1
|
Muheyati A, Jiang S, Wang N, Yu G, Su R. Extrasynaptic GABA A receptors in central medial thalamus mediate anesthesia in rats. Eur J Pharmacol 2024; 972:176561. [PMID: 38580182 DOI: 10.1016/j.ejphar.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.
Collapse
Affiliation(s)
- Alai Muheyati
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shanshan Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
2
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
4
|
Wang S, Wang S, Wang Z, Dong J, Zhang M, Wang Y, Wang J, Jia B, Luo Y, Yin Y. The changing of α5-GABAA receptors expression and distribution participate in sevoflurane-induced learning and memory impairment in young mice. CNS Neurosci Ther 2024; 30:e14716. [PMID: 38698533 PMCID: PMC11066188 DOI: 10.1111/cns.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Shengran Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Sixuan Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jianyu Wang
- Department of Pharmaceutics, School of PharmacyShenyang Pharmaceutical UniversityBenxiChina
| | - Beichen Jia
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yiqing Yin
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
5
|
Feng YF, Zhou YY, Duan KM. The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol Neurobiol 2024; 61:385-396. [PMID: 37612480 DOI: 10.1007/s12035-023-03574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Postpartum depression is a serious disease with a high incidence and severe impact on pregnant women and infants, but its mechanism remains unclear. Recent studies have shown that GABA receptors, especially extrasynaptic receptors, are closely associated with postpartum depression. There are many different structures of GABA receptors, so different types of receptors have different functions, even though they transmit information primarily through GABA. In this review, we focus on the function of GABA receptors, especially extrasynaptic GABA receptors, and their association with postpartum depression. We have shown that the extrasynaptic GABA receptor has a significant impact on the activity and function of neurons through tonic inhibition. The extrasynaptic receptor and its ligands undergo drastic changes during pregnancy and childbirth. Abnormal changes or the body's inability to adjust and recover may be an important cause of postpartum depression. Finally, by reviewing the mechanisms of several novel antidepressants, we suggest that extrasynaptic receptors may be potential targets for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Yun Fei Feng
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yin Yong Zhou
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Ming Duan
- Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Beitchman JA, Krishna G, Bromberg CE, Thomas TC. Effects of isoflurane and urethane anesthetics on glutamate neurotransmission in rat brain using in vivo amperometry. BMC Neurosci 2023; 24:52. [PMID: 37817064 PMCID: PMC10563344 DOI: 10.1186/s12868-023-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Aspects of glutamate neurotransmission implicated in normal and pathological conditions are predominantly evaluated using in vivo recording paradigms in rats anesthetized with isoflurane or urethane. Urethane and isoflurane anesthesia influence glutamate neurotransmission through different mechanisms; however, real-time outcome measures of potassium chloride (KCl)-evoked glutamate overflow and glutamate clearance kinetics have not been compared within and between regions of the brain. In order to maintain rigor and reproducibility within the literature between the two most common methods of anesthetized in vivo recording of glutamate, we compared glutamate signaling as a function of anesthesia and brain region in the rat strain most used in neuroscience. METHODS In the following experiments, in vivo amperometric recordings of KCl-evoked glutamate overflow and glutamate clearance kinetics (uptake rate and T80) in the cortex, hippocampus, and thalamus were performed using glutamate-selective microelectrode arrays (MEAs) in young adult male, Sprague-Dawley rats anesthetized with either isoflurane or urethane. RESULTS Potassium chloride (KCl)-evoked glutamate overflow was similar under urethane and isoflurane anesthesia in all brain regions studied. Analysis of glutamate clearance determined that the uptake rate was significantly faster (53.2%, p < 0.05) within the thalamus under urethane compared to isoflurane, but no differences were measured in the cortex or hippocampus. Under urethane, glutamate clearance parameters were region-dependent, with significantly faster glutamate clearance in the thalamus compared to the cortex but not the hippocampus (p < 0.05). No region-dependent differences were measured for glutamate overflow using isoflurane. CONCLUSIONS These data support that amperometric recordings of KCl-evoked glutamate under isoflurane and urethane anesthesia result in similar and comparable data. However, certain parameters of glutamate clearance can vary based on choice of anesthesia and brain region. In these circumstances, special considerations are needed when comparing previous literature and planning future experiments.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Caitlin E Bromberg
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, 425 N. 5th St. | 322 ABC-1 Building, Phoenix, AZ, 85004-2127, USA.
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Phoenix VA Healthcare System, Phoenix, AZ, USA.
| |
Collapse
|
7
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Chung W, Wang DS, Khodaei S, Pinguelo A, Orser BA. GABA A Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Front Aging Neurosci 2022; 13:802582. [PMID: 35087395 PMCID: PMC8787299 DOI: 10.3389/fnagi.2021.802582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs stimulates the release of soluble factors that increase the cell-surface expression and function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs; however, the receptor targets in astrocytes for anesthetic drugs have not been identified. GABAA receptors, which are the major targets of general anesthetic drugs in neurons, are also expressed in astrocytes, raising the possibility that these drugs act on GABAA receptors in astrocytes to trigger the release of soluble factors. To date, no study has directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic drugs that are frequently used in clinical practice. Thus, the goal of this study was to determine whether the function of GABAA receptors in astrocytes was modulated by the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane. Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male mice. Astrocytes were identified by their morphologic and electrophysiologic properties. Focal puff application of GABA (300 μM) was applied with a Picospritzer system to evoke GABA responses. Currents were studied before and during the application of the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100 μM) or sevoflurane (532 μM). Results: GABA consistently evoked inward currents that were inhibited by picrotoxin. Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7, P < 0.05), respectively. Conclusion: The function of astrocytic GABAA receptors in the hippocampus was increased by etomidate and sevoflurane. Future studies will determine whether these general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of soluble factors that may contribute to PNDs.
Collapse
Affiliation(s)
- Woosuk Chung
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, Chungnam National University, Daejeon, South Korea
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Arsene Pinguelo
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
9
|
Mulkey DK, Olsen ML, Ou M, Cleary CM, Du G. Putative Roles of Astrocytes in General Anesthesia. Curr Neuropharmacol 2022; 20:5-15. [PMID: 33588730 PMCID: PMC9199541 DOI: 10.2174/1570159x19666210215120755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a mainstay of modern medicine, and although much progress has been made towards identifying molecular targets of anesthetics and neural networks contributing to endpoints of general anesthesia, our understanding of how anesthetics work remains unclear. Reducing this knowledge gap is of fundamental importance to prevent unwanted and life-threatening side-effects associated with general anesthesia. General anesthetics are chemically diverse, yet they all have similar behavioral endpoints, and so for decades, research has sought to identify a single underlying mechanism to explain how anesthetics work. However, this effort has given way to the 'multiple target hypothesis' as it has become clear that anesthetics target many cellular proteins, including GABAA receptors, glutamate receptors, voltage-independent K+ channels, and voltagedependent K+, Ca2+ and Na+ channels, to name a few. Yet, despite evidence that astrocytes are capable of modulating multiple aspects of neural function and express many anesthetic target proteins, they have been largely ignored as potential targets of anesthesia. The purpose of this brief review is to highlight the effects of anesthetic on astrocyte processes and identify potential roles of astrocytes in behavioral endpoints of anesthesia (hypnosis, amnesia, analgesia, and immobilization).
