1
|
Barry JC, Ferrer E, Lerma-Usabiaga G, Paz-Alonso PM. Mnemonic factors associated with the tip-of-the-tongue phenomenon. Sci Rep 2025; 15:14316. [PMID: 40274869 DOI: 10.1038/s41598-025-96497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The tip-of-the-tongue (ToT) phenomenon is a transient semantic memory retrieval failure. Here we examined to what extent different mnemonic factors (i.e., age of acquisition, frequency of retrieval, recency of last retrieval) impact ToTs during the retrieval of famous faces and places. Eighty adults completed a self-paced experiment for both stimuli. This required making judgements on whether they knew the name, were in a ToT state, the image was familiar or the name was unknown, as well as completing follow-up questions examining the mnemonic factors of interest. Results revealed that later acquired names, a lower frequency of retrieval, and less recently encountered names, all predicted an increase in ToT occurrences. These findings followed a similar pattern across faces and places, with places being stronger predictors for each mnemonic factor. By examining these factors simultaneously across these semantic categories, we provide further evidence regarding the variables determining transient retrieval failures.
Collapse
Affiliation(s)
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis, USA
| | - Garikoitz Lerma-Usabiaga
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Huang S, Howard CM, Bogdan PC, Morales-Torres R, Slayton M, Cabeza R, Davis SW. Trial-level Representational Similarity Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645646. [PMID: 40236023 PMCID: PMC11996353 DOI: 10.1101/2025.03.27.645646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neural representation refers to the brain activity that stands in for one's cognitive experience, and in cognitive neuroscience, the principal method to studying neural representations is representational similarity analysis (RSA). The classic RSA (cRSA) approach examines the overall quality of representations across numerous items by assessing the correspondence between two representational similarity matrices (RSMs): one based on a theoretical model of stimulus similarity and the other based on similarity in measured neural data. However, because cRSA cannot model representation at the level of individual trials, it is fundamentally limited in its ability to assess subject-, stimulus-, and trial-level variances that all influence representation. Here, we formally introduce trial-level RSA (tRSA), an analytical framework that estimates the strength of neural representation for singular experimental trials and evaluates hypotheses using multi-level models. First, we verified the correspondence between tRSA and cRSA in quantifying the overall representation strength across all trials. Second, we compared the statistical inferences drawn from both approaches using simulated data that reflected a wide range of scenarios. Compared to cRSA, the multi-level framework of tRSA was both more theoretically appropriate and significantly sensitive to true effects. Third, using real fMRI datasets, we further demonstrated several issues with cRSA, to which tRSA was more robust. Finally, we presented some novel findings of neural representations that could only be assessed with tRSA and not cRSA. In summary, tRSA proves to be a robust and versatile analytical approach for cognitive neuroscience and beyond.
Collapse
|
3
|
Varga NL, Roome HE, Molitor RJ, Martinez L, Hipskind EM, Mack ML, Preston AR, Schlichting ML. Differentiation of Related Events in Hippocampus Supports Memory Reinstatement in Development. J Cogn Neurosci 2025; 37:853-894. [PMID: 39792655 PMCID: PMC11925597 DOI: 10.1162/jocn_a_02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Adults are capable of either differentiating or integrating similar events in memory based on which representations are optimal for a given situation. Yet how children represent related memories remains unknown. Here, children (7-10 years old) and adults formed memories for separate yet overlapping events. We then measured how successfully remembered events were represented and reinstated using fMRI. We found that children formed differentiated representations in the hippocampus-such that related events were stored as less similar to one another compared with unrelated events. Conversely, adults formed integrated representations, wherein related events were stored as more similar, including in medial prefrontal cortex. Furthermore, hippocampal differentiation among children and medial prefrontal cortex integration among adults tracked neocortical reinstatement of the specific features associated with the individual events. Together, these findings reveal that the same memory behaviors are supported by different underlying representations across development. Specifically, whereas differentiation underlies memory organization and retrieval in childhood, integration exhibits a protracted developmental trajectory.
