstract
Normal functioning of the urinary bladder and the distal gut is an essential part of daily physiological activity coordinated by the peripheral and central nervous systems. Pathological changes in one of these organs may induce the development of cross-organ sensitization in the pelvis and underlie clinical co-morbidity of genitourinary and GI dysfunctions. Experimental human and animal data suggest that the bladder and distal colon interact under both normal and pathological conditions, however, the directions of these interactions can change dramatically depending on the nature and duration of the applied stimuli. This review article aimed to summarize the clinical data on colon-bladder cross-reflexes in healthy individuals, as well as in patients with co-morbid disorders. It also discusses currently used animal models, experimental approaches, and suggested mechanisms of colon-bladder cross-talk. Additionally, it provides an overview of the potential pharmacological targets to develop treatment options for patients with co-morbid disorders. Presented work resulted from the discussion of colon/bladder interactions during "Think Tank 9" presentations at the International Consultation on Incontinence Research Society meeting held in Bristol, UK, 2011.
Collapse
Affiliation(s)
- Anna P Malykhina
- Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania 19036-2307, USA.
| | | | | | | | | |
Collapse
|
9
|
Ji Y, Tang B, Traub RJ. Spinal estrogen receptor alpha mediates estradiol-induced pronociception in a visceral pain model in the rat. Pain 2011; 152:1182-1191. [PMID: 21392887 PMCID: PMC3079062 DOI: 10.1016/j.pain.2011.01.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 02/07/2023]
Abstract
We previously reported that 17β-estradiol (E2) is pronociceptive in a visceral pain model in the rat. Subcutaneously (s.c.) administered E2 reversed the decrease in the colorectal distention (CRD)-evoked visceromotor response produced by ovariectomy (OVx) and CRD-induced nociceptive responses were greater in proestrous rats compared with met/diestrous rats. The site of action, the type of estrogen receptors activated, and the possible intracellular signaling pathway involved are yet to be established. In the present study, intrathecal (i.t.) E2 administered to OVx rats mimicked the effects of s.c. E2, suggesting that spinal estrogen receptors are involved. This is further supported by the observations that the anti-estrogen ICI 182,780 injected i.t. in intact female rats significantly decreased the visceromotor response to CRD, the response of colonic afferents was not affected by OVx, and colonic afferents did not label for estrogen receptor α (ERα). The ERα selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol (PPT; s.c. or i.t.) facilitated the visceromotor response similar to E2, suggesting ERα activation is involved in mediating the pronociceptive effect of E2. PPT (s.c. or i.t.) increased the response of spinal dorsal horn neurons to CRD, indicating a spinal site of action. In addition, s.c. E2 or PPT increased CRD-induced spinal extracellular signal-regulated kinase (ERK) phosphorylation that was not observed in OVx rats and a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor blocked facilitation of the visceromotor response by PPT. Taken together, the present study demonstrates that spinal ERα mediates the pronociceptive effect of E2 on visceral signal processing through activation of the MAPK pathway.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain Sciences, University of Maryland Dental School, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Zhong YQ, Li KC, Zhang X. Potentiation of excitatory transmission in substantia gelatinosa neurons of rat spinal cord by inhibition of estrogen receptor alpha. Mol Pain 2010; 6:92. [PMID: 21143988 PMCID: PMC3016347 DOI: 10.1186/1744-8069-6-92] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/11/2010] [Indexed: 01/23/2023] Open
Abstract
Background It has been shown that estrogen is synthesized in the spinal dorsal horn and plays a role in modulating pain transmission. One of the estrogen receptor (ER) subtypes, estrogen receptor alpha (ERα), is expressed in the spinal laminae I-V, including substantia gelatinosa (SG, lamina II). However, it is unclear how ERs are involved in the modulation of nociceptive transmission. Results In the present study, a selective ERα antagonist, methyl-piperidino-pyrazole (MPP), was used to test the potential functional roles of spinal ERα in the nociceptive transmission. Using the whole-cell patch-clamp technique, we examined the effects of MPP on SG neurons in the dorsal root-attached spinal cord slice prepared from adult rats. We found that MPP increased glutamatergic excitatory postsynaptic currents (EPSCs) evoked by the stimulation of either Aδ- or C-afferent fibers. Further studies showed that MPP treatment dose-dependently increased spontaneous EPSCs frequency in SG neurons, while not affecting the amplitude. In addition, the PKC was involved in the MPP-induced enhancement of synaptic transmission. Conclusions These results suggest that the selective ERα antagonist MPP pre-synaptically facilitates the excitatory synaptic transmission to SG neurons. The nociceptive transmission evoked by Aδ- and C-fiber stimulation could be potentiated by blocking ERα in the spinal neurons. Thus, the spinal estrogen may negatively regulate the nociceptive transmission through the activation of ERα.