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA;,Address correspondence to this author at the Department of Physiology and Neurobiology, University of Connecticut, Storrs CT, USA; E-mail:
| | | | | | - Colin M. Cleary
- Department of Physiology and Neurobiology, University of Connecticut, StorrsCT, USA
| | | |
Collapse
|
10
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
11
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
12
|
Orser BA. Anesthesiology: Resetting Our Sights on Long-term Outcomes: The 2020 John W. Severinghaus Lecture on Translational Science. Anesthesiology 2021; 135:18-30. [PMID: 33901279 DOI: 10.1097/aln.0000000000003798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anesthesiologists have worked relentlessly to improve intraoperative anesthesia care. They are now well positioned to expand their horizons and address many of the longer-term adverse consequences of anesthesia and surgery. Perioperative neurocognitive disorders, chronic postoperative pain, and opioid misuse are not inevitable adverse outcomes; rather, they are preventable and treatable conditions that deserve attention. The author's research team has investigated why patients experience new cognitive deficits after anesthesia and surgery. Their animal studies have shown that anesthetic drugs trigger overactivity of "memory-blocking receptors" that persists after the drugs are eliminated, and they have discovered new strategies to preserve brain function by repurposing available drugs and developing novel therapeutics that inhibit these receptors. Clinical trials are in progress to examine the cognitive outcomes of such strategies. This work is just one example of how anesthesiologists are advancing science with the goal of improving the lives of patients.
Collapse
|
13
|
Guo J, Ran M, Gao Z, Zhang X, Wang D, Li H, Zhao S, Sun W, Dong H, Hu J. Cell-type-specific imaging of neurotransmission reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. EBioMedicine 2021; 65:103272. [PMID: 33691246 PMCID: PMC7941179 DOI: 10.1016/j.ebiom.2021.103272] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite the fundamental clinical significance of general anaesthesia, the cortical mechanism underlying anaesthetic-induced loss of consciousness (aLOC) remains elusive. METHODS Here, we measured the dynamics of two major cortical neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate, through in vivo two-photon imaging and genetically encoded neurotransmitter sensors in a cell type-specific manner in the primary visual (V1) cortex. FINDINGS We found a general decrease in cortical GABA transmission during aLOC. However, the glutamate transmission varies among different cortical cell types, where in it is almost preserved on pyramidal cells and is significantly reduced on inhibitory interneurons. Cortical interneurons expressing vasoactive intestinal peptide (VIP) and parvalbumin (PV) specialize in disinhibitory and inhibitory effects, respectively. During aLOC, VIP neuronal activity was delayed, and PV neuronal activity was dramatically inhibited and highly synchronized. INTERPRETATION These data reveal that aLOC resembles a cortical state with a disrupted excitatory-inhibitory network and suggest that a functional inhibitory network is indispensable in the maintenance of consciousness. FUNDING This work was supported by the grants of the National Natural Science Foundation of China (grant nos. 81620108012 and 82030038 to H.D. and grant nos. 31922029, 61890951, and 61890950 to J.H.).
Collapse
Affiliation(s)
- Juan Guo
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Mingzi Ran
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinxin Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiming Li
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shiyi Zhao
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China.
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200030, China.
| |
Collapse
|
14
|
Zhou W, Guan Z. Ion Channels in Anesthesia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:401-413. [DOI: 10.1007/978-981-16-4254-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Hou Y, Lin X, Lei Z, Zhao M, Li S, Zhang M, Zhang C, Yu J, Meng T. Sevoflurane prevents vulnerable plaque disruption in apolipoprotein E-knockout mice by increasing collagen deposition and inhibiting inflammation. Br J Anaesth 2020; 125:1034-1044. [PMID: 32943192 DOI: 10.1016/j.bja.2020.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sevoflurane may reduce the occurrence of major adverse cardiovascular events (MACCEs) in surgical patients, although the mechanisms are poorly understood. We hypothesised that sevoflurane stabilises atherosclerotic plaques by inhibiting inflammation and enhancing prolyl-4-hydroxylase α1 (P4Hα1), the rate-limiting subunit for the P4H enzyme essential for collagen synthesis. METHODS We established a vulnerable arterial plaque model in apolipoprotein E-knockout mice (ApoE-/-) fed a high-fat diet that underwent daily restraint/noise stress, with/without a single prior exposure to sevoflurane for 6 h (1-3%; n=30 per group). In vitro, smooth muscle cells (SMCs) were incubated with tumour necrosis factor-alpha in the presence/absence of sevoflurane. Immunohistochemistry, immunoblots, and mRNA concentrations were used to quantify the effect of sevoflurane on plaque formation, expression of inflammatory cytokines, P4Hα1, and collagen subtypes in atherosclerotic plaques or isolated SMCs. RESULTS In ApoE-/- mice, inhalation of sevoflurane 1-3% for 6 h reduced the aortic plaque size by 8-29% in a dose-dependent manner, compared with control mice that underwent restraint stress alone (P<0.05); this was associated with reduced macrophage infiltration and lower lipid concentrations in plaques. Sevoflurane reduced gene transcription and protein expression levels of pro-inflammatory cytokines (≥69-75%; P<0.05) and matrix metalloproteinases (≥39-65%; P<0.05) at both gene transcription and protein levels, compared with controls. Sevoflurane dose dependently increased Types I and III collagen deposition through enhanced protein expression of P4Hα1, both in vivo and in vitro (0.7-3.3-fold change; P<0.05). CONCLUSIONS Sevoflurane dose dependently promotes plaque stabilisation and decreases the incidence of plaque disruption in ApoE-/- mice by increasing collagen deposition and inhibiting inflammation. These mechanisms may contribute to sevoflurane reducing MACCE.
Collapse
Affiliation(s)
- Yonghao Hou
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhao
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shengqiang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Tao Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
16
|
Yang X, Luethy A, Zhang H, Luo Y, Xue Q, Yu B, Lu H. Mechanism and Development of Modern General Anesthetics. Curr Top Med Chem 2020; 19:2842-2854. [PMID: 31724504 DOI: 10.2174/1568026619666191114101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Before October 1846, surgery and pain were synonymous but not thereafter. Conquering pain must be one of the very few strategies that has potentially affected every human being in the world of all milestones in medicine. METHODS This review article describes how various general anesthetics were discovered historically and how they work in the brain to induce sedative, hypnosis and immobility. Their advantages and disadvantages will also be discussed. RESULTS Anesthesia is a relatively young field but is rapidly evolving. Currently used general anesthetics are almost invariably effective, but nagging side effects, both short (e.g., cardiac depression) and long (e.g., neurotoxicity) term, have reawakened the call for new drugs. CONCLUSION Based on the deepening understanding of historical development and molecular targets and actions of modern anesthetics, novel general anesthetics are being investigated as potentially improved sedative-hypnotics or a key to understand the mechanism of anesthesia.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Anita Luethy
- Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
17
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
18
|
Orser BA. Musings from an Unlikely Clinician-Scientist: 2018 American Society of Anesthesiologists Excellence in Research Award. Anesthesiology 2019; 131:795-800. [PMID: 31335546 DOI: 10.1097/aln.0000000000002881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article, which stems from the 2018 American Society of Anesthesiologists Excellence in Research Award Lecture, aims to encourage young investigators, offer advice, and share several early life experiences that have influenced the author's career as an anesthesiologist and clinician-scientist. The article also describes key discoveries that have increased understanding of the role of γ-aminobutyric acid type A (GABAA) receptors in health and disease. The author's research team identified the unique pharmacologic properties of extrasynaptic GABAA receptors and their role in the anesthetic state. The author's team also showed that extrasynaptic GABAA receptors expressed in neuronal and nonneuronal cells contribute to a variety of disorders and are novel drug targets. The author's overarching message is that young investigators must create their own unique narratives, train hard, be relentless in their studies and-most important-enjoy the journey of discovering new truths that will ultimately benefit patients.