Collapse
|
4
|
Bruera A, Poesio M. Electroencephalography Searchlight Decoding Reveals Person- and Place-specific Responses for Semantic Category and Familiarity. J Cogn Neurosci 2025; 37:135-154. [PMID: 38319891 DOI: 10.1162/jocn_a_02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Proper names are linguistic expressions referring to unique entities, such as individual people or places. This sets them apart from other words like common nouns, which refer to generic concepts. And yet, despite both being individual entities, one's closest friend and one's favorite city are intuitively associated with very different pieces of knowledge-face, voice, social relationship, autobiographical experiences for the former, and mostly visual and spatial information for the latter. Neuroimaging research has revealed the existence of both domain-general and domain-specific brain correlates of semantic processing of individual entities; however, it remains unclear how such commonalities and similarities operate over a fine-grained temporal scale. In this work, we tackle this question using EEG and multivariate (time-resolved and searchlight) decoding analyses. We look at when and where we can accurately decode the semantic category of a proper name and whether we can find person- or place-specific effects of familiarity, which is a modality-independent dimension and therefore avoids sensorimotor differences inherent among the two categories. Semantic category can be decoded in a time window and with spatial localization typically associated with lexical semantic processing. Regarding familiarity, our results reveal that it is easier to distinguish patterns of familiarity-related evoked activity for people, as opposed to places, in both early and late time windows. Second, we discover that within the early responses, both domain-general (left posterior-lateral) and domain-specific (right fronto-temporal, only for people) neural patterns can be individuated, suggesting the existence of person-specific processes.
Collapse
Affiliation(s)
- Andrea Bruera
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Queen Mary University of London
| | | |
Collapse
|
5
|
Li M, Zhou X. The domain-general and domain-specific role of the semantic neural network in mathematical processing. Neuroimage 2025; 305:120985. [PMID: 39710314 DOI: 10.1016/j.neuroimage.2024.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024] Open
Abstract
The role of the visuospatial network in mathematical processing has been established, but the role of the semantic network in mathematical processing remains poorly understood. The current study compared different types of inductive reasoning with the functional magnetic resonance imaging (fMRI) technique to investigate the role of the semantic network in mathematical processing and whether the role is domain-general or domain-specific. 32 undergraduate students were recruited to complete tasks involving numerical, geometrical, situational, and verbal inductive reasoning, as well as arithmetical computation. The intensity and pattern analysis of brain activation found that all types of inductive reasoning elicited greater and similar activation than arithmetical computation in the semantic network, mainly including the left middle temporal gyrus, inferior frontal gyrus, angular gyrus, and dorsomedial prefrontal cortex. Furthermore, the intensity and patterns analysis of functional connectivity found that numerical inductive reasoning elicited stronger and dissimilar connectivity between the semantic and visuospatial networks than other types of inductive reasoning and arithmetical computation. These findings suggest that the semantic network not only plays a domain-general role but also exhibits domain-specific interactions with the visuospatial network in mathematical processing.
Collapse
Affiliation(s)
- Mengyi Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Bruera A, Poesio M. Family lexicon: Using language models to encode memories of personally familiar and famous people and places in the brain. PLoS One 2024; 19:e0291099. [PMID: 39576771 PMCID: PMC11584084 DOI: 10.1371/journal.pone.0291099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/15/2024] [Indexed: 11/24/2024] Open
Abstract
Knowledge about personally familiar people and places is extremely rich and varied, involving pieces of semantic information connected in unpredictable ways through past autobiographical memories. In this work, we investigate whether we can capture brain processing of personally familiar people and places using subject-specific memories, after transforming them into vectorial semantic representations using language models. First, we asked participants to provide us with the names of the closest people and places in their lives. Then we collected open-ended answers to a questionnaire, aimed at capturing various facets of declarative knowledge. We collected EEG data from the same participants while they were reading the names and subsequently mentally visualizing their referents. As a control set of stimuli, we also recorded evoked responses to a matched set of famous people and places. We then created original semantic representations for the individual entities using language models. For personally familiar entities, we used the text of the answers to the questionnaire. For famous entities, we employed their Wikipedia page, which reflects shared declarative knowledge about them. Through whole-scalp time-resolved and searchlight encoding analyses, we found that we could capture how the brain processes one's closest people and places using person-specific answers to questionnaires, as well as famous entities. Overall encoding performance was significant in a large time window (200-800ms). Using spatio-temporal EEG searchlight, we found that we could predict brain responses significantly better than chance earlier (200-500ms) in bilateral temporo-parietal electrodes and later (500-700ms) in frontal and posterior central electrodes. We also found that XLM, a contextualized (or large) language model, provided superior encoding scores when compared with a simpler static language model as word2vec. Overall, these results indicate that language models can capture subject-specific semantic representations as they are processed in the human brain, by exploiting small-scale distributional lexical data.
