1
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
2
|
Hernández-Carralero E, Quinet G, Freire R. ATXN3: a multifunctional protein involved in the polyglutamine disease spinocerebellar ataxia type 3. Expert Rev Mol Med 2024; 26:e19. [PMID: 39320846 PMCID: PMC11440613 DOI: 10.1017/erm.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 09/26/2024]
Abstract
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Grégoire Quinet
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Raimundo Freire
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
4
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
5
|
Watchon M, Robinson KJ, Luu L, An Y, Yuan KC, Plenderleith SK, Cheng F, Don EK, Nicholson GA, Lee A, Laird AS. Treatment with sodium butyrate induces autophagy resulting in therapeutic benefits for spinocerebellar ataxia type 3. FASEB J 2024; 38:e23429. [PMID: 38258931 DOI: 10.1096/fj.202300963rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.
Collapse
Affiliation(s)
- Maxinne Watchon
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine J Robinson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Luan Luu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yousun An
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kristy C Yuan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart K Plenderleith
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation Hospital, Concord, New South Wales, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Angela S Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
7
|
Hernández‐Carralero E, Cabrera E, Rodríguez-Torres G, Hernández-Reyes Y, Singh A, Santa-María C, Fernández-Justel J, Janssens R, Marteijn J, Evert B, Mailand N, Gómez M, Ramadan K, Smits VJ, Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; 51:5396-5413. [PMID: 36971114 PMCID: PMC10287915 DOI: 10.1093/nar/gkad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 11/18/2023] Open
Abstract
The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Esperanza Hernández‐Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gara Rodríguez-Torres
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Abhay N Singh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Paulino R, Nóbrega C. Autophagy in Spinocerebellar Ataxia Type 3: From Pathogenesis to Therapeutics. Int J Mol Sci 2023; 24:ijms24087405. [PMID: 37108570 PMCID: PMC10138583 DOI: 10.3390/ijms24087405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Machado-Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. However, in MJD/SCA3 patients, the size of the stretch increases from 55 to 87, contributing to abnormal protein conformation, insolubility, and aggregation. The formation of aggregates, which is a hallmark of MJD/SCA3, compromises different cell pathways, leading to an impairment of cell clearance mechanisms, such as autophagy. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia. Neuropathologically, the regions most affected are the cerebellum and the pons. Currently, there are no disease-modifying therapies, and patients rely only on supportive and symptomatic treatments. Due to these facts, there is a huge research effort to develop therapeutic strategies for this incurable disease. This review aims to bring together current state-of-the-art strategies regarding the autophagy pathway in MJD/SCA3, focusing on evidence for its impairment in the disease context and, importantly, its targeting for the development of pharmacological and gene-based therapies.
Collapse
Affiliation(s)
- Rodrigo Paulino
- ABC-RI, Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- FMCB, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- FMCB, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Sousa e Silva R, Sousa AD, Vieira J, Vieira CP. The Josephin domain (JD) containing proteins are predicted to bind to the same interactors: Implications for spinocerebellar ataxia type 3 (SCA3) studies using Drosophila melanogaster mutants. Front Mol Neurosci 2023; 16:1140719. [PMID: 37008788 PMCID: PMC10050893 DOI: 10.3389/fnmol.2023.1140719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/ MJD), is the most frequent polyglutamine (polyQ) neurodegenerative disorder. It is caused by a pathogenic expansion of the polyQ tract, located at the C-terminal region of the protein encoded by the ATXN3 gene. This gene codes for a deubiquitinating enzyme (DUB) that belongs to a gene family, that in humans is composed by three more genes (ATXN3L, JOSD1, and JOSD2), that define two gene lineages (the ATXN3 and the Josephins). These proteins have in common the N-terminal catalytic domain (Josephin domain, JD), that in Josephins is the only domain present. In ATXN3 knock-out mouse and nematode models, the SCA3 neurodegeneration phenotype is not, however, reproduced, suggesting that in the genome of these species there are other genes that are able to compensate for the lack of ATXN3. Moreover, in mutant Drosophila melanogaster, where the only JD protein is coded by a Josephin-like gene, expression of the expanded human ATXN3 gene reproduces multiple aspects of the SCA3 phenotype, in contrast with the results of the expression of the wild type human form. In order to explain these findings, phylogenetic, as well as, protein–protein docking inferences are here performed. Here we show multiple losses of JD containing genes across the animal kingdom, suggesting partial functional redundancy of these genes. Accordingly, we predict that the JD is essential for binding with ataxin-3 and proteins of the Josephin lineages, and that D. melanogaster mutants are a good model of SCA3 despite the absence of a gene from the ATXN3 lineage. The molecular recognition regions of the ataxin-3 binding and those predicted for the Josephins are, however, different. We also report different binding regions between the two ataxin-3 forms (wild-type (wt) and expanded (exp)). The interactors that show an increase in the interaction strength with exp ataxin-3, are enriched in extrinsic components of mitochondrial outer membrane and endoplasmatic reticulum membrane. On the other hand, the group of interactors that show a decrease in the interaction strength with exp ataxin-3 is significantly enriched in extrinsic component of cytoplasm.
Collapse
|
10
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
12
|
Vasconcelos-Ferreira A, Martins IM, Lobo D, Pereira D, Lopes MM, Faro R, Lopes SM, Verbeek D, Schmidt T, Nóbrega C, Pereira de Almeida L. ULK overexpression mitigates motor deficits and neuropathology in mouse models of Machado-Joseph disease. Mol Ther 2022; 30:370-387. [PMID: 34298131 PMCID: PMC8753369 DOI: 10.1016/j.ymthe.2021.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 01/07/2023] Open
Abstract
Machado-Joseph disease (MJD) is a fatal neurodegenerative disorder clinically characterized by prominent ataxia. It is caused by an expansion of a CAG trinucleotide in ATXN3, translating into an expanded polyglutamine (polyQ) tract in the ATXN3 protein, that becomes prone to misfolding and aggregation. The pathogenesis of the disease has been associated with the dysfunction of several cellular mechanisms, including autophagy and transcription regulation. In this study, we investigated the transcriptional modifications of the autophagy pathway in models of MJD and assessed whether modulating the levels of the affected autophagy-associated transcripts (AATs) would alleviate MJD-associated pathology. Our results show that autophagy is impaired at the transcriptional level in MJD, affecting multiple AATs, including Unc-51 like autophagy activating kinase 1 and 2 (ULK1 and ULK2), two homologs involved in autophagy induction. Reinstating ULK1/2 levels by adeno-associated virus (AAV)-mediated gene transfer significantly improved motor performance while preventing neuropathology in two in vivo models of MJD. Moreover, in vitro studies showed that the observed positive effects may be mainly attributed to ULK1 activity. This study provides strong evidence of the beneficial effect of overexpression of ULK homologs, suggesting these as promising instruments for the treatment of MJD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Vasconcelos-Ferreira
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Inês Morgado Martins
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Diana Lobo
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Dina Pereira
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Miguel M. Lopes
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Rosário Faro
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sara M. Lopes
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,IIIUC – Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão – Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Dineke Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9700 RB, Groningen, the Netherlands
| | - Thorsten Schmidt
- Institute of Medical Genetics & Applied Genomics, University of Tübingen, 72076 Tübingen, Germany,Center for Rare Diseases (ZSE Tübingen), 72076 Tübingen, Germany
| | - Clévio Nóbrega
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal,CIBB – Center for Innovative Biomedicine and Biotechnology, Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal,Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal,Corresponding author: Luís Pereira de Almeida, PhD, CNC – Center for Neuroscience and Cell Biology, Molecular Therapy of Brain Disorders Group, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo 1, 3004-504 Coimbra, Portugal.