Collapse
Affiliation(s)
- Beverley A Orser
- From the Department of Anesthesia and the Department of Physiology, University of Toronto, Toronto, Canada; and the Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
19
|
Hentschke H, Raz A, Krause BM, Murphy CA, Banks MI. Disruption of cortical network activity by the general anaesthetic isoflurane. Br J Anaesth 2019; 119:685-696. [PMID: 29121295 DOI: 10.1093/bja/aex199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 02/03/2023] Open
Abstract
Background Actions of general anaesthetics on activity in the cortico-thalamic network likely contribute to loss of consciousness and disconnection from the environment. Previously, we showed that the general anaesthetic isoflurane preferentially suppresses cortically evoked synaptic responses compared with thalamically evoked synaptic responses, but how this differential sensitivity translates into changes in network activity is unclear. Methods We investigated isoflurane disruption of spontaneous and stimulus-induced cortical network activity using multichannel recordings in murine auditory thalamo-cortical brain slices. Results Under control conditions, afferent stimulation elicited short latency, presumably monosynaptically driven, spiking responses, as well as long latency network bursts that propagated horizontally through the cortex. Isoflurane (0.05-0.6 mM) suppressed spiking activity overall, but had a far greater effect on network bursts than on early spiking responses. At isoflurane concentrations >0.3 mM, network bursts were almost entirely blocked, even with increased stimulation intensity and in response to paired (thalamo-cortical + cortical layer 1) stimulation, while early spiking responses were <50% blocked. Isoflurane increased the threshold for eliciting bursts, decreased their propagation speed and prevented layer 1 afferents from facilitating burst induction by thalamo-cortical afferents. Conclusions Disruption of horizontal activity spread and of layer 1 facilitation of thalamo-cortical responses likely contribute to the mechanism by which suppression of cortical feedback connections disrupts sensory awareness under anaesthesia.
Collapse
Affiliation(s)
- H Hentschke
- Department of Anesthesiology, Experimental Anesthesiology Section, University Hospital of Tübingen, Tübingen, Germany
| | - A Raz
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.,Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel
| | - B M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - C A Murphy
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.,Physiology Graduate Training Program, University of Wisconsin, Madison, WI, USA
| | - M I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
20
|
Zhao ZF, Du L, Gao T, Bao L, Luo Y, Yin YQ, Wang YA. Inhibition of α5 GABAA receptors has preventive but not therapeutic effects on isoflurane-induced memory impairment in aged rats. Neural Regen Res 2019; 14:1029-1036. [PMID: 30762015 PMCID: PMC6404482 DOI: 10.4103/1673-5374.250621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The α5 subunit-containing gamma-amino butyric acid type A receptors (α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose (1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young (3-month-old) and aged (24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia. The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China (approval No. NBCDSER-IACUC-2015128) in December 2015.
Collapse
Affiliation(s)
- Zi-Fang Zhao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lin Bao
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Luo
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yi-Qing Yin
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong-An Wang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Beverley A. Orser, M.D., Ph.D., F.R.C.P.C., F.C.A.H.S., Recipient of the 2018 Excellence in Research Award. Anesthesiology 2018. [DOI: 10.1097/aln.0000000000002380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Antkowiak B, Rudolph U. New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by γ-aminobutyric acid A receptors. Curr Opin Anaesthesiol 2018; 29:447-53. [PMID: 27168087 DOI: 10.1097/aco.0000000000000358] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The review highlights novel insights into the role of γ-aminobutyric acid A (GABAA) receptors in mediating clinically relevant actions of anesthetic agents. RECENT FINDINGS GABAA receptors in the hippocampus are located on glutamatergic pyramidal cells and GABAergic interneurons. Etomidate-induced inhibition of a synaptic correlate of learning and memory is caused by receptors on nonpyramidal neurons, likely on interneurons that incorporate α5 subunits. Selective enhancement of α2 subunit containing GABAA receptors in the spinal cord provides antihyperalgesia against inflammatory and neuropathic pain without causing sedation, motor impairment, and tolerance development. Inflammation, traumatic brain injury, and exposure to anesthetic agents modify the expression patterns of GABAA receptors in a subtype-specific manner. These modifications may persist for weeks. The neuroactive steroid alphaxalone causes fast-onset and short-duration anesthesia in humans. Cardiovascular and respiratory side-effects are less severe than with propofol. SUMMARY Identification of the molecular and cellular substrates involved in anesthesia and insights into disease and drug-induced alterations in the expression patterns of GABAA receptors in the central nervous system are emphasizing the need for individualized anesthesia care. Introducing neuroactive steroids into clinical anesthesia is expected to reduce cardiovascular and respiratory side-effects.
Collapse
Affiliation(s)
- Bernd Antkowiak
- aDepartment of Anesthesiology and Intensive Care, Experimental Anesthesiology Section bWerner Reichardt Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany cLaboratory of Genetic Neuropharmacology, McLean Hospital, Belmont dDepartment of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
23
|
Feng HJ, Forman SA. Comparison of αβδ and αβγ GABA A receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 2017; 133:289-300. [PMID: 29294355 DOI: 10.1016/j.phrs.2017.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/27/2022]
Abstract
GABAA receptors play a dominant role in mediating inhibition in the mature mammalian brain, and defects of GABAergic neurotransmission contribute to the pathogenesis of a variety of neurological and psychiatric disorders. Two types of GABAergic inhibition have been described: αβγ receptors mediate phasic inhibition in response to transient high-concentrations of synaptic GABA release, and αβδ receptors produce tonic inhibitory currents activated by low-concentration extrasynaptic GABA. Both αβδ and αβγ receptors are important targets for general anesthetics, which induce apparently different changes both in GABA-dependent receptor activation and in desensitization in currents mediated by αβγ vs. αβδ receptors. Many of these differences are explained by correcting for the high agonist efficacy of GABA at most αβγ receptors vs. much lower efficacy at αβδ receptors. The stoichiometry and subunit arrangement of recombinant αβγ receptors are well established as β-α-γ-β-α, while those of αβδ receptors remain controversial. Importantly, some potent general anesthetics selectively bind in transmembrane inter-subunit pockets of αβγ receptors: etomidate acts at β+/α- interfaces, and the barbiturate R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB) acts at α+/β- and γ+/β- interfaces. Thus, these drugs are useful as structural probes in αβδ receptors formed from free subunits or concatenated subunit assemblies designed to constrain subunit arrangement. Although a definite conclusion cannot be drawn, studies using etomidate and R-mTFD-MPAB support the idea that recombinant α1β3δ receptors may share stoichiometry and subunit arrangement with α1β3γ2 receptors.
Collapse
Affiliation(s)
- Hua-Jun Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| | - Stuart A Forman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, and Department of Anesthesia, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Abstract
Abstract
Background
Previous studies showed that synaptic transmission is affected by general anesthetics, but an anesthetic dose response in freely moving animals has not been done. The hippocampus provides a neural network for the evaluation of isoflurane and pentobarbital on multisynaptic transmission that is relevant to memory function.
Methods
Male Long-Evans rats were implanted with multichannel and single electrodes in the hippocampus. Spontaneous local field potentials and evoked field potentials were recorded in freely behaving rats before (baseline) and after various doses of isoflurane (0.25 to 1.5%) and sodium pentobarbital (10 mg/kg intraperitoneal).