Collapse
Affiliation(s)
- Andrea Bruera
- Max Planck Institute for Human Cognitive and Brain Sciences, Cognition and Plasticity Research Group, Leipzig, Germany
- Queen Mary University of London, London, United Kingdom
| | - Massimo Poesio
- Max Planck Institute for Human Cognitive and Brain Sciences, Cognition and Plasticity Research Group, Leipzig, Germany
| |
Collapse
|
7
|
Noad KN, Watson DM, Andrews TJ. Familiarity enhances functional connectivity between visual and nonvisual regions of the brain during natural viewing. Cereb Cortex 2024; 34:bhae285. [PMID: 39038830 DOI: 10.1093/cercor/bhae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
We explored the neural correlates of familiarity with people and places using a naturalistic viewing paradigm. Neural responses were measured using functional magnetic resonance imaging, while participants viewed a movie taken from Game of Thrones. We compared inter-subject correlations and functional connectivity in participants who were either familiar or unfamiliar with the TV series. Higher inter-subject correlations were found between familiar participants in regions, beyond the visual brain, that are typically associated with the processing of semantic, episodic, and affective information. However, familiarity also increased functional connectivity between face and scene regions in the visual brain and the nonvisual regions of the familiarity network. To determine whether these regions play an important role in face recognition, we measured responses in participants with developmental prosopagnosia (DP). Consistent with a deficit in face recognition, the effect of familiarity was significantly attenuated across the familiarity network in DP. The effect of familiarity on functional connectivity between face regions and the familiarity network was also attenuated in DP. These results show that the neural response to familiarity involves an extended network of brain regions and that functional connectivity between visual and nonvisual regions of the brain plays an important role in the recognition of people and places during natural viewing.
Collapse
Affiliation(s)
- Kira N Noad
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| | - David M Watson
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| | - Timothy J Andrews
- Department of Psychology, University of York, York Y010 5DD, United Kingdom
| |
Collapse
|
8
|
Zheng XY, Hebart MN, Grill F, Dolan RJ, Doeller CF, Cools R, Garvert MM. Parallel cognitive maps for multiple knowledge structures in the hippocampal formation. Cereb Cortex 2024; 34:bhad485. [PMID: 38204296 PMCID: PMC10839836 DOI: 10.1093/cercor/bhad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.
Collapse
Affiliation(s)
- Xiaochen Y Zheng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
| | - Martin N Hebart
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Medicine, Justus Liebig University, 35390, Giessen, Germany
| | - Filip Grill
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Neurology, 6525 GA, Nijmegen, the Netherlands
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Christian F Doeller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU, 7491, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, 04109, Leipzig, Germany
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525 GA, Nijmegen, the Netherlands
| | - Mona M Garvert
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, Harpaz-Rotem I, Schiller D. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nat Neurosci 2023; 26:2226-2236. [PMID: 38036701 DOI: 10.1038/s41593-023-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
For people with post-traumatic stress disorder (PTSD), recall of traumatic memories often displays as intrusions that differ profoundly from processing of 'regular' negative memories. These mnemonic features fueled theories speculating a unique cognitive state linked with traumatic memories. Yet, to date, little empirical evidence supports this view. Here we examined neural activity of patients with PTSD who were listening to narratives depicting their own memories. An intersubject representational similarity analysis of cross-subject semantic content and neural patterns revealed a differentiation in hippocampal representation by narrative type: semantically similar, sad autobiographical memories elicited similar neural representations across participants. By contrast, within the same individuals, semantically similar trauma memories were not represented similarly. Furthermore, we were able to decode memory type from hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these findings suggest that traumatic memories are an alternative cognitive entity that deviates from memory per se.
Collapse
Affiliation(s)
- Ofer Perl
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Or Duek
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Kaustubh R Kulkarni
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Gordon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine and Neuroscience, Yale University, New Haven, CT, USA
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- The National Center for PTSD, VA CT Healthcare System, West Haven, CT, USA.