| |
Collapse
|
13
|
Robinson KJ, Yuan K, Plenderleith SK, Watchon M, Laird AS. A Novel Calpain Inhibitor Compound Has Protective Effects on a Zebrafish Model of Spinocerebellar Ataxia Type 3. Cells 2021; 10:cells10102592. [PMID: 34685571 PMCID: PMC8533844 DOI: 10.3390/cells10102592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia caused by inheritance of a mutated form of the human ATXN3 gene containing an expanded CAG repeat region, encoding a human ataxin-3 protein with a long polyglutamine (polyQ) repeat region. Previous studies have demonstrated that ataxin-3 containing a long polyQ length is highly aggregation prone. Cleavage of the ataxin-3 protein by calpain proteases has been demonstrated to be enhanced in SCA3 models, leading to an increase in the aggregation propensity of the protein. Here, we tested the therapeutic potential of a novel calpain inhibitor BLD-2736 for the treatment of SCA3 by testing its efficacy on a transgenic zebrafish model of SCA3. We found that treatment with BLD-2736 from 1 to 6 days post-fertilisation (dpf) improves the swimming of SCA3 zebrafish larvae and decreases the presence of insoluble protein aggregates. Furthermore, delaying the commencement of treatment with BLD-2736, until a timepoint when protein aggregates were already known to be present in the zebrafish larvae, was still successful at removing enhanced green fluorescent protein (EGFP) fused-ataxin-3 aggregates and improving the zebrafish swimming. Finally, we demonstrate that treatment with BLD-2736 increased the synthesis of LC3II, increasing the activity of the autophagy protein quality control pathway. Together, these findings suggest that BLD-2736 warrants further investigation as a treatment for SCA3 and related neurodegenerative diseases.
Collapse
|
14
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
15
|
Watchon M, Luu L, Robinson KJ, Yuan KC, De Luca A, Suddull HJ, Tym MC, Guillemin GJ, Cole NJ, Nicholson GA, Chung RS, Lee A, Laird AS. Sodium valproate increases activity of the sirtuin pathway resulting in beneficial effects for spinocerebellar ataxia-3 in vivo. Mol Brain 2021; 14:128. [PMID: 34416891 PMCID: PMC8377983 DOI: 10.1186/s13041-021-00839-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3) is a fatal neurodegenerative disease that impairs control and coordination of movement. Here we tested whether treatment with the histone deacetylase inhibitor sodium valproate (valproate) prevented a movement phenotype that develops in larvae of a transgenic zebrafish model of the disease. We found that treatment with valproate improved the swimming of the MJD zebrafish, affected levels of acetylated histones 3 and 4, but also increased expression of polyglutamine expanded human ataxin-3. Proteomic analysis of protein lysates generated from the treated and untreated MJD zebrafish also predicted that valproate treatment had activated the sirtuin longevity signaling pathway and this was confirmed by findings of increased SIRT1 protein levels and sirtuin activity in valproate treated MJD zebrafish and HEK293 cells expressing ataxin-3 84Q, respectively. Treatment with resveratrol (another compound known to activate the sirtuin pathway), also improved swimming in the MJD zebrafish. Co-treatment with valproate alongside EX527, a SIRT1 activity inhibitor, prevented induction of autophagy by valproate and the beneficial effects of valproate on the movement in the MJD zebrafish, supporting that they were both dependent on sirtuin activity. These findings provide the first evidence of sodium valproate inducing activation of the sirtuin pathway. Further, they indicate that drugs that target the sirtuin pathway, including sodium valproate and resveratrol, warrant further investigation for the treatment of MJD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Maxinne Watchon
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Luan Luu
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Katherine J Robinson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Kristy C Yuan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Alana De Luca
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Hannah J Suddull
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Madelaine C Tym
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Gilles J Guillemin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Garth A Nicholson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia.,ANZAC Research Institute, Concord Repatriation Hospital, Concord, NSW, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 2 Technology Place, Sydney, NSW 2109, Australia.
| |
Collapse
|
16
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
17
|
Temussi PA, Tartaglia GG, Pastore A. The seesaw between normal function and protein aggregation: How functional interactions may increase protein solubility. Bioessays 2021; 43:e2100031. [PMID: 33783021 DOI: 10.1002/bies.202100031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation has been studied for at least 3 decades, and many of the principles that regulate this event are relatively well understood. Here, however, we present a different perspective to explain why proteins aggregate: we argue that aggregation may occur as a side-effect of the lack of one or more natural partners that, under physiologic conditions, would act as chaperones. This would explain why the same surfaces that have evolved for functional purposes are also those that favour aggregation. In the course of reviewing this field, we substantiate our hypothesis with three paradigmatic examples that argue for the generality of our proposal. An obvious corollary of this hypothesis is, of course, that targeting the physiological partners of a protein could be the most direct and specific approach to designing anti-aggregation molecules. Our analysis may thus inform a different strategy for combating diseases of protein aggregation and misfolding.
Collapse
Affiliation(s)
- Piero Andrea Temussi
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova, Italy
- Charles Darwin Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| |
Collapse
|
18
|
Zhang Y, Shao AW, Tang J, Geng Y. PML-II recruits ataxin-3 to PML-NBs and inhibits its deubiquitinating activity. Biochem Biophys Res Commun 2021; 554:186-192. [PMID: 33798946 DOI: 10.1016/j.bbrc.2021.03.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are dynamic and multiprotein complexes implicated in a variety of important biochemical events. Due to alternative mRNA splicing, PML has at least six nuclear isoforms that share a common N-terminus but differ in their C-terminal regions. However, the unique role of each PML isoform is not clear. Here, we report the characterization of the deubiquitinase ataxin-3 as a specific binding partner of PML isoform II (PML-II). Ataxin-3 was identified as a potential binding protein of PML-II in a yeast-hybrid screen employing the unique C-terminal region of PML-II as bait. Ataxin-3 only binds to the C-terminal region of PML-II and not that of other PML isoforms. The interaction between ataxin-3 and PML-II was confirmed by co-immunoprecipition assays, and immunofluorescent microscopy revealed that PML-II and ataxin-3 were co-localized in PML-NBs. In addition, PML-II not only interacts with ataxin-3 with a normal range of poly-Q repeats (13Q), but also with a pathological form of ataxin-3 with extended poly-Q repeats (79Q). Importantly, the deubiquitinase activity of ataxin-3 was inhibited by PML-II. Our results suggest that PML-II may be a negative regulator of ataxin-3.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - An-Wen Shao
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yunyun Geng
- Hebei University of Chinese Medicine, And Heibei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
19
|
Pfeiffer A, Herzog LK, Luijsterburg MS, Shah RG, Rother MB, Stoy H, Kühbacher U, van Attikum H, Shah GM, Dantuma NP. Poly(ADP-ribosyl)ation temporally confines SUMO-dependent ataxin-3 recruitment to control DNA double-strand break repair. J Cell Sci 2021; 134:jcs.247809. [PMID: 33408245 DOI: 10.1242/jcs.247809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
DNA damage-induced SUMOylation serves as a signal for two antagonizing proteins that both stimulate repair of DNA double-strand breaks (DSBs). Here, we demonstrate that the SUMO-dependent recruitment of the deubiquitylating enzyme ataxin-3 to DSBs, unlike recruitment of the ubiquitin ligase RNF4, additionally depends on poly [ADP-ribose] polymerase 1 (PARP1)-mediated poly(ADP-ribosyl)ation (PARylation). The co-dependence of ataxin-3 recruitment on PARylation and SUMOylation temporally confines ataxin-3 to DSBs immediately after occurrence of DNA damage. We propose that this mechanism ensures that ataxin-3 prevents the premature removal of DNA repair proteins only during the early phase of the DSB response and does not interfere with the subsequent timely displacement of DNA repair proteins by RNF4. Thus, our data show that PARylation differentially regulates SUMO-dependent recruitment of ataxin-3 and RNF4 to DSBs, explaining how both proteins can play a stimulatory role at DSBs despite their opposing activities.