Results
Monosynaptic population excitatory postsynaptic potentials at the basal and apical dendrites of CA1 were significantly decreased at greater than or equal to 0.25% (n = 4) and greater than or equal to 1.0% (n = 6) isoflurane, respectively. The perforant path evoked multisynaptic response at CA1 was decreased by ~50% at greater than or equal to 0.25% isoflurane (n = 5). A decreased population excitatory postsynaptic potential was accompanied by increased paired-pulse facilitation. Population spike amplitude in relation to apical dendritic population excitatory postsynaptic potential was not significantly altered by isoflurane. Spontaneous hippocampal local field potential at 0.8 to 300 Hz was dose-dependently suppressed by isoflurane (n = 6), with local field potential power in the 50- to 150-Hz band showing the highest decrease with isoflurane dose, commensurate with the decrease in trisynaptic CA1 response. Low-dose pentobarbital (n = 7) administration decreased the perforant path evoked trisynaptic CA1 response and hippocampal local field potentials at 78 to 125 Hz.
Conclusions
Hippocampal networks are sensitive to low doses of isoflurane and pentobarbital, possibly through both glutamatergic and γ-aminobutyric acid–mediated transmission. Network disruption could help explain the impairment of hippocampal-dependent cognitive functions with low-dose anesthetic.
Collapse
|
25
|
Speigel I, Bichler EK, García PS. The Influence of Regional Distribution and Pharmacologic Specificity of GABA AR Subtype Expression on Anesthesia and Emergence. Front Syst Neurosci 2017; 11:58. [PMID: 28878632 PMCID: PMC5572268 DOI: 10.3389/fnsys.2017.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023] Open
Abstract
Anesthetics produce unconsciousness by modulating ion channels that control neuronal excitability. Research has shown that specific GABAA receptor (GABAAR) subtypes in particular regions of the central nervous system contribute to different hyperpolarizing conductances, and behaviorally to distinct components of the anesthetized state. The expression of these receptors on the neuron cell surface, and thus the strength of inhibitory neurotransmission, is dynamically regulated by intracellular trafficking mechanisms. Pharmacologic or activity-based perturbations to these regulatory systems have been implicated in pathology of several neurological conditions, and can alter the individual response to anesthesia. Furthermore, studies are beginning to uncover how anesthetic exposure itself elicits enduring changes in subcellular physiology, including the processes that regulate ion channel trafficking. Here, we review the mechanisms that determine GABAAR surface expression, and elaborate on influences germane to anesthesia and emergence. We address known trafficking differences between the intrasynaptic receptors that mediate phasic current and the extra-synaptic receptors mediating tonic current. We also describe neurophysiologic consequences and network-level abnormalities in brain function that result from receptor trafficking aberrations. We hypothesize that the relationship between commonly used anesthetic agents and GABAAR surface expression has direct consequences on mature functioning neural networks and by extension ultimately influence the outcome of patients that undergo general anesthesia. Rational design of new anesthetics, anesthetic techniques, EEG-based monitoring strategies, or emergence treatments will need to take these effects into consideration.
Collapse
Affiliation(s)
- Iris Speigel
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| | - Edyta K Bichler
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| | - Paul S García
- Department of Anesthesiology, Emory University School of Medicine, AtlantaGA, United States.,Research Division, Atlanta Veteran's Affairs Medical Center, AtlantaGA, United States
| |
Collapse
|
26
|
Chen X, Keramidas A, Lynch JW. Physiological and pharmacological properties of inhibitory postsynaptic currents mediated by α5β1γ2, α5β2γ2 and α5β3γ2 GABA A receptors. Neuropharmacology 2017; 125:243-253. [PMID: 28757051 DOI: 10.1016/j.neuropharm.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
α5-containing GABAARs are potential therapeutic targets for clinical conditions including age-related dementia, stroke, schizophrenia, Down syndrome, anaesthetic-induced amnesia, anxiety and pain. α5-containing GABAARs are expressed in layer 5 cortical neurons and hippocampal pyramidal neurons where they mediate both tonic currents and slow inhibitory postsynaptic currents (IPSCs). A range of drugs has been developed to specifically modulate these receptors. The main α5-containing GABAARs that are likely to exist in vivo are the α5β1γ2, α5β2γ2 and α5β3γ2 isoforms. We currently have few clues as to how these isoforms are distributed between synaptic and extrasynaptic compartments or their relative roles in controlling neuronal excitability. Accordingly, the aim of this study was to define the basic biophysical and pharmacological properties of IPSCs mediated by the three isoforms in a hippocampal neuron-HEK293 cell co-culture assay. The IPSC decay time constants were slow (α5β1γ2L: 45 ms; α5β1γ2L: 80 ms; α5β3γ2L: 184 ms) and were largely dominated by the intrinsic channel deactivation rates. By comparing IPSC rise times, we inferred that α5β1γ2L GABAARs are located postsynaptically whereas the other two are predominantly perisynaptic. α5β3γ2L GABAARs alone mediated tonic currents. We quantified the effects of four α5-specific inverse agonists (TB-21007, MRK-016, α5IA and L-655708) on IPSCs mediated by the three isoforms. All compounds selectively inhibited IPSC amplitudes and accelerated IPSC decay rates, albeit with distinct isoform specificities. MRK-016 also significantly accelerated IPSC rise times. These results provide a reference for future studies seeking to identify and characterize the properties of IPSCs mediated by α5-containing GABAAR isoforms in neurons.
Collapse
Affiliation(s)
- Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
27
|
Yuki K, Eckenhoff RG. Mechanisms of the Immunological Effects of Volatile Anesthetics: A Review. Anesth Analg 2017; 123:326-35. [PMID: 27308954 DOI: 10.1213/ane.0000000000001403] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Volatile anesthetics (VAs) have been in clinical use for a very long time. Their mechanism of action is yet to be fully delineated, but multiple ion channels have been reported as targets for VAs (canonical VA targets). It is increasingly recognized that VAs also manifest effects outside the central nervous system, including on immune cells. However, the literature related to how VAs affect the behavior of immune cells is very limited, but it is of interest that some canonical VA targets are reportedly expressed in immune cells. Here, we review the current literature and describe canonical VA targets expressed in leukocytes and their known roles. In addition, we introduce adhesion molecules called β2 integrins as noncanonical VA targets in leukocytes. Finally, we propose a model for how VAs affect the function of neutrophils, macrophages, and natural killer cells via concerted effects on multiple targets as examples.