Collapse
Affiliation(s)
- Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Chinese Academy of Sciences
| | | | | |
Collapse
|
11
|
Khakpay R, Semnanian S, Javan M, Janahmadi M. The effect of intra-locus coeruleus injection of 17beta-estradiol on inflammatory pain modulation in male rat. Behav Brain Res 2010; 214:409-16. [PMID: 20600351 DOI: 10.1016/j.bbr.2010.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 06/01/2010] [Accepted: 06/11/2010] [Indexed: 12/29/2022]
Abstract
Estradiol is a neuroactive steroid found in several brain areas such as locus coeruleus (LC). It modulates nociception by binding to its receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABA(A) receptors. LC is involved in noradrenergic descending pain modulation. In order to study the effect of 17beta-estradiol on both acute and persistent pain modulation and its mechanisms, formalin was injected into the male rat's hind paw. Formalin-induced responses including licking, flexing duration and paw jerking frequency were recorded for 60 min after injection of 50 microl of 2% formalin. The results of the current study showed that intra-locus coeruleus injection of 17beta-estradiol attenuated the second phase, but not the acute phase of formalin-induced pain (P<0.05). AMPA receptor antagonists CNQX had no effect on pain-modulatory effect of 17beta-estradiol. Estrogen and GABA(A) receptor antagonists (ICI 182,780 and bicuculline, respectively) could not reverse the antinociceptive effect of 17beta-estradiol. However, NMDA receptor antagonist APV significantly antagonized the analgesic effect of 17beta-estradiol on flexing behaviour (P<0.05). It may be concluded that the analgesic effect of 17beta-estradiol in formalin-induced inflammatory pain is mediated through interaction with membrane-bound receptors, probably the NMDA receptors.
Collapse
Affiliation(s)
- Roghaieh Khakpay
- Department of Physiology, Tarbiat Modares University, P.O. Box: 14115-116, Tehran, Iran
| | | | | | | |
Collapse
|
12
|
Reed WR, Chadha HK, Hubscher CH. Effects of 17beta-estradiol on responses of viscerosomatic convergent thalamic neurons in the ovariectomized female rat. J Neurophysiol 2009; 102:1062-74. [PMID: 19553492 DOI: 10.1152/jn.00165.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian hormones have been shown to exert multiple effects on CNS function and viscerosomatic convergent activity. Ovariectomized (OVX) female rats were used in the present study to examine the long-term effects of proestrus levels of 17beta-estradiol (EB) delivered by a 60-day time-released subcutaneous pellet on the response properties of viscerosomatic convergent thalamic neurons. In addition, avoidance thresholds to mechanical stimulation for one of the convergent somatic territories, the trunk, was assessed using an electro-von Frey anesthesiometer before and at the end of the 6-wk post-OVX/implant period prior to the terminal electrophysiological experiments, which were done under urethane anesthesia. Rats implanted with an EB-containing pellet, relative to placebo controls, demonstrated 1) altered thalamic response frequencies and thresholds for cervix and vaginal but not colon stimulation; 2) some response variations for just the lateral group of thalamic subnuclei; and 3) altered thalamic response frequencies and thresholds for trunk stimulation. Thalamic response thresholds for trunk pressure in EB versus placebo rats were consistent with the avoidance thresholds obtained from the same groups. In addition, EB replacement affected visceral and somatic thresholds in opposite ways (i.e., reproductive-related structures were less sensitive to pressure, whereas somatic regions showed increased sensitivity). These results have obvious reproductive advantages (i.e., decreased reproductive organ sensitivity for copulation and increased trunk sensitivity for lordosis posturing), as well as possible clinical implications in women suffering from chronic pelvic pain syndromes and/or neuropathic pain.
Collapse
Affiliation(s)
- William R Reed
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
13
|
Chadha HK, Armstrong JE, Mower GD, Hubscher CH. Effects of surgical induction of endometriosis on response properties of preoptic area neurons in rats. Brain Res 2008; 1246:101-10. [PMID: 18955036 DOI: 10.1016/j.brainres.2008.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 10/24/2022]
Abstract
Subfertility and severe pelvic pains are symptoms associated with endometriosis (ENDO), a common condition among women that is characterized by the growth of the uterine endometrium on the surface of organs within the pelvic region and abdominal cavity. The contribution of the CNS to symptoms associated with ENDO is not known. In the present study, the preoptic area (POA) of the hypothalamus was investigated, as this region of the forebrain is known to play an important role in the neuroendocrine control of the reproductive cycle, mating behavior, and antinociception. Female rats were either induced for ENDO by autotransplantation of uterine tissue (n=20) or uterine fat for surgical sham controls (n=11). Terminal extracellular electrophysiological recordings (urethane anesthesia) were conducted in the POA six weeks post-ENDO induction when the rats were in either the proestrus or metestrus stages of their estrous cycle. Significant differences were found between the ENDO versus SHAM groups of animals for the proportion of inhibitory responses as well as the percentage of neurons responding to stimulation of the abdominal branches of the vagus, which innervates portions of the female reproductive tract, including the ovaries. The endometriotic cysts were found to be significantly larger in proestrus rats (stage when hormones are elevated). These data demonstrate that the responses of POA neurons are influenced by the presence of endometriotic cysts in the abdominal cavity. Since the POA is known to be part of the neural circuitries that mediate nociception and fertility, any deviation from its normal activity under ENDO conditions could contribute to the constellation of symptoms that ensue.