- Department of Psychology and the Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Daniela Schiller
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Marier A, Dadar M, Bouhali F, Montembeault M. Irregular word reading as a marker of cognitive and semantic decline in Alzheimer's disease rather than an estimate of premorbid intellectual abilities. RESEARCH SQUARE 2023:rs.3.rs-3381469. [PMID: 37841870 PMCID: PMC10571618 DOI: 10.21203/rs.3.rs-3381469/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Background Irregular word reading has been used to estimate premorbid intelligence in Alzheimer's disease (AD) dementia. However, reading models highlight the core influence of semantic abilities on irregular word reading, which shows early decline in AD. The general aim of this study is to determine whether irregular word reading is a valid estimate of premorbid intelligence, or a marker of cognitive and semantic decline in AD. Method 681 healthy controls (HC), 104 subjective cognitive decline, 290 early and 589 late mild cognitive impairment (EMCI, LMCI) and 348 AD participants from the Alzheimer's Disease Neuroimaging Initiative were included. Irregular word reading was assessed with the American National Adult Reading Test (AmNART). Multiple linear regressions were conducted predicting AmNART score using diagnostic category, general cognitive impairment and semantic tests. A generalized logistic mixed-effects model predicted correct reading using extracted psycholinguistic characteristics of each AmNART words. Deformation-based morphometry was used to assess the relationship between AmNART scores and voxel-wise brain volumes, as well as with the volume of a region of interest placed in the left anterior temporal lobe (ATL). Results EMCI, LMCI and AD patients made significantly more errors in reading irregular words compared to HC, and AD patients made more errors than all other groups. Across the AD continuum, as well as within each diagnostic group, irregular word reading was significantly correlated to measures of general cognitive impairment / dementia severity. Neuropsychological tests of lexicosemantics were moderately correlated to irregular word reading whilst executive functioning and episodic memory were respectively weakly and not correlated. Age of acquisition, a primarily semantic variable, had a strong effect on irregular word reading accuracy whilst none of the phonological variables significantly contributed. Neuroimaging analyses pointed to bilateral hippocampal and left ATL volume loss as the main contributors to decreased irregular word reading performances. Conclusions Irregular word reading performances decline throughout the AD continuum, and therefore, premorbid intelligence estimates based on the AmNART should not be considered accurate in MCI or AD. Results are consistent with the theory of irregular word reading impairments as an indicator of disease severity and semantic decline.
Collapse
Affiliation(s)
- Anna Marier
- Department of Psychology, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | - Mahsa Dadar
- Douglas Research Centre & Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montréal, QC, Canada, H4H 1R3
| | | | - Maxime Montembeault
- Douglas Research Centre & Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montréal, QC, Canada, H4H 1R3
| |
Collapse
|
11
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
12
|
Morton NW, Zippi EL, Preston AR. Memory reactivation and suppression modulate integration of the semantic features of related memories in hippocampus. Cereb Cortex 2023; 33:9020-9037. [PMID: 37264937 PMCID: PMC10350843 DOI: 10.1093/cercor/bhad179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Encoding an event that overlaps with a previous experience may involve reactivating an existing memory and integrating it with new information or suppressing the existing memory to promote formation of a distinct, new representation. We used fMRI during overlapping event encoding to track reactivation and suppression of individual, related memories. We further used a model of semantic knowledge based on Wikipedia to quantify both reactivation of semantic knowledge related to a previous event and formation of integrated memories containing semantic features of both events. Representational similarity analysis revealed that reactivation of semantic knowledge related to a prior event in posterior medial prefrontal cortex (pmPFC) supported memory integration during new learning. Moreover, anterior hippocampus (aHPC) formed integrated representations combining the semantic features of overlapping events. We further found evidence that aHPC integration may be modulated on a trial-by-trial basis by interactions between ventrolateral PFC and anterior mPFC, with suppression of item-specific memory representations in anterior mPFC inhibiting hippocampal integration. These results suggest that PFC-mediated control processes determine the availability of specific relevant memories during new learning, thus impacting hippocampal memory integration.