Collapse
Affiliation(s)
- Annika Pfeiffer
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU-Q: University Hospital Research Centre of Quebec (CHUL site) and Laval University, Quebec City (QC) G1V 4G2, Canada
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Henriette Stoy
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Ulrike Kühbacher
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU-Q: University Hospital Research Centre of Quebec (CHUL site) and Laval University, Quebec City (QC) G1V 4G2, Canada
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
20
|
Chiu YJ, Lin SA, Chen WL, Lin TH, Lin CH, Yao CF, Lin W, Wu YR, Chang KH, Lee-Chen GJ, Chen CM. Pathomechanism characterization and potential therapeutics identification for SCA3 targeting neuroinflammation. Aging (Albany NY) 2020; 12:23619-23646. [PMID: 33196459 PMCID: PMC7762503 DOI: 10.18632/aging.103700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1β, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1β- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-An Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
21
|
Toulis V, García-Monclús S, de la Peña-Ramírez C, Arenas-Galnares R, Abril JF, Todi SV, Khan N, Garanto A, Costa MDC, Marfany G. The Deubiquitinating Enzyme Ataxin-3 Regulates Ciliogenesis and Phagocytosis in the Retina. Cell Rep 2020; 33:108360. [PMID: 33176149 PMCID: PMC8738964 DOI: 10.1016/j.celrep.2020.108360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/04/2020] [Accepted: 10/17/2020] [Indexed: 01/07/2023] Open
Abstract
Expansion of a CAG repeat in ATXN3 causes the dominant polyglutamine disease spinocerebellar ataxia type 3 (SCA3), yet the physiological role of ATXN3 remains unclear. Here, we focus on unveiling the function of Ataxin-3 (ATXN3) in the retina, a neurological organ amenable to morphological and physiological studies. Depletion of Atxn3 in zebrafish and mice causes morphological and functional retinal alterations and, more precisely, photoreceptor cilium and outer segment elongation, cone opsin mislocalization, and cone hyperexcitation. ATXN3 localizes at the basal body and axoneme of the cilium, supporting its role in regulating ciliary length. Abrogation of Atxn3 expression causes decreased levels of the regulatory protein KEAP1 in the retina and delayed phagosome maturation in the retinal pigment epithelium. We propose that ATXN3 regulates two relevant biological processes in the retina, namely, ciliogenesis and phagocytosis, by modulating microtubule polymerization and microtubule-dependent retrograde transport, thus positing ATXN3 as a causative or modifier gene in retinal/macular dystrophies. Toulis et al. show that depletion of Atxn3 causes retinal morphological and electrophysiological alterations, as well as diminished phagocytosis in vivo and in vitro. ATXN3 regulates retinal ciliogenesis and phagocytosis through the KEAP1-SQSTM1-HDAC6-acetylated tubulin pathway by modulating microtubule polymerization and microtubule-dependent retrograde transport.
Collapse
Affiliation(s)
- Vasileios Toulis
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain; Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sílvia García-Monclús
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain
| | - Carlos de la Peña-Ramírez
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain
| | - Rodrigo Arenas-Galnares
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Josep F Abril
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Naheed Khan
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Alejandro Garanto
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, Barcelona 08028, Spain; CIBERER, ISCIII, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Duarte Lobo D, Nobre RJ, Oliveira Miranda C, Pereira D, Castelhano J, Sereno J, Koeppen A, Castelo-Branco M, Pereira de Almeida L. The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathol Commun 2020; 8:152. [PMID: 32867861 PMCID: PMC7457506 DOI: 10.1186/s40478-020-00955-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is a common feature in neurodegenerative diseases. However, BBB integrity has not been assessed in spinocerebellar ataxias (SCAs) such as Machado-Joseph disease/SCA type 3 (MJD/SCA3), a genetic disorder, triggered by polyglutamine-expanded ataxin-3. To investigate that, BBB integrity was evaluated in a transgenic mouse model of MJD and in human post-mortem brain tissues. Firstly, we investigated the BBB permeability in MJD mice by: i) assessing the extravasation of the Evans blue (EB) dye and blood-borne proteins (e.g fibrinogen) in the cerebellum by immunofluorescence, and ii) in vivo Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The presence of ataxin-3 aggregates in brain blood vessels and the levels of tight junction (TJ)-associated proteins were also explored by immunofluorescence and western blotting. Human brain samples were used to confirm BBB permeability by evaluating fibrinogen extravasation, co-localization of ataxin-3 aggregates with brain blood vessels and neuroinflammation. In the cerebellum of the mouse model of MJD, there was a 5-fold increase in EB accumulation when compared to age-matched controls. Moreover, vascular permeability displayed a 13-fold increase demonstrated by DCE-MRI. These results were validated by the 2-fold increase in fibrinogen extravasation in transgenic animals comparing to controls. Interestingly, mutant ataxin-3 aggregates were detected in cerebellar blood vessels of transgenic mice, accompanied by alterations of TJ-associated proteins in cerebellar endothelial cells, namely a 29% decrease in claudin-5 oligomers and a 10-fold increase in an occludin cleavage fragment. These results were validated in post-mortem brain samples from MJD patients as we detected fibrinogen extravasation across BBB, the presence of ataxin-3 aggregates in blood vessels and associated microgliosis. Altogether, our results prove BBB impairment in MJD/SCA3. These findings contribute for a better understanding of the disease mechanisms and opens the opportunity to treat MJD with medicinal products that in normal conditions would not cross the BBB.
Collapse
|
23
|
Zeng C, Zhao C, Ge F, Li Y, Cao J, Ying M, Lu J, He Q, Yang B, Dai X, Zhu H. Machado-Joseph Deubiquitinases: From Cellular Functions to Potential Therapy Targets. Front Pharmacol 2020; 11:1311. [PMID: 32982735 PMCID: PMC7479174 DOI: 10.3389/fphar.2020.01311] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is known as important post-translational modification in cancer-related pathways. Human deubiquitinases (DUBs), with functions of modulating the ubiquitination process, are a family with about 100 proteins. They mainly function by cutting ubiquitin chains of the substrates. The Machado-Joseph domain-containing proteases (MJDs) is one of the sub-families of DUBs, consisting of four members, namely, Ataxin-3, Ataxin-3L, JOSD1, and JOSD2. Recent studies have provided new insights into biological functions of MJDs in the progression of Machado-Joseph disease or cancer diseases. In this review, we summarized the cellular functions and regulatory mechanisms of MJDs in Machado-Joseph disease and cancer pathways. Furthermore, we summarized MJDs genetic alterations in different human cancers by exploring the public databases (cBioportal). The aim of this review is to provide a comprehensive account based on our current knowledge about emerging insights into MJDs in physiology and disease, which might shed light on fundamental biological questions and promise to provide a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chenming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenxi Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuekang Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
25
|
Shin JY, Lee PH. Mesenchymal stem cells modulate misfolded α-synuclein in parkinsonian disorders: A multitarget disease-modifying strategy. Stem Cell Res 2020; 47:101908. [PMID: 32683319 DOI: 10.1016/j.scr.2020.101908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023] Open
Abstract
α-Synuclein (α-Syn) aggregates, the major toxic component of Lewy bodies, are proteinaceous fibrillar cytoplasmic inclusions observed in α-synucleinopathies, such as Parkinson's disease (PD), multiple system atrophy, and dementia with Lewy bodies. Overexpression of α-syn induce neuronal loss and α-syn aggregation in PD animals. Recent studies show that α-syn is released by exocytosis and can be transmitted between brain areas through cell-to-cell propagation. Moreover, aggregates of extracellular α-syn can induce neuroinflammation-mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors. Thus, modulation of α-syn might be a potential therapeutic strategy for modifying disease progression of α-synucleinopathies. Our previous studies have revealed that MSCs have potent neuroprotective effects in PD animal through modulation of neuroinflammation, inhibition of cell death, and promotion of neurogenesis. Here, we provide further evidence that MSCs have the potential to modulate α-syn-related microenvironments via enhancement of autophagy, proteolysis of α-syn aggregates, inhibition of cell-to-cell transmission of α-syn, stabilization of axonal transport, and phagocytic clearance of α-syn by microglial M2 polarization. With advantages in clinical applications, these data suggests that the use of MSCs as pharmacological modulators of α-syn propagation would be an effective therapeutic approach in PD.