Collapse
Affiliation(s)
- Harpreet K Chadha
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
14
|
Chakrabarty A, Blacklock A, Svojanovsky S, Smith PG. Estrogen elicits dorsal root ganglion axon sprouting via a renin-angiotensin system. Endocrinology 2008; 149:3452-60. [PMID: 18388195 PMCID: PMC2453086 DOI: 10.1210/en.2008-0061] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many painful conditions occur more frequently in women, and estrogen is a predisposing factor. Estrogen may contribute to some pain syndromes by enhancing axon outgrowth by sensory dorsal root ganglion (DRG) neurons. The objective of the present study was to define mechanisms by which estrogen elicits axon sprouting. The estrogen receptor-alpha agonist propyl pyrazole triol induced neurite outgrowth from cultured neonatal DRG neurons, whereas the estrogen receptor-beta agonist diarylpropionitrile was ineffective. 17beta-Estradiol (E2) elicited sprouting from peripherin-positive unmyelinated neurons, but not larger NF200-positive myelinated neurons. Microarray analysis showed that E2 up-regulates angiotensin II (ANGII) receptor type 2 (AT2) mRNA in vitro, and studies in adult rats confirmed increased DRG mRNA and protein in vivo. AT2 plays a central role in E2-induced axon sprouting because AT2 blockade by PD123,319 eliminated estrogen-mediated sprouting in vitro. We assessed whether AT2 may be responding to locally synthesized ANGII. DRG from adult rats expressed mRNA for renin, angiotensinogen, and angiotensin converting enzyme (ACE), and protein products were present and occasionally colocalized within neurons and other DRG cells. We determined if locally synthesized ANGII plays a role in estrogen-mediated sprouting by blocking its formation using the ACE inhibitor enalapril. ACE inhibition prevented estrogen-induced neuritogenesis. These findings support the hypothesis that estrogen promotes DRG nociceptor axon sprouting by up-regulating the AT2 receptor, and that locally synthesized ANGII can induce axon formation. Therefore, estrogen may contribute to some pain syndromes by enhancing the pro-neuritogenic effects of AT2 activation by ANGII.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Kansas Life Sciences Innovation Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
15
|
Chadha HK, Hubscher CH. Convergence of nociceptive information in the forebrain of female rats: reproductive organ response variations with stage of estrus. Exp Neurol 2007; 210:375-87. [PMID: 18096159 DOI: 10.1016/j.expneurol.2007.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/12/2007] [Accepted: 11/13/2007] [Indexed: 11/30/2022]
Abstract
Neurons in the preoptic area (POA) of the hypothalamus and the bed nucleus of stria terminalis (BST) play an important role in the neuroendocrine control of the reproductive cycle, mating behaviors and nociception. Single unit extracellular recordings were performed in the POA and BST region of 20 urethane anesthetized female rats during either the proestrus (elevated levels of estrogen/progesterone) or metestrus (low circulating hormones) stage of the estrous cycle. A total of 118 neurons in the POA and 65 neurons in the BST responded to the search stimuli, bilateral electrical stimulation of the viscerocutaneous branch of the pelvic nerve and/or sensory branch of the pudendal nerve (i.e., dorsal nerve of clitoris). Most of the neurons responding to the electrical search stimuli received a high degree of somatovisceral convergence, including inputs from the abdominal branches of the vagus, cervix, vagina, colon and skin territories on the perineum and trunk. Mean neuronal response thresholds for vaginal and cervical stimulation but not colon distention were significantly higher for animals tested during proestrus. Also, there was a shift in POA and BST neuronal responsiveness towards more inhibition and less excitation during proestrus for a variety of somatovisceral inputs. These data demonstrate that the changes in hormonal status affect the properties of POA and BST neurons, which likely relates not only to the functional importance of these inputs for reproductive behaviors but also for nociceptive processing as well.
Collapse
Affiliation(s)
- Harpreet K Chadha
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
16
|
Malykhina AP. Neural mechanisms of pelvic organ cross-sensitization. Neuroscience 2007; 149:660-72. [PMID: 17920206 DOI: 10.1016/j.neuroscience.2007.07.053] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 12/12/2022]
Abstract
Clinical observations of viscerovisceral referred pain in patients with gastrointestinal and genitourinary disorders suggest an overlap of neurohumoral mechanisms underlying both bowel and urinary bladder dysfunctions. Close proximity of visceral organs within the abdominal cavity complicates identification of the exact source of chronic pelvic pain, where it originates, and how it relocates with time. Cross-sensitization among pelvic structures may contribute to chronic pelvic pain of unknown etiology and involves convergent neural pathways of noxious stimulus transmission from two or more organs. Convergence of sensory information from discrete pelvic structures occurs at different levels of nervous system hierarchy including dorsal root ganglia, the spinal cord and the brain. The cell bodies of sensory neurons projecting to the colon, urinary bladder and male/female reproductive organs express a wide range of membrane receptors and synthesize many neurotransmitters and regulatory peptides. These substances are released from nerve terminals following enhanced neuronal excitability and may lead to the occurrence of neurogenic inflammation in the pelvis. Multiple factors including inflammation, nerve injury, ischemia, peripheral hyperalgesia, metabolic disorders and other pathological conditions dramatically alter the function of directly affected pelvic structures as well as organs located next to a damaged domain. Defining precise mechanisms of viscerovisceral cross-sensitization would have implications for the development of effective pharmacological therapies for the treatment of functional disorders with chronic pelvic pain such as irritable bowel syndrome and painful bladder syndrome. The complexity of overlapping neural pathways and possible mechanisms underlying pelvic organ crosstalk are analyzed in this review at both systemic and cellular levels.