Collapse
Affiliation(s)
- Koichi Yuki
- From the *Department of Anesthesiology, Perioperative and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, Massachusetts; †Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts; and ‡Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
28
|
Faria LC, Gu F, Parada I, Barres B, Luo ZD, Prince DA. Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit α2δ-1. Neurobiol Dis 2017; 102:70-80. [PMID: 28193459 DOI: 10.1016/j.nbd.2017.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
The alpha2delta-1 subunit (α2δ-1) of voltage-gated calcium channels is a receptor for astrocyte-secreted thrombospondins that promote developmental synaptogenesis. Alpha2delta-1 receptors are upregulated in models of injury-induced peripheral pain and epileptogenic neocortical trauma associated with an enhancement of excitatory synaptic connectivity. These results lead to the hypothesis that overexpression of α2δ-1 alone in neocortex of uninjured transgenic (TG) mice might result in increased excitatory connectivity and consequent cortical hyperexcitability and epileptiform activity. Whole cell recordings from layer V pyramidal neurons in somatosensory cortical slices of TG mice showed increased frequency and amplitude of miniature and spontaneous EPSCs and prolonged bursts of polysynaptic EPSCs. Epileptiform field potentials were evoked in layers II/III and V of brain slices from TG mice, but not controls. Dual immunoreactivity for Vglut-2 and PSD95 showed increased density of close appositions in TG mice compared to controls, suggesting an increased number of excitatory synapses. Video-EEG monitoring showed that 13/13 implanted TG mice aged >P21, but not controls, had frequent abnormal spontaneous epileptiform events, consisting of variable duration, high amplitude bi-hemispheric irregular bursts of delta activity, spikes and sharp waves lasting many seconds, with a variable peak frequency of ~1-3Hz, associated with behavioral arrest. The epileptiform EEG abnormalities and behavioral arrests were reversibly eliminated by treatment with i.p. ethosuximide. Behavioral seizures, consisting of ~15-30s duration episodes of rigid arched tail and head and body extension, followed by loss of balance and falling, frequently occurred in adult TG mice during recovery from isoflurane-induced anesthesia, but were rare in WT mice. Results show that over-expression of α2δ-1 subunits increases cortical excitatory connectivity and leads to neocortical hyperexcitability and epileptiform activity associated with behavioral arrests in adult TG mice. Similar increases in expression of α2δ-1 in models of cortical injury may play an important role in epileptogenesis. SIGNIFICANCE Binding of astrocytic-secreted thrombospondins to their α2δ-1 receptor facilitates excitatory synapse formation and excitatory transmission during cortical development and after injury. Upregulation of α2δ-1 is present in models of injury-induced pain and epileptogenic cortical trauma, along with many other molecular alterations. Here we show that overexpression of α2δ-1 alone in TG mice can enhance excitatory connectivity in neocortex and lead to neural circuit hyperexcitability and episodes of electrographic epileptiform activity, associated with behavioral arrests in transgenic mice. α2δ-1 is the high-affinity receptor for gabapentinoids and a potential target for prophylactic treatment of posttraumatic epilepsy and other disorders in which excessive aberrant excitatory connectivity is a pathophysiological feature.
Collapse
Affiliation(s)
- Leonardo C Faria
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Ben Barres
- Department of Neurobiology, Stanford University, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford, CA 94305-5125, USA
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, Department of Pharmacology, University of California, Irvine Medical Center, Orange, CA 92868, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Chen Z, Liu R, Yang SH, Dillon GH, Huang R. Methylene blue inhibits GABA A receptors by interaction with GABA binding site. Neuropharmacology 2017; 119:100-110. [PMID: 28390894 DOI: 10.1016/j.neuropharm.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023]
Abstract
Methylene blue (MB) is commonly used in diagnostic procedures and is also used to treat various medical conditions. Neurological effects of MB have been reported in clinical observations and experimental studies. Thus the modulation of GABAA receptor function by MB was investigated. Whole-cell GABA-activated currents were recorded from HEK293 cells expressing various GABAA receptor subunit configurations. MB inhibition of GABA currents was apparent at 3 μM, and it had an IC50 of 31 μM in human α1β2γ2 receptors. The MB action was rapid and reversible. MB inhibition was not mediated via the picrotoxin site, as a mutation (T6'F of the β2 subunit) known to confer resistance to picrotoxin had no effect on MB-induced inhibition. Blockade of GABAA receptors by MB was demonstrated across a range of receptors expressing varying subunits, including those expressed at extrasynaptic sites. The sensitivity of α1β2 receptors to MB was similar to that observed in α1β2γ2 receptors, indicating that MB's action via the benzodiazepine or Zn2+ site is unlikely. MB-induced inhibition of GABA response was competitive with respect to GABA. Furthermore, mutation of α1 F64 to A and β2 Y205 to F in the extracellular N-terminus, both residues which are known to comprise GABA binding pocket, remarkably diminished MB inhibition of GABA currents. These data suggest that MB inhibits GABAA receptor function by direct or allosteric interaction with the GABA binding site. Finally, in mouse hippocampal CA1 pyramidal neurons, MB inhibited GABA-activated currents as well as GABAergic IPSCs. We demonstrate that MB directly inhibits GABAA receptor function, which may underlie some of the effects of MB on the CNS.
Collapse
Affiliation(s)
- Zhenglan Chen
- Center for Neuroscience Discovery, Institute of Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - Ran Liu
- Center for Neuroscience Discovery, Institute of Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - Shao-Hua Yang
- Center for Neuroscience Discovery, Institute of Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - Glenn H Dillon
- Center for Neuroscience Discovery, Institute of Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States
| | - Renqi Huang
- Center for Neuroscience Discovery, Institute of Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, United States.
| |
Collapse
|
30
|
Abstract
Abstract
Background
Critically ill patients with severe inflammation often exhibit heightened sensitivity to general anesthetics; however, the underlying mechanisms remain poorly understood. Inflammation increases the number of γ-aminobutyric acid type A (GABAA) receptors expressed on the surface of neurons, which supports the hypothesis that inflammation increases up-regulation of GABAA receptor activity by anesthetics, thereby enhancing the behavioral sensitivity to these drugs.
Methods
To mimic inflammation in vitro, cultured hippocampal and cortical neurons were pretreated with interleukin (IL)-1β. Whole cell patch clamp methods were used to record currents evoked by γ-aminobutyric acid (GABA) (0.5 μM) in the absence and presence of etomidate or isoflurane. To mimic inflammation in vivo, mice were treated with lipopolysaccharide, and several anesthetic-related behavioral endpoints were examined.
Results
IL-1β increased the amplitude of current evoked by GABA in combination with clinically relevant concentrations of either etomidate (3 μM) or isoflurane (250 μM) (n = 5 to 17, P < 0.05). Concentration–response plots for etomidate and isoflurane showed that IL-1β increased the maximal current 3.3-fold (n = 5 to 9) and 1.5-fold (n = 8 to 11), respectively (P < 0.05 for both), whereas the half-maximal effective concentrations were unchanged. Lipopolysaccharide enhanced the hypnotic properties of both etomidate and isoflurane. The immobilizing properties of etomidate, but not isoflurane, were also increased by lipopolysaccharide. Both lipopolysaccharide and etomidate impaired contextual fear memory.
Conclusions
These results provide proof-of-concept evidence that inflammation increases the sensitivity of neurons to general anesthetics. This increase in anesthetic up-regulation of GABAA receptor activity in vitro correlates with enhanced sensitivity for GABAA receptor–dependent behavioral endpoints in vivo.