Collapse
Affiliation(s)
- Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea.
| |
Collapse
|
26
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
27
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Sharma A, Liu H, Tobar-Tosse F, Chand Dakal T, Ludwig M, Holz FG, Loeffler KU, Wüllner U, Herwig-Carl MC. Ubiquitin Carboxyl-Terminal Hydrolases (UCHs): Potential Mediators for Cancer and Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113910. [PMID: 32486284 PMCID: PMC7312489 DOI: 10.3390/ijms21113910] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests an inverse association between cancer and neurodegenerative diseases (NDD). Although phenotypically different, both diseases display a significant imbalance in the ubiquitination/deubiquitination processes. Therefore, we particularly investigated the expression of ubiquitin C-terminal hydrolases (UCHs: UCH-L1, UCH-L3, UCH-L5 and BAP1), a subfamily of deubiquitinating enzymes (DUBs), using publically available datasets (GTEx, TCGA) and observed altered expression of UCH-L1, UCH-L3, UCH-L5 in 17 cancer types. Interestingly, UCH-L1 (known to be enriched in neurons and interacting with the Parkinson’s disease-associated protein α-synuclein) appeared to be a prognostic indicator of unfavorable outcome in endometrial and urothelial cancer, while increased expression of UCH-L3 and UCH-L5 was associated with poor survival in liver and thyroid cancer, respectively. In normal tissues, UCH-L1 was found to be strongly expressed in the cerebral cortex and hypothalamus, while UCH-L3 expression was somewhat higher in the testis. The occurrence of mutation rates in UCHs also suggests that BAP1 and UCH-L5 may play a more dominant role in cancers than UCH-L1 and UCH-L3. We also characterized the functional context and configuration of the repeat elements in the promoter of DUBs genes and found that UCHs are highly discriminatory for catabolic function and are mainly enriched with LINE/CR1 repeats. Regarding the thesis of an inverse association between cancer and NDD, we observed that among all DUBs, UCHs are the one most involved in both entities. Considering a putative therapeutic potential based on presumed common mechanisms, it will be useful to determine whether other DUBs can compensate for the loss of UCH activity under physiological conditions. However, experimental evidence is required to substantiate this argument.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China;
| | - Fabian Tobar-Tosse
- Department of Basic Health Sciences, Pontificia Universidad Javeriana Cali, 760031 Cali, Colombia.;
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan 313001, India;
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, 53127 Bonn, Germany;
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Karin U. Loeffler
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Martina C. Herwig-Carl
- Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany; (A.S.); (F.G.H.); (K.U.L.)
- Correspondence: ; Tel.: +49-(0)228-287-15505
| |
Collapse
|
29
|
Chen YS, Hong ZX, Lin SZ, Harn HJ. Identifying Therapeutic Targets for Spinocerebellar Ataxia Type 3/Machado-Joseph Disease through Integration of Pathological Biomarkers and Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21093063. [PMID: 32357546 PMCID: PMC7246822 DOI: 10.3390/ijms21093063] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive motor disease with no broadly effective treatment. However, most current therapies are based on symptoms rather than the underlying disease mechanisms. In this review, we describe potential therapeutic strategies based on known pathological biomarkers and related pathogenic processes. The three major conclusions from the current studies are summarized as follows: (i) for the drugs currently being tested in clinical trials; a weak connection was observed between drugs and SCA3/MJD biomarkers. The only two exceptions are the drugs suppressing glutamate-induced calcium influx and chemical chaperon. (ii) For most of the drugs that have been tested in animal studies, there is a direct association with pathological biomarkers. We further found that many drugs are associated with inducing autophagy, which is supported by the evidence of deficient autophagy biomarkers in SCA3/MJD, and that there may be more promising therapeutics. (iii) Some reported biomarkers lack relatively targeted drugs. Low glucose utilization, altered amino acid metabolism, and deficient insulin signaling are all implicated in SCA3/MJD, but there have been few studies on treatment strategies targeting these abnormalities. Therapeutic strategies targeting multiple pathological SCA3/MJD biomarkers may effectively block disease progression and preserve neurological function.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Correspondence: (Y.-S.C.); (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
| |
Collapse
|
30
|
Pueraria lobata and Daidzein Reduce Cytotoxicity by Enhancing Ubiquitin-Proteasome System Function in SCA3-iPSC-Derived Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8130481. [PMID: 31687087 PMCID: PMC6800904 DOI: 10.1155/2019/8130481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion within the ATXN3/MJD1 gene. The expanded CAG repeats encode a polyglutamine (polyQ) tract at the C-terminus of the ATXN3 protein. ATXN3 containing expanded polyQ forms aggregates, leading to subsequent cellular dysfunctions including an impaired ubiquitin-proteasome system (UPS). To investigate the pathogenesis of SCA3 and develop potential therapeutic strategies, we established induced pluripotent stem cell (iPSC) lines from SCA3 patients (SCA3-iPSC). Neurons derived from SCA3-iPSCs formed aggregates that are positive to the polyQ marker 1C2. Treatment with the proteasome inhibitor, MG132, on SCA3-iPSC-derived neurons downregulated proteasome activity, increased production of radical oxygen species (ROS), and upregulated the cleaved caspase 3 level and caspase 3 activity. This increased susceptibility to the proteasome inhibitor can be rescued by a Chinese herbal medicine (CHM) extract NH037 (from Pueraria lobata) and its constituent daidzein via upregulating proteasome activity and reducing protein ubiquitination, oxidative stress, cleaved caspase 3 level, and caspase 3 activity. Our results successfully recapitulate the key phenotypes of the neurons derived from SCA3 patients, as well as indicate the potential of NH037 and daidzein in the treatment for SCA3 patients.