Collapse
Affiliation(s)
- A P Malykhina
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA.
| |
Collapse
|
17
|
Winnard KP, Dmitrieva N, Berkley KJ. Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1592-601. [PMID: 16946082 DOI: 10.1152/ajpregu.00455.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Central nervous system neurons process information converging from the uterus, colon, and bladder, partly via the hypogastric nerve. This processing is influenced by the estrous cycle, suggesting the existence of an estrous-modifiable central nervous system substrate by which input from one pelvic organ can influence functioning of other pelvic organs. Here, we tested predictions from this hypothesis that acute inflammation of colon, uterine horn, or bladder would produce signs of inflammation in the other uninflamed organs (increase vascular permeability) and that cross-organ effects would vary with estrous and be eliminated by hypogastric neurectomy (HYPX). Under urethane anesthesia, the colon, uterine horn, or bladder of rats in proestrus or metestrus, with or without prior HYPX, was treated with mustard oil or saline. Two hours later, Evans Blue dye extravasation was measured to assess vascular permeability. Extravasation was increased in all inflamed organs, regardless of estrous stage. For rats in proestrus, but not metestrus, either colon or uterine horn inflammation significantly increased extravasation in the uninflamed bladder. Much smaller cross-organ effects were seen in colon and uterine horn. HYPX reduced extravasation in the inflamed colon and inflamed uterine horn, but not the inflamed bladder. HYPX eliminated the colon-to-bladder and uterine horn-to-bladder effects. These results demonstrate that inflaming one pelvic organ can produce estrous-modifiable signs of inflammation in other pelvic organs, particularly bladder, and suggest that the cross-organ effects involve the hypogastric nerve and are at least partly centrally mediated. Such effects could contribute to cooccurrence and cyclicity of distressing pelvic disorders in women.
Collapse
Affiliation(s)
- Kenneth P Winnard
- Program in Neuroscience, Florida State University, Eppes Bldg., Copeland Street, Tallahassee, FL 32306-1270, USA
| | | | | |
Collapse
|
18
|
Evrard HC. Estrogen synthesis in the spinal dorsal horn: a new central mechanism for the hormonal regulation of pain. Am J Physiol Regul Integr Comp Physiol 2006; 291:R291-9. [PMID: 16914420 DOI: 10.1152/ajpregu.00930.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The data summarized here suggest the existence of a new central pathway for the hormonal regulation of pain. These data mainly collected in quail, a useful model in neuroendocrinology, demonstrate that numerous neurons in the superficial laminae of the spinal cord express aromatase (estrogen-synthase). Chronic and systemic blockade of this enzyme in quail alters nociception within days, indicating that the slow genomic effects of sex steroids on nociception classically observed in mammals also occur in birds and require aromatization of androgens into estrogens. However, by contrast with these slow effects, acute intrathecal inhibition of aromatase in restricted spinal cord segments reveals that estrogens can also control nociception much faster, within 1 min, presumably through the activation of a nongenomic pathway and in a manner that depends on an immediate response to fast activation/deactivation of local aromatase activity. This emergent central and rapid paracrine mechanism might permit instantaneous and segment-specific changes in pain sensitivity; it draws new interesting perspectives for the study of the estrogenic control of pain, thus far limited to the classical view of slow genomic changes in pain, depending on peripheral estrogens. The expression of aromatase in the spinal cord in other species and in other central nociception-related areas is also briefly discussed.
Collapse
Affiliation(s)
- Henry C Evrard
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, Belgium.
| |
Collapse
|
19
|
Newton BW, Phan DC. Androgens regulate the sexually dimorphic production of co-contained galanin and cholecystokinin in lumbar laminae VII and X neurons. Brain Res 2006; 1099:88-96. [PMID: 16764834 DOI: 10.1016/j.brainres.2006.04.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 04/24/2006] [Accepted: 04/28/2006] [Indexed: 12/29/2022]
Abstract
A population of rat lumbar laminae VII and X putative spinothalamic (STT) neurons that co-contain cholecystokinin-8 (CCK) and galanin (GAL) are sexually dimorphic. Males have a significantly greater number of these neurons, as well as having greater optical densities for both neuropeptides than females. Optical densities for GAL and CCK immunoreactivities in these lumbar neurons in rats that have the testicular feminization mutation (Tfm) are not significantly different from females; however, the number of these lumbar neurons in Tfm rats is significantly smaller than in females. These data suggest that androgens, as well as functional androgen receptors (that Tfm rats lack), are necessary for the establishment of these sexual dimorphisms. Functionally, these CCK- and GAL-containing neurons in the deep lumbar laminae may contribute to the establishment of known sex differences in the affective component of somatic and visceral nociception, as well as the sexually dimorphic nature of some pelvic diseases, e.g., irritable bowel syndrome or cystitis.
