1
|
Yu YM, Xia SH, Xu Z, Zhao WN, Song L, Pan X, Zhong CC, Wang D, Gao YH, Yang JX, Wu P, Zhang H, An S, Cao JL, Ding HL. An accumbal microcircuit for the transition from acute to chronic pain. Curr Biol 2025; 35:1730-1749.e5. [PMID: 40112811 DOI: 10.1016/j.cub.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Persistent nociceptive inputs arising from peripheral tissues or/and nerve injuries cause maladaptive changes in neurons or neural circuits in the central nervous system, which further confer acute injury into chronic pain transitions (pain chronification) even after the injury is resolved. However, the critical brain regions and their neural mechanisms involved in this transition have not yet been elucidated. Here, we reveal an accumbal microcircuit that is essential for pain chronification. Notably, the increase of neuronal activity in the nucleus accumbens shell (NAcS) in the acute phase (<7 days) and in core (NAcC) in the chronic phase (14-21 days) was detected in a neuropathic pain mouse model. Importantly, we demonstrated that the NAcS neuronal activation in the acute phase of injury was necessary and sufficient for the development of chronic neuropathic pain. This process was mediated by the accumbal dopamine D2 receptor-expressing neuronal microcircuit from NAcS to NAcC. Thus, our findings reveal an accumbal microcircuit mechanism for pain chronification and suggest that the early intervention targeting this microcircuit may provide a therapeutic approach to pain chronification.
Collapse
Affiliation(s)
- Yu-Mei Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Chao-Chao Zhong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuming An
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China.
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
2
|
Machen B, Miller SN, Xin A, Lampert C, Assaf L, Tucker J, Pereira F, Loewinger G, Beas S. The encoding of interoceptive-based predictions by the paraventricular nucleus of the thalamus D2+ neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642469. [PMID: 40161660 PMCID: PMC11952474 DOI: 10.1101/2025.03.10.642469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how the brain integrates internal physiological states with external sensory cues to guide behavior is a fundamental question in neuroscience. This process relies on interoceptive predictions-internal models that anticipate changes in the body's physiological state based on sensory inputs and prior experiences. Despite recent advances in identifying the neural substrates of interoceptive predictions, the precise neuronal circuits involved remain elusive. In our study, we demonstrate that Dopamine 2 Receptor (D2+) expressing neurons in the paraventricular nucleus of the thalamus (PVT) play key roles in interoception and interoceptive predictions. Specifically, these neurons are engaged in behaviors leading to physiologically relevant outcomes, with their activity highly dependent on the interoceptive state of the mice and the expected outcome. Furthermore, we show that chronic inhibition of PVT D2+ neurons impairs the long-term performance of interoceptive-guided motivated behavior. Collectively, our findings provide insights into the role of PVT D2+ neurons in learning and updating state-dependent predictions, by integrating past experiences with current physiological conditions to optimize goal-directed behavior.
Collapse
|
3
|
Li H, Li Y, Wang T, Li S, Liu H, Ning S, Shen W, Zhao Z, Wu H. Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain. Neurosci Bull 2025; 41:224-242. [PMID: 39277552 PMCID: PMC11794781 DOI: 10.1007/s12264-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 09/17/2024] Open
Abstract
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuyi Ning
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Leonard BT, Kark SM, Granger SJ, Adams JG, McMillan L, Yassa MA. Anhedonia is associated with higher functional connectivity between the nucleus accumbens and paraventricular nucleus of thalamus. J Affect Disord 2024; 366:1-7. [PMID: 39197547 DOI: 10.1016/j.jad.2024.08.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Anhedonia stands as a life-threatening transdiagnostic feature of many mental illnesses, most notably major depression and involves neural circuits for processing reward information. The paraventricular nucleus of the thalamus (PVT) is associated with reward-seeking behavior, however, links between the PVT circuit and anhedonia have not been investigated in humans. METHODS In a sample of adults with and without psychiatric symptoms (n = 75, 18-41 years, 55 female), we generated an anhedonia factor score for each participant using a latent factor analysis, utilizing data from depression and anxiety assessments. Functional connectivity between the PVT and the nucleus accumbens (NAc) was calculated from high-resolution (1.5 mm) resting state fMRI. RESULTS Anhedonia factor scores showed a positive relationship with functional connectivity between the PVT and the NAc, principally in males and in those with psychiatric symptoms. In males, connectivity between other midline thalamic nuclei and the NAc did not show these relationships, suggesting that this link may be specific to PVT. LIMITATIONS This cohort was originally recruited to study depression and not anhedonia per se. The distribution of male and female participants in our cohort was not equal. Partial acquisition in high-resolution fMRI scans restricted regions of interest outside of the thalamus and reward networks. CONCLUSIONS We report evidence that anhedonia is associated with enhanced functional connectivity between the PVT and the NAc, regions that are relevant to reward processing. These results offer clues as to the potential prevention and prevention and treatment of anhedonia.