Collapse
Affiliation(s)
- Neal W Morton
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States
| | - Ellen L Zippi
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 95064, United States
| | - Alison R Preston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
13
|
Tambini A, Miller J, Ehlert L, Kiyonaga A, D’Esposito M. Structured memory representations develop at multiple time scales in hippocampal-cortical networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535935. [PMID: 37066263 PMCID: PMC10104124 DOI: 10.1101/2023.04.06.535935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Influential views of systems memory consolidation posit that the hippocampus rapidly forms representations of specific events, while neocortical networks extract regularities across events, forming the basis of schemas and semantic knowledge. Neocortical extraction of schematic memory representations is thought to occur on a protracted timescale of months, especially for information that is unrelated to prior knowledge. However, this theorized evolution of memory representations across extended timescales, and differences in the temporal dynamics of consolidation across brain regions, lack reliable empirical support. To examine the temporal dynamics of memory representations, we repeatedly exposed human participants to structured information via sequences of fractals, while undergoing longitudinal fMRI for three months. Sequence-specific activation patterns emerged in the hippocampus during the first 1-2 weeks of learning, followed one week later by high-level visual cortex, and subsequently the medial prefrontal and parietal cortices. Schematic, sequence-general representations emerged in the prefrontal cortex after 3 weeks of learning, followed by the medial temporal lobe and anterior temporal cortex. Moreover, hippocampal and most neocortical representations showed sustained rather than time-limited dynamics, suggesting that representations tend to persist across learning. These results show that specific hippocampal representations emerge early, followed by both specific and schematic representations at a gradient of timescales across hippocampal-cortical networks as learning unfolds. Thus, memory representations do not exist only in specific brain regions at a given point in time, but are simultaneously present at multiple levels of abstraction across hippocampal-cortical networks.
Collapse
Affiliation(s)
- Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY
| | - Jacob Miller
- Wu Tsai Institute, Department of Psychiatry, Yale University, New Haven, CT
| | - Luke Ehlert
- Department of Neurobiology and Behavior, University of California. Irvine, CA
| | - Anastasia Kiyonaga
- Department of Cognitive Science, University of California, San Diego, CA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA
- Department of Psychology, University of California, Berkeley, CA
| |
Collapse
|
14
|
Horwath EA, Rouhani N, DuBrow S, Murty VP. Value restructures the organization of free recall. Cognition 2023; 231:105315. [PMID: 36399901 PMCID: PMC9839530 DOI: 10.1016/j.cognition.2022.105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
Abstract
A large body of research illustrates the prioritization of goal-relevant information in memory; however, it is unclear how reward-related memories are organized. Using a rewarded free recall paradigm, we investigated how reward motivation structures the organization of memory around temporal and higher-order contexts. To better understand these processes, we simulated our findings using a reward-modulated variant of the Context Maintenance and Retrieval Model (CMR; Polyn et al., 2009). In the first study, we found that reward did not influence temporal clustering, but instead shifted the organization of memory based on reward category. Further, we showed that a reward-modulated learning rate and source features of CMR most accurately depict reward's enhancement on memory and clustering by value. In a second study, we showed that reward-memory effects can exist in both extended periods of sustained motivation and frequent changes in motivation, by showing equivalent reward effects using mixed- and pure-list motivation manipulations. However, we showed that a reward-modulated learning rate in isolation can support reward's enhancement of memory in pure-list contexts. Overall, we conclude that reward-related memories are adaptively organized by higher-order value information, and contextual binding to value contexts may only be necessary when rewards are intermittent versus sustained.
Collapse
Affiliation(s)
- Elizabeth A Horwath
- Department of Psychology, Temple University, Philadelphia, PA, United States of America
| | - Nina Rouhani
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States of America
| | - Sarah DuBrow
- Department of Psychology, University of Oregon, Eugene, OR, United States of America
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, United States of America.
| |
Collapse
|
15
|
Dalski A, Kovács G, Ambrus GG. No semantic information is necessary to evoke general neural signatures of face familiarity: evidence from cross-experiment classification. Brain Struct Funct 2023; 228:449-462. [PMID: 36244002 PMCID: PMC9944719 DOI: 10.1007/s00429-022-02583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022]
Abstract
Recent theories on the neural correlates of face identification stressed the importance of the available identity-specific semantic and affective information. However, whether such information is essential for the emergence of neural signal of familiarity has not yet been studied in detail. Here, we explored the shared representation of face familiarity between perceptually and personally familiarized identities. We applied a cross-experiment multivariate pattern classification analysis (MVPA), to test if EEG patterns for passive viewing of personally familiar and unfamiliar faces are useful in decoding familiarity in a matching task where familiarity was attained thorough a short perceptual task. Importantly, no additional semantic, contextual, or affective information was provided for the familiarized identities during perceptual familiarization. Although the two datasets originate from different sets of participants who were engaged in two different tasks, familiarity was still decodable in the sorted, same-identity matching trials. This finding indicates that the visual processing of the faces of personally familiar and purely perceptually familiarized identities involve similar mechanisms, leading to cross-classifiable neural patterns.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, 35039 Marburg, Germany ,Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35039 Marburg, Germany
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Géza Gergely Ambrus
- Institute of Psychology, Friedrich Schiller University Jena, 07743, Jena, Germany. .,Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK.