Collapse
|
31
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
32
|
Wiatr K, Piasecki P, Marczak Ł, Wojciechowski P, Kurkowiak M, Płoski R, Rydzanicz M, Handschuh L, Jungverdorben J, Brüstle O, Figlerowicz M, Figiel M. Altered Levels of Proteins and Phosphoproteins, in the Absence of Early Causative Transcriptional Changes, Shape the Molecular Pathogenesis in the Brain of Young Presymptomatic Ki91 SCA3/MJD Mouse. Mol Neurobiol 2019; 56:8168-8202. [PMID: 31201651 PMCID: PMC6834541 DOI: 10.1007/s12035-019-01643-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a polyQ neurodegenerative disease where the presymptomatic phase of pathogenesis is unknown. Therefore, we investigated the molecular network of transcriptomic and proteomic triggers in young presymptomatic SCA3/MJD brain from Ki91 knock-in mouse. We found that transcriptional dysregulations resulting from mutant ataxin-3 are not occurring in young Ki91 mice, while old Ki91 mice and also postmitotic patient SCA3 neurons demonstrate the late transcriptomic changes. Unlike the lack of early mRNA changes, we have identified numerous early changes of total proteins and phosphoproteins in 2-month-old Ki91 mouse cortex and cerebellum. We discovered the network of processes in presymptomatic SCA3 with three main groups of disturbed processes comprising altered proteins: (I) modulation of protein levels and DNA damage (Pabpc1, Ddb1, Nedd8), (II) formation of neuronal cellular structures (Tubb3, Nefh, p-Tau), and (III) neuronal function affected by processes following perturbed cytoskeletal formation (Mt-Co3, Stx1b, p-Syn1). Phosphoproteins downregulate in the young Ki91 mouse brain and their phosphosites are associated with kinases that interact with ATXN3 such as casein kinase, Camk2, and kinases controlled by another Atxn3 interactor p21 such as Gsk3, Pka, and Cdk kinases. We conclude that the onset of SCA3 pathology occurs without altered transcript level and is characterized by changed levels of proteins responsible for termination of translation, DNA damage, spliceosome, and protein phosphorylation. This disturbs global cellular processes such as cytoskeleton and transport of vesicles and mitochondria along axons causing energy deficit and neurodegeneration also manifesting in an altered level of transcripts at later ages.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Piotr Piasecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.,Institute of Computing Science, Poznan University of Technology, Poznań, Poland
| | - Małgorzata Kurkowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Johannes Jungverdorben
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn School of Medicine & University Hospital Bonn, 53127, Bonn, Germany
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.
| |
Collapse
|
33
|
Hsieh M, Hsieh BY, Ma CY, Li YT, Liu CS, Lo CM. Protective roles of carbonic anhydrase 8 in Machado-Joseph Disease. J Neurosci Res 2019; 97:1278-1297. [PMID: 31157458 DOI: 10.1002/jnr.24474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 05/14/2019] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an inherited neurodegenerative disease that can lead to a regression of motor coordination and muscle control in the extremities. It is known that expansion of CAG repeats encodes abnormally long polyQ in mutant ataxin-3, the disease protein. It is also noted that mutant ataxin-3 interacts with 1,4,5-trisphosphate receptor type 1 (IP3R1) and induces abnormal Ca2+ release. Previously, we have shown a significant increase in the expression of carbonic anhydrase VIII (CA8) in SK-N-SH-MJD78 cells, which are human neuroblastoma cells overexpressing mutant ataxin-3 with 78 glutamine repeats. In the current study, we showed the presence of significantly increased CA8 expression in MJD mouse cerebellum in either early or late disease stage, with a gradual decrease in CA8 expression as the MJD mice naturally aged. By immunofluorescence and immunoprecipitation analysis, we also found that CA8 co-localized and interacted with mutant ataxin-3 in SK-N-SH-MJD78 cells harboring overexpressed CA8 (SK-MJD78-CA8). In addition, we found that SK-MJD78-CA8 cells, as well as cerebellar granule neurons (CGNs) of MJD transgenic (Tg) mouse with overexpressed CA8, were more resistant to reactive oxygen species (ROS) stress than the control cells. Importantly, overexpression of CA8 in SK-MJD78-CA8 cells and in MJD CGNs rescued abnormal Ca2+ release and caused an increase in cell survival. In summary, we demonstrate the protective function of CA8 in MJD disease models and speculate that the declining expression of CA8 following an initial increased expression may be related to the late onset phenomenon of MJD.
Collapse
Affiliation(s)
- Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China.,Life Science Research Center, Tunghai University, Taichung, Taiwan, Republic of China
| | - Benjamin Y Hsieh
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chung-Yung Ma
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Yi-Ting Li
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan, Republic of China.,Graduate Institute of Integrative Chinese and Western Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Min Lo
- Department of Life Science, Tunghai University, Taichung, Taiwan, Republic of China
| |
Collapse
|
34
|
Hou X, Gong X, Zhang L, Li T, Yuan H, Xie Y, Peng Y, Qiu R, Xia K, Tang B, Jiang H. Identification of a potential exosomal biomarker in spinocerebellar ataxia Type 3/Machado-Joseph disease. Epigenomics 2019; 11:1037-1056. [PMID: 31144508 DOI: 10.2217/epi-2019-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To identify spinocerebellar ataxia Type 3 (SCA3)-related exosomal biomarkers and the underlying mechanisms. Materials & methods: Exosomal RNAs from plasma and cerebrospinal fluid (CSF) were extracted from 24 SCA3 patients and 22 controls, respectively. Small RNA sequencing and quantitative PCR verification were performed. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the results were carried out. Results: One novel miRNA is notably downregulated in plasma-derived exosomes, while upregulated in CSF-derived exosomes of SCA3 patients. Besides, it is successively upregulated in CSF-derived exosomes from Type 1, Type 2 and Type 3 groups. The downstream target genes were enriched in protein processing in endoplasmic reticulum and axon guidance. Conclusion: One exosomal biomarker was identified in SCA3, and this is the first time to report an exosomal miRNA as a biomarker in SCA3 internationally.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hongyu Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Rong Qiu
- School of Information Science & Engineering, Central South University, Changsha, Hunan 410008, PR China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
35
|
Weishäupl D, Schneider J, Peixoto Pinheiro B, Ruess C, Dold SM, von Zweydorf F, Gloeckner CJ, Schmidt J, Riess O, Schmidt T. Physiological and pathophysiological characteristics of ataxin-3 isoforms. J Biol Chem 2018; 294:644-661. [PMID: 30455355 DOI: 10.1074/jbc.ra118.005801] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Ataxin-3 is a deubiquitinating enzyme and the affected protein in the neurodegenerative disorder Machado-Joseph disease (MJD). The ATXN3 gene is alternatively spliced, resulting in protein isoforms that differ in the number of ubiquitin-interacting motifs. Additionally, nonsynonymous SNPs in ATXN3 cause amino acid changes in ataxin-3, and one of these polymorphisms introduces a premature stop codon in one isoform. Here, we examined the effects of different ataxin-3 isoforms and of the premature stop codon on ataxin-3's physiological function and on main disease mechanisms. At the physiological level, we show that alternative splicing and the premature stop codon alter ataxin-3 stability and that ataxin-3 isoforms differ in their enzymatic deubiquitination activity, subcellular distribution, and interaction with other proteins. At the pathological level, we found that the expansion of the polyglutamine repeat leads to a stabilization of ataxin-3 and that ataxin-3 isoforms differ in their aggregation properties. Interestingly, we observed a functional interaction between normal and polyglutamine-expanded ATXN3 allelic variants. We found that interactions between different ATXN3 allelic variants modify the physiological and pathophysiological properties of ataxin-3. Our findings indicate that alternative splicing and interactions between different ataxin-3 isoforms affect not only major aspects of ataxin-3 function but also MJD pathogenesis. Our results stress the importance of considering isoforms of disease-causing proteins and their interplay with the normal allelic variant as disease modifiers in MJD and autosomal-dominantly inherited diseases in general.