Collapse
Affiliation(s)
- Bruce W Newton
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | |
Collapse
|
20
|
Hubscher CH. Estradiol-associated variation in responses of rostral medullary neurons to somatovisceral stimulation. Exp Neurol 2006; 200:227-39. [PMID: 16624305 DOI: 10.1016/j.expneurol.2006.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/09/2006] [Accepted: 02/10/2006] [Indexed: 11/30/2022]
Abstract
The lordosis posture and cervix stimulation during copulation are important reproductive events involving complex neural circuitries that are under hormonal influence. An important component of this circuitry, neurons within the medullary reticular formation (MRF), was examined in the present study using electrophysiological techniques. Single unit extracellular recordings were performed in the MRF of 27 urethane-anesthetized female rats. Using bilateral electrical stimulation of the dorsal nerve of the clitoris as the search stimulus, a detailed examination of the somatovisceral convergent responses of 585 individual MRF neurons was made. A total of 7 different groups of cycling and ovariectomized/hormone-supplemented rats were examined and their neuronal response properties to mechanical stimulation of various pelvic organs (cervix pressure, vaginal distension, colon distension) compared. The results indicate the existence of complex response properties as well as several variations in MRF response characteristics that are hormone-dependent. Specifically, estradiol is associated with hyposensitivity to cervix pressure and hypersensitivity to stroking the face. These opposing effects of estradiol in the same subset of neurons likely relate to lordosis behavior which can be either disrupted or elicited, depending on the area being stimulated (upper versus lower parts of the body, respectively).
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
21
|
Aloisi AM, Bonifazi M. Sex hormones, central nervous system and pain. Horm Behav 2006; 50:1-7. [PMID: 16423353 DOI: 10.1016/j.yhbeh.2005.12.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 12/05/2005] [Accepted: 12/06/2005] [Indexed: 01/04/2023]
Abstract
The aim of the present review, which highlights some relationships between sex hormones, the CNS and pain, is to provide reference points for discussion on one of the most intriguing aspects of pain pathophysiology: the presence of sex differences in the response threshold to phasic painful stimuli and in the incidence of chronic pain syndromes. The first part of the review deals with sex steroids and their mechanisms of action. In the second part, the connections between sex steroids, the CNS and pain are illustrated to introduce possible areas of discussion in the study of sex differences in experimental and clinical pain.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- Department of Physiology, Neuroscience and Applied Physiology Section, Polo Scientifico Universitario San Miniato, Via Aldo Moro, 53100 Siena, Italy.
| | | |
Collapse
|
22
|
Ji Y, Tang B, Traub RJ. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain 2006; 117:433-442. [PMID: 16154701 DOI: 10.1016/j.pain.2005.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/27/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
The contribution of estrogen and progesterone to colorectal hyperalgesia was examined in female rats. The electromyogram recorded from the abdominal wall (visceromotor response, vmr) and the discharge of lumbosacral dorsal horn neurons to colorectal distention (CRD) were measured in intact female, ovariectomized (OVx) and estradiol replaced OVx (E2; 50mug, 48h) rats with and without colonic inflammation. Colorectal hyperalgesia was transient in intact rats, but persisted at least 4h in E2 and OVx rats. The magnitude of hyperalgesia in E2 rats was greater than OVx which was greater than intact rats. Dorsal horn neurons that responded to CRD with an Abrupt (on and off with stimulus) excitatory discharge showed similar sensitivity to estradiol as the vmr following colonic inflammation. In contrast, inflammation did not increase the magnitude of response of excitatory neurons with sustained afterdischarges in any of the treatment groups. Intact female rats have a comparable plasma estrogen concentration to E2 rats, suggesting the difference in responses may have been due to antinociceptive effects of progesterone. This was tested by administering E2+/- progesterone (1mg) and measuring the vmr. Progesterone reduced the facilitation of the vmr produced by E2 before and following colonic inflammation. The present study suggests that estrogen replacement enhances visceral signal processing following colonic inflammation. Furthermore, progesterone may counteract the effects of estrogen on colorectal sensitivity.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Biomedical Sciences and Research Center for Neuroendocrine Influences on Pain, University of Maryland Dental School, 666 W. Baltimore St., Rm 5-A-22, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
23
|
Strigo IA, Albanese MC, Bushnell MC, Duncan GH. Visceral and cutaneous pain representation in parasylvian cortex. Neurosci Lett 2005; 384:54-9. [PMID: 15905031 DOI: 10.1016/j.neulet.2005.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/25/2005] [Accepted: 04/11/2005] [Indexed: 11/21/2022]
Abstract
The ability to localize both touch and pain has been attributed mainly to the primary somatosensory cortex (S1), based on its fine somatotopic mapping of tactile inputs. Recently, S1 has also been implicated in the differentiation of noxious stimulation, such as distinguishing between pain arising from viscera and skin. Recent MEG and fMRI studies show that there is at least a rudimentary tactile topographic representation in the supra-sylvian cortex [encompassing secondary somatosensory area (S2)], suggesting that this area may contribute to touch localization. Nevertheless, the role of this region in pain localization or its role in the differentiation of various types of pain has not been clearly established. Healthy subjects (four males, three females) underwent fMRI-scanning (1.5 T, standard head coil, BOLD analysis) during painful balloon distention of the distal esophagus and painful heat on the midline chest in the zone of referred pain for the esophageal stimulation. Five of the seven subjects exhibited significant activation of the parasylvian region in both experimental conditions, and in each of these five subjects activation related to esophageal pain was represented more laterally within the parasylvian cortex than that associated with cutaneous trunk pain (paired t-test, p's < 0.01). Our results suggest segregation of visceral esophageal and cutaneous chest afferents within parasylvian cortex, possibly implicating this region in the perceptual differentiation of visceral and cutaneous pain.