Collapse
Affiliation(s)
- Bianca T Leonard
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Sarah M Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Steven J Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Joren G Adams
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; VA HSR&D Center to Improve Veteran Involvement in Care, VA Portland Health Care System, Portland, OR 97239, USA
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Sharma R, Berendzen KM, Everitt A, Wang B, Williams G, Wang S, Quine K, Larios RD, Long KLP, Hoglen N, Sulaman BA, Heath MC, Sherman M, Klinkel R, Cai A, Galo D, Caamal LC, Goodwin NL, Beery A, Bales KL, Pollard KS, Willsey AJ, Manoli DS. Oxytocin receptor controls distinct components of pair bonding and development in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.613753. [PMID: 39399774 PMCID: PMC11468833 DOI: 10.1101/2024.09.25.613753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Oxytocin receptor (Oxtr) signaling influences complex social behaviors in diverse species, including social monogamy in prairie voles. How Oxtr regulates specific components of social attachment behaviors and the neural mechanisms mediating them remains unknown. Here, we examine prairie voles lacking Oxtr and demonstrate that pair bonding comprises distinct behavioral modules: the preference for a bonded partner, and the rejection of novel potential mates. Our longitudinal study of social attachment shows that Oxtr sex-specifically influences early interactions between novel partners facilitating the formation of partner preference. Additionally, Oxtr suppresses promiscuity towards novel potential mates following pair bonding, contributing to rejection. Oxtr function regulates coordinated patterns of gene expression in regions implicated in attachment behaviors and regulates the expression of oxytocin in the paraventricular nucleus of the hypothalamus, a principal source of oxytocin. Thus, Oxtr controls genetically separable components of pair bonding behaviors and coordinates development of the neural substrates of attachment.
Collapse
|
6
|
He Y, Ren Y, Chen X, Wang Y, Yu H, Cai J, Wang P, Ren Y, Xie P. Neural and molecular investigation into the paraventricular thalamus for chronic restraint stress induced depressive-like behaviors. J Adv Res 2024:S2090-1232(24)00480-6. [PMID: 39447640 DOI: 10.1016/j.jare.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Disturbance of neural circuits and chronic stress contribute to depression onset. Given the crucial role of paraventricular nucleus of thalamus (PVT) in emotional behaviors, however, the specific neural and molecular mechanism of PVT in depression still unclear. OBJECTIVE Our study aim to explore the neural and molecular mechanism of PVT in depression. METHODS In the present study, we utilize behavioral tests,chemogenetics, RNA-sequence, molecular profiling and pharmacological approaches to investigate the role of PVT in depression. RESULTS We observed that CamkIIα neurons in PVT were inactivated by chronic restraint stress (CRS) with reduced c-Fos positive neurons. Activation of PVTCamkIIα neurons displayed antidepressant-like effect in both naive and CRS mice, whereas inhibition or ablation of these neurons is sufficient to trigger depressive-like behaviors. Moreover, we found that activating PVT → Nucleus accumbens (NAc) circuit attenuated depressive-like behaviors induced by CRS, while inhibiting this circuit directly caused behavioral deficits in mice. Intriguingly, artificially enhancing PVT → Central amygdala (CeA) pathway failed to alleviate depressive-like behaviors. Importantly, increased expression of neuropeptide Y (NPY) and depressive-like behaviors induced by CRS could be ameliorated via antidepressant treatment, manipulation of PVTCamkIIα neurons (or PVT → NAc circuit) and NPY inhibitor. CONCLUSION Taken together, our study uncovered that PVT regulated depressive-like behaviors via PVT → NAc circuit together with NPY, thus shedding light on potential target for preventing depression and promoting clinical translation.