Collapse
Affiliation(s)
- Daniel Weishäupl
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany.,the Graduate Training Center of Neuroscience, 72074 Tübingen, Germany
| | - Juliane Schneider
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Barbara Peixoto Pinheiro
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Corinna Ruess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Sandra Maria Dold
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Felix von Zweydorf
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and
| | - Christian Johannes Gloeckner
- the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany, and.,the Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Jana Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Olaf Riess
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| | - Thorsten Schmidt
- From the Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany, .,the Center for Rare Diseases, 72076 Tübingen, Germany.,the NGS Competence Center, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Harmuth T, Prell-Schicker C, Weber JJ, Gellerich F, Funke C, Drießen S, Magg JCD, Krebiehl G, Wolburg H, Hayer SN, Hauser S, Krüger R, Schöls L, Riess O, Hübener-Schmid J. Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Front Mol Neurosci 2018; 11:368. [PMID: 30364204 PMCID: PMC6192284 DOI: 10.3389/fnmol.2018.00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
Abstract
Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting from dysfunctional mitochondria, have been reported in patients and respective animal models of all those diseases. Spinocerebellar Ataxia Type 3 (SCA3), another neurodegenerative disorder, also presents with metabolic defects and loss of body weight in early disease stages although the possible role of mitochondrial dysfunction in SCA3 pathology is still to be determined. Interestingly, the SCA3 disease protein ataxin-3, which is predominantly localized in cytoplasm and nucleus, has also been associated with mitochondria in both its mutant and wildtype form. This observation provides an interesting link to a potential mitochondrial involvement of mutant ataxin-3 in SCA3 pathogenesis. Furthermore, proteolytic cleavage of ataxin-3 has been shown to produce toxic fragments and even overexpression of artificially truncated forms of ataxin-3 resulted in mitochondria deficits. Therefore, we analyzed the repercussions of expressing a naturally occurring N-terminal cleavage fragment of ataxin-3 and the influence of an endogenous expression of the S256 cleavage fragment in vitro and in vivo. In our study, expression of a fragment derived from calpain cleavage induced mitochondrial fragmentation and cristae alterations leading to a significantly decreased capacity of mitochondrial respiration and contributing to an increased susceptibility to apoptosis. Furthermore, analyzing mitophagy revealed activation of autophagy in the early pathogenesis with reduced lysosomal activity. In conclusion, our findings indicate that cleavage of ataxin-3 by calpains results in fragments which interfere with mitochondrial function and mitochondrial degradation processes.
Collapse
Affiliation(s)
- Tina Harmuth
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany.,Graduate School of Cellular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Caroline Prell-Schicker
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Frank Gellerich
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Claudia Funke
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefan Drießen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Janine C D Magg
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Guido Krebiehl
- Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Stefanie N Hayer
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Rejko Krüger
- Center of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| | - Jeannette Hübener-Schmid
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, Tübingen, Germany
| |
Collapse
|
37
|
Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. J Neurochem 2018; 148:8-28. [PMID: 29959858 DOI: 10.1111/jnc.14541] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Collapse
Affiliation(s)
- Carlos A Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Coimbra, Portugal.,Centre for Biomedical Research (CBMR), University of Algarve, Coimbra, Portugal.,Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| |
Collapse
|
38
|
Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways. PLoS One 2018; 13:e0204438. [PMID: 30231063 PMCID: PMC6145529 DOI: 10.1371/journal.pone.0204438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene which encodes the deubiquitinating enzyme, ATXN3. Several mechanisms have been proposed to explain the pathogenic role of mutant, polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating gene expression, we compared transcriptional profiles in WT versus Atxn3 null mouse embryonic fibroblasts. Differentially expressed genes in the absence of ATXN3 contribute to multiple signal transduction pathways, suggesting a status switch of signaling pathways including depressed Wnt and BMP4 pathways and elevated growth factor pathways such as Prolactin, TGF-β, and Ephrin pathways. The Eph receptor A3 (Efna3), a receptor protein-tyrosine kinase in the Ephrin pathway that is highly expressed in the nervous system, was the most differentially upregulated gene in Atxn3 null MEFs. This increased expression of Efna3 was recapitulated in Atxn3 knockout mouse brainstem, a selectively vulnerable brain region in SCA3. Overexpression of normal or expanded ATXN3 was sufficient to repress Efna3 expression, supporting a role for ATXN3 in regulating Ephrin signaling. We further show that, in the absence of ATXN3, Efna3 upregulation is associated with hyperacetylation of histones H3 and H4 at the Efna3 promoter, which in turn is induced by decreased levels of HDAC3 and NCoR in ATXN3 null cells. Together, these results reveal a normal role for ATXN3 in transcriptional regulation of multiple signaling pathways of potential relevance to disease processes in SCA3.
Collapse
|
39
|
Shi Z, Chen J, Zhang X, Chu J, Han Z, Xu D, Gan S, Pan X, Ye J, Cui X. Ataxin-3 promotes testicular cancer cell proliferation by inhibiting anti-oncogene PTEN. Biochem Biophys Res Commun 2018; 503:391-396. [PMID: 29902454 DOI: 10.1016/j.bbrc.2018.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 01/07/2023]
Abstract
Human Ataxin-3 protein was first identified as a transcript from patients with Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3). Recent studies have demonstrated that Ataxin-3 is involved in gastric cancer and lung cancer. However, the role of Ataxin-3 in testicular cancer (TC) remains poorly understood. This study aims to explore the significance of Ataxin-3 expression in TC. Firstly, we investigated 53 paired TC and para-tumor tissues and found that Ataxin-3 was overexpressed in TC tissues, and this overexpression of Ataxin-3 was correlated with tumor stages. Functionally, Ataxin-3 overexpression promoted cell proliferation, and Ataxin-3 knockdown inhibited cell proliferation. In addition, up-regulation of Ataxin-3 inhibited the expression of PTEN and activated the AKT/mTOR pathway. Conversely, inhibition of Ataxin-3 suppressed the expression of p-AKT and p-mTOR, and increased the expression of p-4EBP1. These findings may provide a better understanding about the mechanism of TC and suggest that Ataxin-3 may be a potential prognostic biomarker and therapeutic target for TC.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China; Department of Urology, Taizhou First People's Hospital, Taizhou, People's Republic of China
| | - Jiaxin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China
| | - Xiangmin Zhang
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai, People's Republic of China
| | - Jian Chu
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai, People's Republic of China
| | - Zhitao Han
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China
| | - Sishun Gan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China
| | - Xiuwu Pan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China
| | - Jianqing Ye
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China.
| | - Xingang Cui
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, People's Republic of China.
| |
Collapse
|
40
|
Feng Q, Miao Y, Ge J, Yuan Y, Zuo Y, Qian L, Liu J, Cheng Q, Guo T, Zhang L, Yu Z, Zheng H. ATXN3 Positively Regulates Type I IFN Antiviral Response by Deubiquitinating and Stabilizing HDAC3. THE JOURNAL OF IMMUNOLOGY 2018; 201:675-687. [PMID: 29802126 DOI: 10.4049/jimmunol.1800285] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Abstract
Ataxin-3 (ATXN3) belongs to the Josephin family of deubiquitinases. So far, ATXN3 is majorly linked to the neurodegenerative disease, Machado-Joseph disease. The role of ATXN3 in the antiviral function has not been explored, and the in vivo deubiquitinating activity of ATXN3 remains largely unknown. In this study, we report that ATXN3 is an important positive regulator of type I IFN (IFN-I)-mediated antiviral activity in murine primary lung cells and human epithelial and fibroblast cell lines. We clarify that ATXN3 does not promote IFN-I production, but enhances the IFN-I-mediated signaling pathway. Furthermore, ATXN3 physically interacts with histone deacetylase 3 (HDAC3) and upregulates the level of HDAC3 protein. Moreover, ATXN3 deubiquitinates HDAC3, thereby enhancing HDAC3 protein stability. Interestingly, the interaction between ATXN3 and HDAC3 increases during viral infection, which promotes IFN-I-induced signaling in murine primary lung cells. Finally, we reveal the ATXN3/HDAC3 axis-mediated regulation of IFN-I antiviral response. These findings reveal a novel biological function of ATXN3 and an important antiviral mechanism by which the deubiquitinase ATXN3 positively regulates IFN-I antiviral response, and they may provide a novel strategy for enhancing IFN-based antiviral therapy.