Collapse
Affiliation(s)
- Irina A Strigo
- Department of Anesthesia, McGill University, Montreal, Canada H3G 1Y6.
| | | | | | | |
Collapse
|
24
|
Ceccarelli I, Fiorenzani P, Grasso G, Lariviere WR, Massafra C, Massai L, Muscettola M, Aloisi AM. Estrogen and mu-opioid receptor antagonists counteract the 17 beta-estradiol-induced licking increase and interferon-gamma reduction occurring during the formalin test in male rats. Pain 2004; 111:181-90. [PMID: 15327822 DOI: 10.1016/j.pain.2004.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 06/01/2004] [Accepted: 06/14/2004] [Indexed: 11/27/2022]
Abstract
Women have a higher incidence of chronic pain syndromes than men and are generally more sensitive to experimental pain. Numerous studies have shown that the female gonadal hormones, estrogens, can profoundly affect the nervous and immune systems, including mechanisms involved in pain and nociception. In the present study, we used antagonists of estrogen receptors (ER) or mu-opioid receptors (mu OR) to evaluate the effects of estrogens on formalin-induced behavioural and immune responses in male rats. After two days of priming with 17 beta-estradiol or saline (i.c.v.), animals were subjected to the formalin test; 15 min prior to formalin (50 microl, 5%) or sham injection in the hind paw, animals were treated with an ER antagonist (ICI 182,780, ICI) or a mu OR antagonist (beta-funaltrexamine, FNA) or saline. The spontaneous behaviours, pain-related behaviours and interferon-gamma (IFN-gamma) production by peripheral blood mononuclear cells were studied in all groups. We found that central administration of estradiol increased the amount of licking of the formalin-injected paw in the second phase of the formalin test. Whereas ICI and FNA had no effect on pain behaviour in saline-pre-treated animals, both antagonists reversed the estradiol-induced increase in licking. The immune system was differently affected by formalin and estradiol treatment. Indeed, formalin injection per se decreased IFN-gamma production; estradiol had no effect on sham-injected animals but strongly reduce the decrease of IFN-gamma production in formalin-injected animals. The results demonstrate that centrally acting estrogens affect ER- and mu OR-mediated pain processing and influence immune function.
Collapse
Affiliation(s)
- Ilaria Ceccarelli
- Pain and Stress Neurophysiology Laboratory, Department of Physiology, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bradshaw HB, Berkley KJ. The influence of ovariectomy with or without estrogen replacement on responses of rat gracile nucleus neurons to stimulation of hindquarter skin and pelvic viscera. Brain Res 2003; 986:82-90. [PMID: 12965232 DOI: 10.1016/s0006-8993(03)03175-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Responses of neurons in the gracile nucleus (NG) of female rats to tactile and visceral stimulation change across the estrous cycle [J. Neurosci. 20 (2000) 7722]. To investigate estrogen's role in these changes, responses of NG neurons to tactile and visceral stimuli were examined in three groups: ovariectomized (OVX), OVX with estrogen replacement (OVX+E2), or sham OVX (tested in diestrus; shamOVX-D). The stimuli were: gentle brushing of hindquarter skin, pressure on the cervix, and distention of the uterus, vagina, or colon. After OVX, the magnitude of multi-unit responses to brushing the perineum, hip and tail, but not the foot and leg, were significantly reduced relative to shamOVX-D. OVX+E2 restored this magnitude to the same level as shamOVX-D, but not, as expected, to levels as large as previously observed in proestrus. After OVX, responses of single neurons to stimulation of the uterus, cervix, and colon were more likely to be excitatory (versus inhibitory) than they had been in cycling rats in proestrus (uterus, cervix) or diestrus (colon); OVX+E2 did not restore the inhibitory responses. In contrast, whereas all responses to vaginal distention after OVX were also excitatory, OVX+E2 in this case significantly restored the inhibitory responses. These findings provide further support for the conclusion that response characteristics of NG neurons are influenced by the rat's hormonal milieu, but also indicate that the influences are not a simple reflection of estrogen levels. The findings further suggest that NG is a component of neural systems that contribute to both reproductive behaviors and vaginal nociception.