| |
Collapse
|
16
|
Corriveau A, Kidder A, Teichmann L, Wardle SG, Baker CI. Sustained neural representations of personally familiar people and places during cued recall. Cortex 2023; 158:71-82. [PMID: 36459788 PMCID: PMC9840701 DOI: 10.1016/j.cortex.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023]
Abstract
The recall and visualization of people and places from memory is an everyday occurrence, yet the neural mechanisms underpinning this phenomenon are not well understood. In particular, the temporal characteristics of the internal representations generated by active recall are unclear. Here, we used magnetoencephalography (MEG) and multivariate pattern analysis to measure the evolving neural representation of familiar places and people across the whole brain when human participants engage in active recall. To isolate self-generated imagined representations, we used a retro-cue paradigm in which participants were first presented with two possible labels before being cued to recall either the first or second item. We collected personalized labels for specific locations and people familiar to each participant. Importantly, no visual stimuli were presented during the recall period, and the retro-cue paradigm allowed the dissociation of responses associated with the labels from those corresponding to the self-generated representations. First, we found that following the retro-cue it took on average ∼1000 ms for distinct neural representations of freely recalled people or places to develop. Second, we found distinct representations of personally familiar concepts throughout the 4 s recall period. Finally, we found that these representations were highly stable and generalizable across time. These results suggest that self-generated visualizations and recall of familiar places and people are subserved by a stable neural mechanism that operates relatively slowly when under conscious control.
Collapse
Affiliation(s)
- Anna Corriveau
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA; Department of Psychology, The University of Chicago, Chicago, IL 60637, USA.
| | - Alexis Kidder
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Lina Teichmann
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Susan G Wardle
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
17
|
Desai RH, Tadimeti U, Riccardi N. Proper and common names in the semantic system. Brain Struct Funct 2023; 228:239-254. [PMID: 36372812 PMCID: PMC10171918 DOI: 10.1007/s00429-022-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Proper names are an important part of language and communication. They are thought to have a special status due to their neuropsychological and psycholinguistic profile. To what extent proper names rely on the same semantic system as common names is not clear. In an fMRI study, we presented the same group of participants with both proper and common names to compare the associated activations. Both person and place names, as well as personally familiar and famous names were used, and compared with words representing concrete and abstract concepts. A whole-brain analysis was followed by a detailed analysis of subdivisions of four regions of interest known to play a central role in the semantic system: angular gyrus, anterior temporal lobe, posterior cingulate complex, and medial temporal lobe. We found that most subdivisions within these regions bilaterally were activated by both proper names and common names. The bilateral perirhinal and right entorhinal cortex showed a response specific to proper names, suggesting an item-specific role in retrieving person and place related information. While activation to person and place names overlapped greatly, place names were differentiated by activating areas associated with spatial memory and navigation. Person names showed greater right hemisphere involvement compared to places, suggesting a wider range of associations. Personally familiar names showed stronger activation bilaterally compared to famous names, indicating representations that are enhanced by autobiographic and episodic details. Both proper and common names are processed in the wider semantic system that contains associative, episodic, and spatial components. Processing of proper names is characterized by a somewhat stronger involvement these components, rather than by a fundamentally different system.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA.