Collapse
Affiliation(s)
- Qian Feng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Jun Ge
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Yibo Zuo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Liping Qian
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Jin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Qiao Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Tingting Guo
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Liting Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; .,Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China; and
| |
Collapse
|
41
|
Xiang C, Zhang S, Dong X, Ma S, Cong S. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies. Front Mol Neurosci 2018; 11:153. [PMID: 29867345 PMCID: PMC5962650 DOI: 10.3389/fnmol.2018.00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Polyglutamine (polyQ) diseases are hereditary neurodegenerative disorders caused by an abnormal expansion of a trinucleotide CAG repeat in the coding region of their respective associated genes. PolyQ diseases mainly display progressive degeneration of the brain and spinal cord. Nine polyQ diseases are known, including Huntington's disease (HD), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and six forms of spinocerebellar ataxia (SCA). HD is the best characterized polyQ disease. Many studies have reported that transcriptional dysregulation and post-translational disruptions, which may interact with each other, are central features of polyQ diseases. Post-translational modifications, such as the acetylation of histones, are closely associated with the regulation of the transcriptional activity. A number of groups have studied the interactions between the polyQ proteins and transcription factors. Pharmacological drugs or genetic manipulations aimed at correcting the dysregulation have been confirmed to be effective in the treatment of polyQ diseases in many animal and cellular models. For example, histone deaceylase inhibitors have been demonstrated to have beneficial effects in cases of HD, SBMA, DRPLA, and SCA3. In this review, we describe the transcriptional and post-translational dysregulation in polyQ diseases with special focus on HD, and we summarize and comment on potential treatment approaches targeting disruption of transcription and post-translation processes in these diseases.
Collapse
Affiliation(s)
| | | | | | | | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
42
|
Thomas EA, D'Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145:96-110. [PMID: 29355955 DOI: 10.1111/jnc.14309] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
By their ability to shatter quality of life for both patients and caregivers, neurodegenerative diseases are the most devastating of human disorders. Unfortunately, there are no effective or long-terms treatments capable of slowing down the relentless loss of neurons in any of these diseases. One impediment is the lack of detailed knowledge of the molecular mechanisms underlying the processes of neurodegeneration. While some neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are mostly sporadic in nature, driven by both environment and genetic susceptibility, many others, including Huntington's disease, spinocerebellar ataxias, and spinal-bulbar muscular atrophy, are genetically inherited disorders. Surprisingly, given their different roots and etiologies, both sporadic and genetic neurodegenerative disorders have been linked to disease mechanisms involving histone deacetylase (HDAC) proteins, which consists of 18 family members with diverse functions. While most studies have implicated certain HDAC subtypes in promoting neurodegeneration, a substantial body of literature suggests that other HDAC proteins can preserve neuronal viability. Of particular interest, however, is the recent realization that a single HDAC subtype can have both neuroprotective and neurotoxic effects. Diverse mechanisms, beyond transcriptional regulation have been linked to these effects, including deacetylation of non-histone proteins, protein-protein interactions, post-translational modifications of the HDAC proteins themselves and direct interactions with disease proteins. The roles of these HDACs in both sporadic and genetic neurodegenerative diseases will be discussed in the current review.
Collapse
Affiliation(s)
- Elizabeth A Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
43
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
44
|
Wang ZJ, Hanet A, Weishäupl D, Martins IM, Sowa AS, Riess O, Schmidt T. Divalproex sodium modulates nuclear localization of ataxin-3 and prevents cellular toxicity caused by expanded ataxin-3. CNS Neurosci Ther 2018; 24:404-411. [PMID: 29318784 DOI: 10.1111/cns.12795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND & AIMS Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal dominantly inherited neurodegenerative disorder and the most common form of SCA worldwide. It is caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. Nuclear localization of the affected protein is a key event in the pathology of SCA3 via affecting nuclear organization, transcriptional dysfunction, and seeding aggregations, finally causing neurodegeneration and cell death. So far, there is no effective therapy to prevent or slow the progression of SCA3. METHODS In this study, we explored the effect of divalproex sodium as an HDACi in SCA3 cell models and explored how divalproex sodium interferes with pathogenetic processes causing SCA3. RESULTS We found that divalproex sodium rescues the hypoacetylation levels of histone H3 and attenuates cellular cytotoxicity induced by expanded ataxin-3 partly via preventing nuclear transport of ataxin-3 (particularly heat shock-dependent). CONCLUSION Our study provides novel insights into the mechanisms of action of divalproex sodium as a possible treatment for SCA3, beyond the known regulation of transcription.
Collapse
Affiliation(s)
- Zi-Jian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China.,Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Aoife Hanet
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany.,Department of Biochemistry, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Daniel Weishäupl
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Inês M Martins
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany
| | - Anna S Sowa
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany
| | - Thorsten Schmidt
- Institute of Medical Genetics & Applied Genomics, University of Tuebingen, Tuebingen, Germany.,Center for Rare Diseases (ZSE), University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Lima M, Raposo M. Towards the Identification of Molecular Biomarkers of Spinocerebellar Ataxia Type 3 (SCA3)/Machado-Joseph Disease (MJD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:309-319. [PMID: 29427111 DOI: 10.1007/978-3-319-71779-1_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Whereas spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) remains an untreatable disorder, disease-modifying compounds have begun being tested in the context of clinical trials; their success is dependent on the sensitivity of the methods used to measure subtle therapeutic benefits. Thus, efforts are being made to propose a battery of potential outcome measures, including molecular biomarkers (MBs), which remain to be identified; MBs are particularly pertinent if SCA3 trials are expected to enroll preataxic subjects. Recently, promising candidate MBs of SCA3 have emerged from gene expression studies. In this chapter we provide a synthesis of the cross-sectional and pilot longitudinal studies of blood-based transcriptional biomarkers conducted so far. Other alterations with potential to track the progression of SCA3, such as those involving mitochondrial DNA (mtDNA) are also referred. It is expected that a set of molecular biomarkers can be identified; these will be used in complementarity with clinical and imaging markers to fully track SCA3, from its preataxic phase to the disease stage.
Collapse
Affiliation(s)
- Manuela Lima
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal. .,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal. .,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | - Mafalda Raposo
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Molecular Mechanisms and Cellular Pathways Implicated in Machado-Joseph Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:349-367. [PMID: 29427113 DOI: 10.1007/978-3-319-71779-1_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD) is a dominantly inherited disorder originally described in people of Portuguese descent, and associated with the expansion of a CAG tract in the coding region of the causative gene MJD1/ATX3. The CAG repeats range from 10 to 51 in the normal population and from 55 to 87 in SCA3/MJD patients. MJD1 encodes ataxin-3, a protein whose physiological function has been linked to ubiquitin-mediated proteolysis. Despite the identification of the causative mutation, the pathogenic process leading to the neurodegeneration observed in the disease is not yet completely understood. In the past years, several studies identified different molecular mechanisms and cellular pathways as being impaired or deregulated in MJD. Autophagy, proteolysis or post-translational modifications, among other processes, were implicated in MJD pathogenesis. From these studies it was possible to identify new targets for therapeutic intervention, which in some cases proved successful in models of disease.