Collapse
|
31
|
Wakita M, Kotani N, Yamaga T, Akaike N. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons. Brain Res Bull 2015; 118:34-45. [PMID: 26343381 DOI: 10.1016/j.brainresbull.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/16/2022]
Abstract
We evaluated the effects of N2O on synaptic transmission using a preparation of mechanically dissociated rat hippocampal CA3 neurons that allowed assays of single bouton responses evoked from native functional nerve endings. We studied the effects of N2O on GABAA, glutamate, AMPA and NMDA receptor-mediated currents (IGABA, IGlu, IAMPA and INMDA) elicited by exogenous application of GABA, glutamate, (S)-AMPA, and NMDA and spontaneous, miniature, and evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic current (sIPSC, mIPSC, eIPSC, sEPSC, mEPSC and eEPSC) in mechanically dissociated CA3 neurons. eIPSC and eEPSC were evoked by focal electrical stimulation of a single bouton. Administration of 70% N2O altered neither IGABA nor the frequency and amplitude of both sIPSCs and mIPSCs. In contrast, N2O decreased the amplitude of eIPSCs, while increasing failure rates (Rf) and paired-pulse ratios (PPR) in a concentration-dependent manner. On the other hand, N2O decreased IGlu, IAMPA and INMDA. Again N2O did not change the frequency and amplitude of either sEPSCs of mEPSCs. N2O also decreased amplitudes of eEPSCs with increased Rf and PPR. The decay phases of all synaptic responses were unchanged. The present results indicated that N2O inhibits the activation of AMPA/KA and NMDA receptors and also that N2O preferentially depress the action potential-dependent GABA and glutamate releases but had little effects on spontaneous and miniature releases.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto 861-5598, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Jyuryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto 861-5598, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan.
| |
Collapse
|
32
|
Rodgers FC, Zarnowska ED, Laha KT, Engin E, Zeller A, Keist R, Rudolph U, Pearce RA. Etomidate Impairs Long-Term Potentiation In Vitro by Targeting α5-Subunit Containing GABAA Receptors on Nonpyramidal Cells. J Neurosci 2015; 35:9707-16. [PMID: 26134653 PMCID: PMC4571505 DOI: 10.1523/jneurosci.0315-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/07/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023] Open
Abstract
Previous experiments using genetic and pharmacological manipulations have provided strong evidence that etomidate impairs synaptic plasticity and memory by modulating α5-subunit containing GABAA receptors (α5-GABAARs). Because α5-GABAARs mediate tonic inhibition (TI) in hippocampal CA1 pyramidal cells and etomidate enhances TI, etomidate enhancement of TI in pyramidal cells has been proposed as the underlying mechanism (Martin et al., 2009). Here we tested this hypothesis by selectively removing α5-GABAARs from pyramidal neurons (CA1-pyr-α5-KO) and comparing the ability of etomidate to enhance TI and block LTP in fl-α5 (WT), global-α5-KO (gl-α5-KO), and CA1-pyr-α5-KO mice. Etomidate suppressed LTP in slices from WT and CA1-pyr-α5-KO but not gl-α5-KO mice. There was a trend toward reduced TI in both gl-α5-KO and CA1-pyr-α5-KO mice, but etomidate enhanced TI to similar levels in all genotypes. The dissociation between effects of etomidate on TI and LTP in gl-α5-KO mice indicates that increased TI in pyramidal neurons is not the mechanism by which etomidate impairs LTP and memory. Rather, the ability of etomidate to block LTP in WT and CA1-pyr-α5-KO mice, but not in gl-α5-KO mice, points toward α5-GABAARs on nonpyramidal cells as the essential effectors controlling plasticity in this in vitro model of learning and memory.
Collapse
Affiliation(s)
- F Clifford Rodgers
- Neuroscience Training Program and Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ewa D Zarnowska
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kurt T Laha
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, Massachusetts 02478, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Anja Zeller
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Ruth Keist
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, Massachusetts 02478, Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
33
|
Antkowiak B. Closing the gap between the molecular and systemic actions of anesthetic agents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:229-62. [PMID: 25600373 DOI: 10.1016/bs.apha.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic approaches have been successfully used to relate the diverse molecular actions of anesthetic agents to their amnestic, sedative, hypnotic, and immobilizing properties. The hypnotic effect of etomidate, quantified as the duration of the loss of righting reflex in mice, is equally mediated by GABAA receptors containing β2- and β3-protein subunits. However, only β3-containing receptors are involved in producing electroencephalogram (EEG)-patterns typical of general anesthesia. The sedative action of diazepam is produced by α1-subunit-containing receptors, but these receptors do not contribute to the drug's characteristic EEG-"fingerprint." Thus, GABAA receptors with α1- and β2-subunits take a central role in causing benzodiazepine-induced sedation and etomidate-induced hypnosis, but the corresponding EEG-signature is difficult to resolve. Contrastingly, actions of etomidate and benzodiazepines mediated via α2- and β3-subunits modify rhythmic brain activity in vitro and in vivo at least in part by enhancing neuronal synchrony. The immobilizing action of GABAergic anesthetics predominantly involves β3-subunit-containing GABAA receptors in the spinal cord. Interestingly, this action is self-limiting as GABA-release is attenuated via the same receptors. Anesthetic-induced amnesia is in part mediated by GABAA receptors harboring α5-subunits that are highly enriched in the hippocampus and, in addition, by α1-containing receptors in the forebrain. Because there is accumulating evidence that in patients the expression pattern of GABAA receptor subtypes varies with age, is altered by the long-term use of drugs, and is affected by pathological conditions like inflammation and sepsis, further research is recommended to adapt the use of anesthetic agents to the specific requirements of individual patients.
Collapse
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology Section, Eberhard-Karls-University, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
34
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
35
|
Lioudyno MI, Birch AM, Tanaka BS, Sokolov Y, Goldin AL, Chandy KG, Hall JE, Alkire MT. Shaker-related potassium channels in the central medial nucleus of the thalamus are important molecular targets for arousal suppression by volatile general anesthetics. J Neurosci 2013; 33:16310-22. [PMID: 24107962 PMCID: PMC3792466 DOI: 10.1523/jneurosci.0344-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.
Collapse
Affiliation(s)
- Maria I. Lioudyno
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Alexandra M. Birch
- Center for the Neurobiology of Learning and Memory and Department of Anesthesiology and Perioperative Care, University of California, Irvine, Orange, California 92868, and
| | - Brian S. Tanaka
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025
| | - Yuri Sokolov
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Alan L. Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025
| | - K. George Chandy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - James E. Hall
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Michael T. Alkire
- Center for the Neurobiology of Learning and Memory and Department of Anesthesiology and Perioperative Care, University of California, Irvine, Orange, California 92868, and
| |
Collapse
|
36
|
Wakita M, Kotani N, Nonaka K, Shin MC, Akaike N. Effects of propofol on GABAergic and glutamatergic transmission in isolated hippocampal single nerve-synapse preparations. Eur J Pharmacol 2013; 718:63-73. [DOI: 10.1016/j.ejphar.2013.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023]
|
37
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
38
|
Santhakumar V, Meera P, Karakossian MH, Otis TS. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 2013; 8:e72976. [PMID: 23977374 PMCID: PMC3747091 DOI: 10.1371/journal.pone.0072976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 07/23/2013] [Indexed: 01/04/2023] Open
Abstract
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.
Collapse
Affiliation(s)
- Vijayalakshmi Santhakumar
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
39
|
Isoflurane regulates atypical type-A γ-aminobutyric acid receptors in alveolar type II epithelial cells. Anesthesiology 2013; 118:1065-75. [PMID: 23485993 DOI: 10.1097/aln.0b013e31828e180e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Volatile anesthetics act primarily through upregulating the activity of γ-aminobutyric acid type A (GABAA) receptors. They also exhibit antiinflammatory actions in the lung. Rodent alveolar type II (ATII) epithelial cells express GABAA receptors and the inflammatory factor cyclooxygenase-2 (COX-2). The goal of this study was to determine whether human ATII cells also express GABAA receptors and whether volatile anesthetics upregulate GABAA receptor activity, thereby reducing the expression of COX-2 in ATII cells. METHODS The expression of GABAA receptor subunits and COX-2 in ATII cells of human lung tissue and in the human ATII cell line A549 was studied with immunostaining and immunoblot analyses. Patch clamp recordings were used to study the functional and pharmacological properties of GABAA receptors in cultured A549 cells. RESULTS ATII cells in human lungs and cultured A549 cells expressed GABAA receptor subunits and COX-2. GABA induced currents in A549 cells, with half-maximal effective concentration of 2.5 µM. Isoflurane (0.1-250 µM) enhanced the GABA currents, which were partially inhibited by bicuculline. Treating A549 cells with muscimol or with isoflurane (250 µM) reduced the expression of COX-2, an effect that was attenuated by cotreatment with bicuculline. CONCLUSIONS GABAA receptors expressed by human ATII cells differ pharmacologically from those in neurons, exhibiting a higher affinity for GABA and lower sensitivity to bicuculline. Clinically relevant concentrations of isoflurane increased the activity of GABAA receptors and reduced the expression of COX-2 in ATII cells. These findings reveal a novel mechanism that could contribute to the antiinflammatory effect of isoflurane in the human lung.