- Institute for Mind and Brain, University of South Carolina, Columbia, SC, 29201, USA.
| | - Usha Tadimeti
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
18
|
He Q, Starnes J, Brown TI. Environmental overlap influences goal-oriented coding of spatial sequences differently along the long-axis of hippocampus. Hippocampus 2022; 32:419-435. [PMID: 35312204 DOI: 10.1002/hipo.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/09/2022]
Abstract
When navigating our world we often first plan or retrieve a route to our goal, avoiding alternative paths to other destinations. Inspired by computational and animal models, we have recently demonstrated evidence that the human hippocampus supports prospective spatial coding, mediated by interactions with the prefrontal cortex. But the relationship between such signals and the need to discriminate possible routes based on their goal remains unclear. In the current study, we combined human fMRI, multi-voxel pattern analysis, and an established paradigm for contrasting memories of nonoverlapping routes with those of routes that cross paths and must be disambiguated. By classifying goal-oriented representations at the initiation of a navigational route, we demonstrate that environmental overlap modulates goal-oriented representations in the hippocampus. This modulation manifest through representational shifts from posterior to anterior components of the right hippocampus. Moreover, declines in goal-oriented decoding due to overlapping memories were predicted by the strength of the alternative memory, suggesting co-expression and competition between alternatives in the hippocampus during prospective thought. Moreover, exploratory whole-brain analyses revealed that a region of frontopolar cortex, which we have previously tied to prospective route planning, represented goal-states in new overlapping routes. Together, our findings provide insight into the influences of contextual overlap on the long-axis of the hippocampus and a broader memory and planning network that we have long-associated with such navigation tasks.
Collapse
Affiliation(s)
- Qiliang He
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jon Starnes
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thackery I Brown
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Bruera A, Poesio M. Exploring the Representations of Individual Entities in the Brain Combining EEG and Distributional Semantics. Front Artif Intell 2022; 5:796793. [PMID: 35280237 PMCID: PMC8905499 DOI: 10.3389/frai.2022.796793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Semantic knowledge about individual entities (i.e., the referents of proper names such as Jacinta Ardern) is fine-grained, episodic, and strongly social in nature, when compared with knowledge about generic entities (the referents of common nouns such as politician). We investigate the semantic representations of individual entities in the brain; and for the first time we approach this question using both neural data, in the form of newly-acquired EEG data, and distributional models of word meaning, employing them to isolate semantic information regarding individual entities in the brain. We ran two sets of analyses. The first set of analyses is only concerned with the evoked responses to individual entities and their categories. We find that it is possible to classify them according to both their coarse and their fine-grained category at appropriate timepoints, but that it is hard to map representational information learned from individuals to their categories. In the second set of analyses, we learn to decode from evoked responses to distributional word vectors. These results indicate that such a mapping can be learnt successfully: this counts not only as a demonstration that representations of individuals can be discriminated in EEG responses, but also as a first brain-based validation of distributional semantic models as representations of individual entities. Finally, in-depth analyses of the decoder performance provide additional evidence that the referents of proper names and categories have little in common when it comes to their representation in the brain.
Collapse
Affiliation(s)
- Andrea Bruera
- Cognitive Science Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
20
|
Woolnough O, Kadipasaoglu CM, Conner CR, Forseth KJ, Rollo PS, Rollo MJ, Baboyan VG, Tandon N. Dataset of human intracranial recordings during famous landmark identification. Sci Data 2022; 9:28. [PMID: 35102154 PMCID: PMC8803828 DOI: 10.1038/s41597-022-01125-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
For most people, recalling information about familiar items in a visual scene is an effortless task, but it is one that depends on coordinated interactions of multiple, distributed neural components. We leveraged the high spatiotemporal resolution of direct intracranial recordings to better delineate the network dynamics underpinning visual scene recognition. We present a dataset of recordings from a large cohort of humans while they identified images of famous landmarks (50 individuals, 52 recording sessions, 6,775 electrodes, 6,541 trials). This dataset contains local field potential recordings derived from subdural and penetrating electrodes covering broad areas of cortex across both hemispheres. We provide this pre-processed data with behavioural metrics (correct/incorrect, response times) and electrode localisation in a population-normalised cortical surface space. This rich dataset will allow further investigation into the spatiotemporal progression of multiple neural processes underlying visual processing, scene recognition and cued memory recall.
Collapse
Affiliation(s)
- Oscar Woolnough
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Cihan M Kadipasaoglu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Christopher R Conner
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, United States of America
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America
| | - Matthew J Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
| | - Vatche G Baboyan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston, Houston, TX, 77030, United States of America.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States of America.