Collapse
Affiliation(s)
- Heather B Bradshaw
- Program in Neuroscience, Florida State University, Copeland Street, Tallahassee, FL 32306-1270, USA
| | | |
Collapse
|
26
|
Strigo IA, Duncan GH, Boivin M, Bushnell MC. Differentiation of visceral and cutaneous pain in the human brain. J Neurophysiol 2003; 89:3294-303. [PMID: 12611986 DOI: 10.1152/jn.01048.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The widespread convergence of information from visceral, cutaneous, and muscle tissues onto CNS neurons invites the question of how to identify pain as being from the viscera. Despite referral of visceral pain to cutaneous areas, individuals regularly distinguish cutaneous and visceral pain and commonly have contrasting behavioral reactions to each. Our study addresses this dilemma by directly comparing human neural processing of intensity-equated visceral and cutaneous pain. Seven subjects underwent fMRI scanning during visceral and cutaneous pain produced by balloon distention of the distal esophagus and contact heat on the midline chest. Stimulus intensities producing nonpainful and painful sensations, interleaved with rest periods, were presented in each functional run. Analyses compared painful to nonpainful conditions. A similar neural network, including secondary somatosensory and parietal cortices, thalamus, basal ganglia, and cerebellum, was activated by visceral and cutaneous painful stimuli. However, cutaneous pain evoked higher activation bilaterally in the anterior insular cortex. Further, cutaneous but not esophageal pain activated ventrolateral prefrontal cortex, despite higher affective scores for visceral pain. Visceral but not cutaneous pain activated bilateral inferior primary somatosensory cortex, bilateral primary motor cortex, and a more anterior locus within anterior cingulate cortex. Our results reveal a common cortical network subserving cutaneous and visceral pain that could underlie similarities in the pain experience. However, we also observed differential activation patterns within insular, primary somatosensory, motor, and prefrontal cortices that may account for the ability to distinguish visceral and cutaneous pain as well as the differential emotional, autonomic and motor responses associated with these different sensations.
Collapse
Affiliation(s)
- Irina A Strigo
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
27
|
Curtis JT, Berkley KJ, Wang ZX. Neuronal activation in the caudal brainstem associated with mating by voles. Neurosci Lett 2003; 341:115-8. [PMID: 12686379 DOI: 10.1016/s0304-3940(03)00175-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of c-fos, a marker of neuronal activation, was examined in the gracile nucleus (GN) and nucleus of the solitary tract (NTS) after social interactions, including mating, between male and female prairie voles. In GN, mating, but not non-sexual interactions, induced similar significant increases in c-fos immunoreactivity in both males and females. The increased immunoreactivity was concentrated in medial and dorsal GN suggesting that expression was driven by stimulation of reproductive organs. In contrast, in NTS, mating-induced increases in c-fos expression occurred only in males. These results suggest that both GN and NTS comprise different functional components of mating circuitry and may contribute to pair bonding in monogamous voles.
Collapse
Affiliation(s)
- J Thomas Curtis
- Department of Psychology and Program in Neuroscience, Florida State University, 32306-1270, Tallahassee, FL, USA.
| | | | | |
Collapse
|
28
|
Abstract
BACKGROUND Sex differences in the response threshold to painful stimuli and the higher number of chronic pain syndromes in women than in men have prompted a series of studies on lower animals and humans aimed at clarifying the role of gonadal hormones in pain. OBJECTIVE This article examines the morphologic and functional aspects of gonadal hormone systems and the relations between gonadal hormones and pain circuits, to identify areas deserving of increased attention in elucidating the endocrine mechanisms that contribute to abnormal pain states.
Collapse
|
29
|
Okamoto K, Hirata H, Takeshita S, Bereiter DA. Response properties of TMJ units in superficial laminae at the spinomedullary junction of female rats vary over the estrous cycle. J Neurophysiol 2003; 89:1467-77. [PMID: 12626622 DOI: 10.1152/jn.00795.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons responsive to stimulation of the temporomandibular joint (TMJ) region were recorded from superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C(2)) junction region of cycling female rats under barbiturate anesthesia. To determine if receptive field (RF) properties or sensitivity to algesic chemicals of TMJ units vary over the estrous cycle, animals were selected from proestrous (high estrogen) or early diestrous (low estrogen) stages. More than 90% of TMJ units from each group received convergent nociceptive input [wide dynamic range (WDR) or nociceptive specific (NS)-like] from facial skin. The cutaneous high-threshold RF areas of WDR units from proestrous rats were 30% larger than diestrous units, while RF areas of NS units were similar. Bradykinin (BK, 0.1-10 microM) injection into the TMJ region excited a high percentage of units (>80% of total) from both groups in a dose-related manner. However, BK-evoked response magnitude (R(mag), +140%) and duration (+64%) were greater for proestrous than diestrous units. Both WDR and NS-like TMJ units of proestrous females displayed enhanced BK-evoked R(mag) values and response duration. Glutamate or mustard oil excitation of TMJ units was not affected by stage of the estrous cycle. Several TMJ units from proestrous and diestrous females were activated antidromically from the contralateral posterior thalamus, indicating that projection and nonprojection units were included in the sample population. These results were consistent with the hypothesis that factors related to stage of the estrous cycle modify the processing of deep craniofacial inputs by superficial dorsal horn neurons at the spinomedullary junction, a key region for the initial integration of sensory signals from the TMJ.