Collapse
|
47
|
The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:143-170. [PMID: 29325609 DOI: 10.1016/b978-0-444-63233-3.00011-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout the genome, unstable tandem nucleotide repeats can expand to cause a variety of neurologic disorders. Expansion of a CAG triplet repeat within a coding exon gives rise to an elongated polyglutamine (polyQ) tract in the resultant protein product, and accounts for a unique category of neurodegenerative disorders, known as the CAG-polyglutamine repeat diseases. The nine members of the CAG-polyglutamine disease family include spinal and bulbar muscular atrophy (SBMA), Huntington disease, dentatorubral pallidoluysian atrophy, and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). All CAG-polyglutamine diseases are dominantly inherited, with the exception of SBMA, which is X-linked, and many CAG-polyglutamine diseases display anticipation, which is defined as increasing disease severity in successive generations of an affected kindred. Despite widespread expression of the different polyQ-expanded disease proteins throughout the body, each CAG-polyglutamine disease strikes a particular subset of neurons, although the mechanism for this cell-type selectivity remains poorly understood. While the different genes implicated in these disorders display amino acid homology only in the repeat tract domain, certain pathologic molecular processes have been implicated in almost all of the CAG-polyglutamine repeat diseases, including protein aggregation, proteolytic cleavage, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Here we highlight the clinical and molecular genetic features of each distinct disorder, and then discuss common themes in CAG-polyglutamine disease pathogenesis, closing with emerging advances in therapy development.
Collapse
|
48
|
Wang Z. Experimental and Clinical Strategies for Treating Spinocerebellar Ataxia Type 3. Neuroscience 2017; 371:138-154. [PMID: 29229556 DOI: 10.1016/j.neuroscience.2017.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. To date, there is no effective therapy available to prevent progression of this disease. However, clinical strategies for alleviating various symptoms are imperative to promote a better quality of life for SCA3/MJD patients. Furthermore, experimental therapeutic strategies, including gene silencing or mutant protein clearance, mutant polyQ protein modification, stabilizing the native protein conformation, rescue of cellular dysfunction and neuromodulation to slow the progression of SCA3/MJD, have been developed. In this study, based on the current knowledge, I detail the clinical and experimental therapeutic strategies for treating SCA3/MJD, paying particular attention to drug discovery.
Collapse
Affiliation(s)
- Zijian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi 710065, China.
| |
Collapse
|
49
|
Bonanomi M, Roffia V, De Palma A, Lombardi A, Aprile FA, Visentin C, Tortora P, Mauri P, Regonesi ME. The polyglutamine protein ataxin-3 enables normal growth under heat shock conditions in the methylotrophic yeast Pichia pastoris. Sci Rep 2017; 7:13417. [PMID: 29042637 PMCID: PMC5645362 DOI: 10.1038/s41598-017-13814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 °C, well above the physiological optimum of 30 °C. The N-terminal Josephin domain (JD) was also effective but significantly less, whereas catalytically inactive JD was completely ineffective. Based on MudPIT proteomic analysis, we observed that the strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes involved in mitochondrial energy metabolism during growth at 37 °C compared with the strain transformed with the empty vector. Concurrently, in the transformed strain intracellular ATP levels at 37 °C were even higher than normal ones at 30 °C. Elevated ATP was also paralleled by upregulation of enzymes involved in both protein biosynthesis and biosynthetic pathways, as well as of several stress-induced proteins. A similar pattern was observed when comparing a strain expressing JD with another expressing its catalytically inactive counterpart. We suggest that such effects mostly result from mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Marcella Bonanomi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy.,SYSBIO.IT, Centre of Systems Biology, 20126, Milano, Italy
| | - Valentina Roffia
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy
| | - Antonella De Palma
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy
| | - Alessio Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | | | - Cristina Visentin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Paolo Tortora
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy. .,Milan Center of Neuroscience (NeuroMI), 20126, Milano, Italy.
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, National Research Council, 20090, Milan, Italy.
| | - Maria Elena Regonesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), 20126, Milano, Italy
| |
Collapse
|
50
|
de Assis AM, Saute JAM, Longoni A, Haas CB, Torrez VR, Brochier AW, Souza GN, Furtado GV, Gheno TC, Russo A, Monte TL, Castilhos RM, Schumacher-Schuh A, D'Avila R, Donis KC, de Mello Rieder CR, Souza DO, Camey S, Leotti VB, Jardim LB, Portela LV. Peripheral Oxidative Stress Biomarkers in Spinocerebellar Ataxia Type 3/Machado-Joseph Disease. Front Neurol 2017; 8:485. [PMID: 28979235 PMCID: PMC5611390 DOI: 10.3389/fneur.2017.00485] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a polyglutamine disorder with no current disease-modifying treatment. Conformational changes in mutant ataxin-3 trigger different pathogenic cascades, including reactive oxygen species (ROS) generation; however, the clinical relevance of oxidative stress elements as peripheral biomarkers of SCA3/MJD remains unknown. We aimed to evaluate ROS production and antioxidant defense capacity in symptomatic and presymptomatic SCA3/MJD individuals and correlate these markers with clinical and molecular data with the goal of assessing their properties as disease biomarkers. METHODS Molecularly confirmed SCA3/MJD carriers and controls were included in an exploratory case-control study. Serum ROS, measured by 2',7'-dichlorofluorescein diacetate (DCFH-DA) as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) antioxidant enzyme activities, levels were assessed. RESULTS Fifty-eight early/moderate stage symptomatic SCA3/MJD, 12 presymptomatic SCA3/MJD, and 47 control individuals were assessed. The DCFH-DA levels in the symptomatic group were 152.82 nmol/mg of protein [95% confidence interval (CI), 82.57-223.08, p < 0.001] higher than in the control and 243.80 nmol/mg of protein (95% CI, 130.64-356.96, p < 0.001) higher than in the presymptomatic group. The SOD activity in the symptomatic group was 3 U/mg of protein (95% CI, 0.015-6.00, p = 0.048) lower than in the presymptomatic group. The GSH-Px activity in the symptomatic group was 13.96 U/mg of protein (95% CI, 5.90-22.03, p < 0.001) lower than in the control group and 20.52 U/mg of protein (95% CI, 6.79-34.24, p < 0.001) lower than in the presymptomatic group and was inversely correlated with the neurological examination score for spinocerebellar ataxias (R = -0.309, p = 0.049). CONCLUSION Early/moderate stage SCA3/MJD patients presented a decreased antioxidant capacity and increased ROS generation. GSH-Px activity was the most promising oxidative stress disease biomarker in SCA3/MJD. Further longitudinal studies are necessary to identify both the roles of redox parameters in SCA3/MJD pathophysiology and as surrogate outcomes for clinical trials.
Collapse
Affiliation(s)
- Adriano M de Assis
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, Brazil
| | - Jonas Alex Morales Saute
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Longoni
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Clarissa Branco Haas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vitor Rocco Torrez
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andressa Wigner Brochier
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriele Nunes Souza
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gabriel Vasata Furtado
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tailise Conte Gheno
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Russo
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Thais Lampert Monte
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Raphael Machado Castilhos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Artur Schumacher-Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rui D'Avila
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Karina Carvalho Donis
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Carlos Roberto de Mello Rieder
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Neurologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Neurologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Suzi Camey
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Estatística, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|