Collapse
Affiliation(s)
- Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yikun Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchao Cai
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
7
|
Ye Q, Nunez J, Zhang X. Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons. J Neurochem 2024; 168:995-1018. [PMID: 38664195 PMCID: PMC11136594 DOI: 10.1111/jnc.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jeremiah Nunez
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Beas S, Khan I, Gao C, Loewinger G, Macdonald E, Bashford A, Rodriguez-Gonzalez S, Pereira F, Penzo MA. Dissociable encoding of motivated behavior by parallel thalamo-striatal projections. Curr Biol 2024; 34:1549-1560.e3. [PMID: 38458192 PMCID: PMC11003833 DOI: 10.1016/j.cub.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process relies on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood. The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that shapes motivated behaviors via its projections to the nucleus accumbens (NAc)1,2,3,4,5,6,7,8 and monitors internal state via interoceptive inputs from the hypothalamus and brainstem.3,9,10,11,12,13,14 Recent studies indicate that the PVT can be subdivided into two major neuronal subpopulations, namely PVTD2(+) and PVTD2(-), which differ in genetic identity, functionality, and anatomical connectivity to other brain regions, including the NAc.4,15,16 In this study, we used fiber photometry to investigate the in vivo dynamics of these two distinct PVT neuronal types in mice performing a foraging-like behavioral task. We discovered that PVTD2(+) and PVTD2(-) neurons encode the execution and termination of goal-oriented actions, respectively. Furthermore, activity in the PVTD2(+) neuronal population mirrored motivation parameters such as vigor and satiety. Similarly, PVTD2(-) neurons also mirrored some of these parameters, but to a much lesser extent. Importantly, these features were largely preserved when activity in PVT projections to the NAc was selectively assessed. Collectively, our results highlight the existence of two parallel thalamo-striatal projections that participate in the dynamic regulation of goal pursuits and provide insight into the mechanisms by which the brain tracks motivational states to shape instrumental actions.
Collapse
Affiliation(s)
- Sofia Beas
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA; Department of Neurobiology, University of Alabama at Birmingham, University Boulevard, Birmingham, AL 35294, USA.
| | - Isbah Khan
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Claire Gao
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Gabriel Loewinger
- Machine Learning Team, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Emma Macdonald
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Alison Bashford
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Shakira Rodriguez-Gonzalez
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Francisco Pereira
- Machine Learning Team, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Beas S, Khan I, Gao C, Loewinger G, Macdonald E, Bashford A, Rodriguez-Gonzalez S, Pereira F, Penzo MA. Dissociable encoding of motivated behavior by parallel thalamo-striatal projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.07.548113. [PMID: 37781624 PMCID: PMC10541145 DOI: 10.1101/2023.07.07.548113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The successful pursuit of goals requires the coordinated execution and termination of actions that lead to positive outcomes. This process is thought to rely on motivational states that are guided by internal drivers, such as hunger or fear. However, the mechanisms by which the brain tracks motivational states to shape instrumental actions are not fully understood. The paraventricular nucleus of the thalamus (PVT) is a midline thalamic nucleus that shapes motivated behaviors via its projections to the nucleus accumbens (NAc)1-8 and monitors internal state via interoceptive inputs from the hypothalamus and brainstem3,9-14. Recent studies indicate that the PVT can be subdivided into two major neuronal subpopulations, namely PVTD2(+) and PVTD2(-), which differ in genetic identity, functionality, and anatomical connectivity to other brain regions, including the NAc4,15,16. In this study, we used fiber photometry to investigate the in vivo dynamics of these two distinct PVT neuronal types in mice performing a reward foraging-like behavioral task. We discovered that PVTD2(+) and PVTD2(-) neurons encode the execution and termination of goal-oriented actions, respectively. Furthermore, activity in the PVTD2(+) neuronal population mirrored motivation parameters such as vigor and satiety. Similarly, PVTD2(-) neurons, also mirrored some of these parameters but to a much lesser extent. Importantly, these features were largely preserved when activity in PVT projections to the NAc was selectively assessed. Collectively, our results highlight the existence of two parallel thalamo-striatal projections that participate in the dynamic regulation of goal pursuits and provide insight into the mechanisms by which the brain tracks motivational states to shape instrumental actions.