Collapse
Affiliation(s)
- K Okamoto
- Department of Surgery, Brown Medical School, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
30
|
Bajaj P, Bajaj P, Madsen H, Arendt-Nielsen L. A comparison of modality-specific somatosensory changes during menstruation in dysmenorrheic and nondysmenorrheic women. Clin J Pain 2002; 18:180-90. [PMID: 12048420 DOI: 10.1097/00002508-200205000-00007] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective was to evaluate somatosensory thresholds to a multimodality stimulation regimen applied both within and outside areas of referred menstrual pain in dysmenorrheic women, over four phases of confirmed ovulatory cycles, and to compare them with thresholds in nondysmenorrheic women during menstruation. DESIGN Twenty dysmenorrheic women with menstrual pain scoring 5.45 +/- 0.39 cm (mean +/- standard error of mean) on a visual analog scale (10 cm) participated. Fifteen nondysmenorrheic women with a menstrual pain score of 0.4 +/- 0.2 cm participated as controls. Ovulation was confirmed by an enzyme-multiplied immunoassay technique. Menstrual pain was described with the McGill Pain Questionnaire. Areas within menstrual pain referral were two abdominal sites and the midline of the low back, and the arm and thigh were the control areas. The pressure pain threshold (PPT) and pinch pain threshold were determined by a hand-held electronic pressure algometer, the heat pain threshold (HPT) by a contact thermode, and the tactile threshold with von Frey hairs. RESULTS In dysmenorrheic women the McGill Pain Questionnaire showed a larger sensory and affective component of pain than the evaluative and miscellaneous groups. The HPT and PPT were lower in the menstrual phase than in the ovulatory, luteal, and premenstrual phases, both within and outside areas of referred menstrual pain (p <0.01), with a more pronounced decrease at the referral pain areas. The pinch pain threshold was lower in the menstrual phase than in the ovulatory phase (p <0.02), and the tactile threshold did not differ significantly across the menstrual phases or within any site. Dysmenorrheic women had a lower HPT at the control sites and a lower PPT at the abdomen, back, and control sites, than in those of nondysmenorrheic women in the menstrual phase. CONCLUSIONS The results show reduced somatosensory pain thresholds during menstruation to heat and pressure stimulation, both within and outside areas of referred menstrual pain in dysmenorrheic women. Dysmenorrheic women showed a lower HPT at the control sites and a lower PPT at all the sites than those for nondysmenorrheic women in the menstrual phase. The altered somatosensory thresholds may be dependent on a spinal mechanism of central hyperexcitability, induced by recurrent moderate to severe menstrual pain.
Collapse
Affiliation(s)
- Priti Bajaj
- Laboratory for Experimental Pain Research, Center for Sensory-Motor Interaction, Aalborg University, Denmark.
| | | | | | | |
Collapse
|
31
|
Sandner-Kiesling A, Pan HL, Chen SR, James RL, DeHaven-Hudkins DL, Dewan DM, Eisenach JC. Effect of kappa opioid agonists on visceral nociception induced by uterine cervical distension in rats. Pain 2002; 96:13-22. [PMID: 11932057 DOI: 10.1016/s0304-3959(01)00398-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although uterine distension in rats results in an escape reflex, there exists no model of uterine cervical distension (UCD), the pain stimulus during the first stage of labor. The aims of this study were to develop such a model in virgin rats and to test whether peripherally restricted kappa opioid receptor (KOR) agonists (ADL 10-0101, ADL 10-0102, ADL 10-0116) inhibit responses to UCD. Under intravenous (i.v.) pentobarbital and alpha-chloralose anesthesia, fine metal rods were inserted in both uterine cervical osses through a small midline laparotomy. UCD was performed by manual separation of the rods (25-100 g). Single-unit afferent responses in hypogastric nerve or reflex rectus abdominis electromyographic (EMG) activity were determined before and after i.v. KOR agonists. UCD resulted in a stimulus-dependent increase in single-unit afferent activity. Units could be characterized as low threshold (mean threshold 6.6+/-2.7 g), or high threshold (mean threshold 55+/-8.8 g); all were C fibers, all responded to topical bradykinin. ADL 10-0116 (10 mg/kg) reduced the afferent response to UCD. Reflex EMG response occurred over a distension force range of 25-100 g, unaffected by i.v. saline. All three KOR agonists produced a dose-dependent, naloxone-reversible inhibition of the EMG response with a potency relationship of ADL 10-0102 (ED50 0.04 mg/kg)>ADL 10-0101 (ED50 0.65 mg/kg)=ADL 10-0116 (ED50 0.60 mg/kg). These data support the use of acute UCD as a noxious stimulus, inducing afferent and reflex activity. Like other visceral stimuli, UCD is sensitive to inhibition by KOR agonists.
Collapse
Affiliation(s)
- Andreas Sandner-Kiesling
- Department of Anesthesiology and Intensive Care Medicine, Karl Franzens-University, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|