Collapse
|
40
|
Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, Fiskum G, Giffard RG, Herold KF, Loepke AW, Ma D, Orser BA, Planel E, Slikker W, Soriano SG, Stratmann G, Vutskits L, Xie Z, Hemmings HC. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar. Br J Anaesth 2013; 111:143-51. [PMID: 23722106 DOI: 10.1093/bja/aet177] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although previously considered entirely reversible, general anaesthesia is now being viewed as a potentially significant risk to cognitive performance at both extremes of age. A large body of preclinical as well as some retrospective clinical evidence suggest that exposure to general anaesthesia could be detrimental to cognitive development in young subjects, and might also contribute to accelerated cognitive decline in the elderly. A group of experts in anaesthetic neuropharmacology and neurotoxicity convened in Salzburg, Austria for the BJA Salzburg Seminar on Anaesthetic Neurotoxicity and Neuroplasticity. This focused workshop was sponsored by the British Journal of Anaesthesia to review and critically assess currently available evidence from animal and human studies, and to consider the direction of future research. It was concluded that mounting evidence from preclinical studies reveals general anaesthetics to be powerful modulators of neuronal development and function, which could contribute to detrimental behavioural outcomes. However, definitive clinical data remain elusive. Since general anaesthesia often cannot be avoided regardless of patient age, it is important to understand the complex mechanisms and effects involved in anaesthesia-induced neurotoxicity, and to develop strategies for avoiding or limiting potential brain injury through evidence-based approaches.
Collapse
|
41
|
Drexler B, Kreuzer M, Jordan D, Antkowiak B, Schneider G. Sevoflurane-induced loss of consciousness is paralleled by a prominent modification of neural activity during cortical down-states. Neurosci Lett 2013; 548:149-54. [PMID: 23721783 DOI: 10.1016/j.neulet.2013.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/12/2013] [Accepted: 05/15/2013] [Indexed: 11/25/2022]
Abstract
Networks of neocortical neurons display a bistable activity pattern characterised by phases of high frequency action potential firing, so called up-states, and episodes of low discharge activity (down-states). We hypothesised that during down-states neocortical neurons are vulnerable to anaesthetic agents. To tackle this issue, it is necessary to identify analytical methods, which are sufficiently sensitive for resolving anaesthetic effects during phases of scarce neuronal activity. The local field potential was recorded in organotypic cultures (OTC) from rat neocortex under control conditions and in the presence of increasing concentrations of sevoflurane by extracellular electrodes. Epochs from down-states were cut from the local field potential and analysed using power spectrum density as well as non-linear parameters approximate entropy (ApEn) and order recurrence rate (ORR). ApEn and ORR proved to be suitable tools for analysing the actions of volatile anaesthetics on cortical down-states. During these phases of low neuronal activity, sevoflurane caused prominent changes in the local field potential. Time series analysis using ApEn showed a reduction of signal predictability in the presence of sevoflurane. Furthermore, the ORR displayed an abrupt decrease at sevoflurane concentrations corresponding to loss of consciousness in vivo, indicating a drug-induced decrease in the signal to noise ratio. The actions of volatile anaesthetics on cortical down-states have been neglected so far, perhaps due to the lack of suitable analysis tools. In the current in vitro study the non-linear parameters ApEn and ORR are introduced to characterise volatile anaesthetics actions. Sevoflurane alters cortical down-states as indicated by non-linear parameter analysis of local field potential recording from cultured neuronal networks. ORR even displays an abrupt change, i.e., a step-like behaviour indicating an increased signal complexity at concentrations of sevoflurane corresponding to loss of consciousness in humans.
Collapse
Affiliation(s)
- Berthold Drexler
- Section of Experimental Anaesthesiology, University of Tuebingen, Germany
| | | | | | | | | |
Collapse
|
42
|
Lecker I, Yin Y, Wang DS, Orser BA. Potentiation of GABAA receptor activity by volatile anaesthetics is reduced by α5GABAA receptor-preferring inverse agonists. Br J Anaesth 2013; 110 Suppl 1:i73-81. [PMID: 23535829 DOI: 10.1093/bja/aet038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Animal studies have shown that memory deficits in the early post-anaesthetic period can be prevented by pre-treatment with an inverse agonist that preferentially inhibits α5 subunit-containing γ-aminobutyric acid type A (α5GABA(A)) receptors. The goal of this in vitro study was to determine whether inverse agonists that inhibit α5GABA(A) receptors reduce anaesthetic potentiation of GABAA receptor activity. METHODS Cultures of hippocampal neurones were prepared from Swiss white mice, wild-type mice (genetic background C57BL/6J and Sv129Ev) and α5GABA(A)receptor null mutant (Gabra5-/-) mice. Whole-cell voltage clamp techniques were used to study the effects of the α5GABA(A) receptor-preferring inverse agonists L-655,708 and MRK-016 on anaesthetic potentiation of GABA-evoked currents. RESULTS L-655,708 (50 nM) reduced sevoflurane potentiation of GABA-evoked current in wild-type neurones but not Gabra5-/- neurones, and produced a rightward shift in the sevoflurane concentration-response plot [sevoflurane EC50: 1.9 (0.1) mM; sevoflurane+L-655,708 EC(50): 2.4 (0.2) mM, P<0.05]. Similarly, L-655,708 (50 nM) reduced isoflurane potentiation of GABA-evoked current [isoflurane: 4.0 (0.6) pA pF(-1); isoflurane+L-655,708: 3.1 (0.5) pA pF(-1), P<0.01]. MRK-016 also reduced sevoflurane and isoflurane enhancement of GABA-evoked current [sevoflurane: 1.5 (0.1) pA pF(-1); sevoflurane+MRK-016 (10 nM): 1.2 (0.1) pA pF(-1), P<0.05; isoflurane: 3.5 (0.3) pA pF(-1); isoflurane+MRK-016 (1 nM): 2.9 (0.2) pA pF(-1), P<0.05]. CONCLUSIONS L-655,708 and MRK-016 reduced the potentiation by inhaled anaesthetics of GABAA receptor activated by a low concentration of GABA. Future studies are required to determine whether this effect contributes to the memory preserving properties of inverse agonists after anaesthesia.