Collapse
Affiliation(s)
- Sofia Beas
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Isbah Khan
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Claire Gao
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Gabriel Loewinger
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Emma Macdonald
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Alison Bashford
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Francisco Pereira
- Machine Learning Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Mario A. Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Shima Y, Skibbe H, Sasagawa Y, Fujimori N, Iwayama Y, Isomura-Matoba A, Yano M, Ichikawa T, Nikaido I, Hattori N, Kato T. Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Rep 2023; 42:113309. [PMID: 37862168 DOI: 10.1016/j.celrep.2023.113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Noriko Fujimori
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Support Unit for Bio-Material Analysis, Research Resource Division, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Minoru Yano
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Takumi Ichikawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Nobutaka Hattori
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Department of Neurology, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Department of Psychiatry, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan.
| |
Collapse
|
11
|
Værøy H, Lahaye E, Dubessy C, Benard M, Nicol M, Cherifi Y, Takhlidjt S, do Rego JL, do Rego JC, Chartrel N, Fetissov SO. Immunoglobulin G is a natural oxytocin carrier which modulates oxytocin receptor signaling: relevance to aggressive behavior in humans. DISCOVER MENTAL HEALTH 2023; 3:21. [PMID: 37983005 PMCID: PMC10587035 DOI: 10.1007/s44192-023-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Oxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling. Further, we found that IgG of violent aggressive inmates were characterized by lower affinity for oxytocin, causing decreased oxytocin carrier capacity and reduced receptor activation as compared to men from the general population. Moreover, peripheral administration of oxytocin together with human oxytocin-reactive IgG to resident mice in a resident-intruder test, reduced c-fos activation in several brain regions involved in the regulation of aggressive/defensive behavior correlating with the attack number and duration. We conclude that IgG is a natural oxytocin carrier protein modulating oxytocin receptor signaling which can be relevant to the biological mechanisms of aggressive behavior.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, 1478, Nordbyhagen, Norway.
| | - Emilie Lahaye
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Christophe Dubessy
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Magalie Benard
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Marion Nicol
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Yamina Cherifi
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Saloua Takhlidjt
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Luc do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Claude do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Nicolas Chartrel
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Sergueï O Fetissov
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France.
| |
Collapse
|
12
|
Balestrino R, Losa M, Albano L, Barzaghi LR, Mortini P. Intranasal oxytocin as a treatment for obesity: safety and efficacy. Expert Rev Endocrinol Metab 2023; 18:295-306. [PMID: 37232186 DOI: 10.1080/17446651.2023.2216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Known for its effect on labor and lactation and on emotional and social functions, oxytocin has recently emerged as a key modulator of feeding behavior and indeed suggested as a potential treatment for obesity. The potential positive effect of oxytocin on both metabolic and psychological-behavioral complications of hypothalamic lesions makes it a promising tool in the management of these conditions. AREAS COVERED The aim of the present review article is to provide an overview of the mechanism of action and clinical experience of the use of oxytocin in different forms of obesity. EXPERT OPINION Current evidence suggests a potential role of oxytocin in the treatment of obesity with different causes. Several challenges remain: an improved understanding of the physiological regulation, mechanisms of action of oxytocin, and interplay with other endocrine axes is fundamental to clarify its role. Further clinical trials are needed to determine the safety and efficacy of oxytocin for the treatment of different forms of obesity. Understanding the mechanism(s) of action of oxytocin on body weight regulation might also improve our understanding of obesity and reveal possible new therapeutic targets - as well as promoting advances in other fields in which oxytocin might be used.