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, United States of America.
| |
Collapse
|
21
|
Zajner C, Spreng RN, Bzdok D. Lacking Social Support is Associated With Structural Divergences in Hippocampus-Default Network Co-Variation Patterns. Soc Cogn Affect Neurosci 2022; 17:802-818. [PMID: 35086149 PMCID: PMC9433851 DOI: 10.1093/scan/nsac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Elaborate social interaction is a pivotal asset of the human species. The complexity of people’s social lives may constitute the dominating factor in the vibrancy of many individuals’ environment. The neural substrates linked to social cognition thus appear especially susceptible when people endure periods of social isolation: here, we zoom in on the systematic inter-relationships between two such neural substrates, the allocortical hippocampus (HC) and the neocortical default network (DN). Previous human social neuroscience studies have focused on the DN, while HC subfields have been studied in most detail in rodents and monkeys. To bring into contact these two separate research streams, we directly quantified how DN subregions are coherently co-expressed with specific HC subfields in the context of social isolation. A two-pronged decomposition of structural brain scans from ∼40 000 UK Biobank participants linked lack of social support to mostly lateral subregions in the DN patterns. This lateral DN association co-occurred with HC patterns that implicated especially subiculum, presubiculum, CA2, CA3 and dentate gyrus. Overall, the subregion divergences within spatially overlapping signatures of HC–DN co-variation followed a clear segregation into the left and right brain hemispheres. Separable regimes of structural HC–DN co-variation also showed distinct associations with the genetic predisposition for lacking social support at the population level.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada
| | - Danilo Bzdok
- Correspondence should be addressed to Danilo Bzdok, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal H3A2B4, Canada. E-mail:
| |
Collapse
|
22
|
Autobiographical memory unknown: Pervasive autobiographical memory loss encompassing personality trait knowledge in an individual with medial temporal lobe amnesia. Cortex 2021; 147:41-57. [PMID: 35007893 DOI: 10.1016/j.cortex.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
Autobiographical memory consists of distinct memory types varying from highly abstract to episodic. Self trait knowledge, which is considered one of the more abstract types of autobiographical memory, is thought to rely on regions of the autobiographical memory neural network implicated in schema representation, including the ventromedial prefrontal cortex, and critically, not the medial temporal lobes. The current case study introduces an individual who experienced bilateral posterior cerebral artery strokes resulting in extensive medial temporal lobe damage with sparing of the ventromedial prefrontal cortex. Interestingly, in addition to severe retrograde and anterograde episodic and autobiographical fact amnesia, this individual's self trait knowledge was impaired for his current and pre-morbid personality traits. Yet, further assessment revealed that this individual had preserved conceptual knowledge for personality traits, could reliably and accurately rate another person's traits, and could access his own self-concept in a variety of ways. In addition to autobiographical memory loss, he demonstrated impairment on non-personal semantic memory tests, most notably on tests requiring retrieval of unique knowledge. This rare case of amnesia suggests a previously unreported role for the medial temporal lobes in self trait knowledge, which we propose reflects the critical role of this neural region in the storage and retrieval of personal semantics that are experience-near, meaning autobiographical facts grounded in spatiotemporal contexts.
Collapse
|
23
|
Zajner C, Spreng RN, Bzdok D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J Neurophysiol 2021; 126:2138-2157. [PMID: 34817294 PMCID: PMC8715056 DOI: 10.1152/jn.00339.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level. NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Dalski A, Kovács G, Ambrus GG. Evidence for a General Neural Signature of Face Familiarity. Cereb Cortex 2021; 32:2590-2601. [PMID: 34628490 DOI: 10.1093/cercor/bhab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
We explored the neural signatures of face familiarity using cross-participant and cross-experiment decoding of event-related potentials, evoked by unknown and experimentally familiarized faces from a set of experiments with different participants, stimuli, and familiarization-types. Human participants of both sexes were either familiarized perceptually, via media exposure, or by personal interaction. We observed significant cross-experiment familiarity decoding involving all three experiments, predominantly over posterior and central regions of the right hemisphere in the 270-630 ms time window. This shared face familiarity effect was most prominent across the Media and the Personal, as well as between the Perceptual and Personal experiments. Cross-experiment decodability makes this signal a strong candidate for a general neural indicator of face familiarity, independent of familiarization methods, participants, and stimuli. Furthermore, the sustained pattern of temporal generalization suggests that it reflects a single automatic processing cascade that is maintained over time.
Collapse
Affiliation(s)
- Alexia Dalski
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
- Department of Psychology, Philipps-Universität Marburg, D-35039 Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, D-35039 Marburg, Germany
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Géza Gergely Ambrus
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| |
Collapse
|