Collapse
Affiliation(s)
- Roberta Balestrino
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Losa
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Luigi Albano
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
| | - Lina R Barzaghi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| |
Collapse
|
13
|
Ciobanu MM, Manoliu DR, Ciobotaru MC, Anchidin BG, Matei M, Munteanu M, Frunză G, Murariu OC, Flocea EI, Boișteanu PC. The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods 2023; 12:foods12061341. [PMID: 36981266 PMCID: PMC10048761 DOI: 10.3390/foods12061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Game meat contains bioactive compounds that directly influence the formation of a rich reservoir of flavor precursors that produce specific sensory properties. Quality is considered one of the most influential determinants of consumer behavior, but the interpretation of this concept differs between consumers. Although recognized for its quality, its unique sensory characteristics (smell, taste, aroma) may have a major impact on consumer perception. The aim of this review is to describe the consumer behavior regarding game meat through elements of neuroperception, using methods of analysis, observation, and interpretation of scientific information from the literature. Following the analysis of published papers on this topic, it was shown that external factors influencing the biological basis of behavior could provide explanations for the acceptance or rejection of this type of meat and solutions. Neuroperception can explain the mechanism behind consumer decision-making. The influence of extrinsic factors (environment, mood, emotions, stress) shapes the perception of the quality attributes of game meat, the unique sensory characteristics of game meat passing through a primary filter of sensory receptors (eyes, nose, tongue, etc). Game meat is darker and tougher (compared to meat from domestic animals), and the taste and smell have the power to trigger memories and change the mood, influencing consumer behavior. Understanding consumer attitudes towards game meat in relation to quality attributes and the physiology of sensory perception can provide important insights for food industry professionals, processors, sensory evaluators, and researchers.
Collapse
Affiliation(s)
- Marius-Mihai Ciobanu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Diana-Remina Manoliu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mihai-Cătălin Ciobotaru
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Bianca-Georgiana Anchidin
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mădălina Matei
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mugurel Munteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Gabriela Frunză
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Otilia Cristina Murariu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Elena-Iuliana Flocea
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Paul-Corneliu Boișteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| |
Collapse
|
14
|
Raphe serotonin projections dynamically regulate feeding behavior through targeting inhibitory circuits from rostral zona incerta to paraventricular thalamus. Mol Metab 2022; 66:101634. [PMID: 36351530 PMCID: PMC9672487 DOI: 10.1016/j.molmet.2022.101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Rostral zona incerta (ZIR) evokes feeding by sending GABA transmission to paraventricular thalamus (PVT). Although central serotonin (5-HT) signaling is known to play critical roles in the regulation of food intake and eating disorders, it remains unknown whether raphe 5-HT neurons functionally innervate ZIR-PVT neural pathway for feeding control. Here, we sought to reveal how raphe 5-HT signaling regulates both ZIR and PVT for feeding control. METHODS We used retrograde neural tracers to map 5-HT projections in Sert-Cre mice and slice electrophysiology to examine the mechanism by which 5-HT modulates ZIR GABA neurons. We also used optogenetics to test the effects of raphe-ZIR and raphe-PVT 5-HT projections on feeding motivation and food intake in mice regularly fed, 24 h fasted, and with intermittent high-fat high-sugar (HFHS) diet. In addition, we applied RNAscope in situ hybridization to identify 5-HT receptor subtype mRNA in ZIR. RESULTS We show raphe 5-HT neurons sent projections to both ZIR and PVT with partial collateral axons. Photostimulation of 5-HT projections inhibited ZIR but excited PVT neurons to decrease motivated food consumption. However, both acute food deprivation and intermittent HFHS diet downregulated 5-HT inhibition on ZIR GABA neurons, abolishing the inhibitory regulation of raphe-ZIR 5-HT projections on feeding motivation and food intake. Furthermore, we found high-level 5-HT1a and 5-HT2c as well as low-level 5-HT7 mRNA expression in ZIR. Intermittent HFHS diet increased 5-HT7 but not 5-HT1a or 5-HT2c mRNA levels in the ZIR. CONCLUSIONS Our results reveal that raphe-ZIR 5-HT projections dynamically regulate ZIR GABA neurons for feeding control, supporting that a dynamic fluctuation of ZIR 5-HT inhibition authorizes daily food intake but a sustained change of ZIR 5-HT signaling leads to overeating induced by HFHS diet.
Collapse
|