Collapse
Affiliation(s)
- I Lecker
- Department of Physiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
43
|
Lecker I, Wang DS, Romaschin AD, Peterson M, Mazer CD, Orser BA. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest 2012. [PMID: 23187124 DOI: 10.1172/jci63375] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antifibrinolytic drugs are widely used to reduce blood loss during surgery. One serious adverse effect of these drugs is convulsive seizures; however, the mechanisms underlying such seizures remain poorly understood. The antifibrinolytic drugs tranexamic acid (TXA) and ε-aminocaproic acid (EACA) are structurally similar to the inhibitory neurotransmitter glycine. Since reduced function of glycine receptors causes seizures, we hypothesized that TXA and EACA inhibit the activity of glycine receptors. Here we demonstrate that TXA and EACA are competitive antagonists of glycine receptors in mice. We also showed that the general anesthetic isoflurane, and to a lesser extent propofol, reverses TXA inhibition of glycine receptor-mediated current, suggesting that these drugs could potentially be used to treat TXA-induced seizures. Finally, we measured the concentration of TXA in the cerebrospinal fluid (CSF) of patients undergoing major cardiovascular surgery. Surprisingly, peak TXA concentration in the CSF occurred after termination of drug infusion and in one patient coincided with the onset of seizures. Collectively, these results show that concentrations of TXA equivalent to those measured in the CSF of patients inhibited glycine receptors. Furthermore, isoflurane or propofol may prevent or reverse TXA-induced seizures.
Collapse
Affiliation(s)
- Irene Lecker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
The effects of volatile anesthetics on synaptic and extrasynaptic GABA-induced neurotransmission. Brain Res Bull 2012; 93:69-79. [PMID: 22925739 DOI: 10.1016/j.brainresbull.2012.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/17/2012] [Accepted: 08/01/2012] [Indexed: 02/02/2023]
Abstract
Examination of volatile anesthetic actions at single synapses provides more direct information by reducing interference by surrounding tissue and extrasynaptic modulation. We examined how volatile anesthetics modulate GABA release by measuring spontaneous or miniature GABA-induced inhibitory postsynaptic currents (mIPSCs, sIPSCs) or by measuring action potential-evoked IPSCs (eIPSCs) at individual synapses. Halothane increased both the amplitude and frequency of sIPSCs. Isoflurane and enflurane increased mIPSC frequency while sevoflurane had no effect. These anesthetics did not alter mIPSC amplitudes. Halothane increased the amplitude of eIPSCs, with a decrease in failure rate (Rf) and paired-pulse ratio. In contrast, isoflurane and enflurane decreased the eIPSC amplitude and increased Rf, while sevoflurane decreased the eIPSC amplitude without affecting Rf. Volatile anesthetics did not change kinetics except for sevoflurane, suggesting that presynaptic mechanisms dominate changes in neurotransmission. Each anesthetic showed somewhat different GABA-induced response and these results suggest that GABA-induced synaptic transmission cannot have a uniformly common site of action as suggested for volatile anesthetics. In contrast, all volatile anesthetics concentration-dependently enhanced the GABA-induced extrasynaptic currents. Extrasynaptic receptors containing α4 and α5 subunits are reported to have high sensitivities to volatile anesthetics. Also, inhibition of GABA uptake by volatile anesthetics results in higher extracellular GABA concentration, which may lead to prolonged activation of extrasynaptic GABAA receptors. The extrasynaptic GABA-induced receptors may be major site of volatile anesthetic-induced neurotransmission. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
|
45
|
Orser BA. Canadian Anesthesiologists' Society 2011 Royal College lecture: anesthesiology: a profession at a crossroads. Can J Anaesth 2012; 59:882-8. [PMID: 22865204 DOI: 10.1007/s12630-012-9749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022] Open
Affiliation(s)
- Beverley A Orser
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
46
|
Shu HJ, Bracamontes J, Taylor A, Wu K, Eaton MM, Akk G, Manion B, Evers AS, Krishnan K, Covey DF, Zorumski CF, Steinbach JH, Mennerick S. Characteristics of concatemeric GABA(A) receptors containing α4/δ subunits expressed in Xenopus oocytes. Br J Pharmacol 2012; 165:2228-43. [PMID: 21950777 DOI: 10.1111/j.1476-5381.2011.01690.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE GABA(A) receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABA(A) receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 -α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn(2+) . We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Karim N, Curmi J, Gavande N, Johnston GA, Hanrahan JR, Tierney ML, Chebib M. 2'-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA(A) receptors. Br J Pharmacol 2012; 165:880-96. [PMID: 21797842 DOI: 10.1111/j.1476-5381.2011.01604.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Flavonoids are known to have anxiolytic and sedative effects mediated via actions on ionotropic GABA receptors. We sought to investigate this further. EXPERIMENTAL APPROACH We evaluated the effects of 2'-methoxy-6-methylflavone (2'MeO6MF) on native GABA(A) receptors in new-born rat hippocampal neurons and determined specificity from 18 human recombinant GABA(A) receptor subtypes expressed in Xenopus oocytes. We used ligand binding, two-electrode voltage clamp and patch clamp studies together with behavioural studies. KEY RESULTS 2'MeO6MF potentiated GABA at α2β1γ2L and all α1-containing GABA(A) receptor subtypes. At α2β2/3γ2L GABA(A) receptors, however, 2'MeO6MF directly activated the receptors without potentiating GABA. This activation was attenuated by bicuculline and gabazine but not flumazenil indicating a novel site. Mutation studies showed position 265 in the β1/2 subunit was key to whether 2'MeO6MF was an activator or a potentiator. In hippocampal neurons, 2'MeO6MF directly activated single-channel currents that showed the hallmarks of GABA(A) Cl(-) currents. In the continued presence of 2'MeO6MF the single-channel conductance increased and these high conductance channels were disrupted by the γ2(381-403) MA peptide, indicating that such currents are mediated by α2/γ2-containing GABA(A) receptors. In mice, 2'MeO6MF (1-100 mg·kg(-1) ; i.p.) displayed anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark tests. 2'MeO6MF induced sedative effects at higher doses in the holeboard, actimeter and barbiturate-induced sleep time tests. No myorelaxant effects were observed in the horizontal wire test. CONCLUSIONS AND IMPLICATIONS 2'MeO6MF will serve as a tool to study the complex nature of the activation and modulation of GABA(A) receptor subtypes.
Collapse
Affiliation(s)
- Nasiara Karim
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Isoflurane enhances both fast and slow synaptic inhibition in the hippocampus at amnestic concentrations. Anesthesiology 2012; 116:816-23. [PMID: 22343472 DOI: 10.1097/aln.0b013e31824be0e3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inhibition mediated by γ-aminobutyric acid type A (GABA A) receptors has long been considered an important target for a variety of general anesthetics. In the hippocampus, two types of phasic GABA A receptor-mediated inhibition coexist: GABA A,fast, which is expressed primarily at peri-somatic sites, and GABAA,slow, which is expressed primarily in the dendrites. Their spatial segregation suggests distinct functions: GABA A,slow may control plasticity of dendritic synapses, whereas GABA A,fast controls action potential initiation at the soma. We examined modulation of GABA A,fast and GABA A,slow inhibition by isoflurane at amnesic concentrations, and compared it with modulation by behaviorally equivalent doses of the GABA A receptor-selective drug etomidate. METHODS Whole cell recordings were obtained from pyramidal cells in organotypic hippocampal cultures prepared from C57BL/6 × 129/SvJ F1 hybrid mice. GABA A receptor-mediated currents were isolated using glutamate receptor antagonists. GABAA,slow currents were evoked by electrical stimulation in the stratum lacunosum-moleculare. Miniature GABA A,fast currents were recorded in the presence of tetrodotoxin. RESULTS 100 μM isoflurane (approximately EC50,amnesia) slowed fast- and slow-inhibitory postsynaptic current decay by approximately 25%. Higher concentrations, up to 400 μM, produced proportionally greater effects without altering current amplitudes. The effects on GABA A,slow were approximately one-half those produced by equi-amnesic concentrations of etomidate. CONCLUSIONS Isoflurane enhances both types of phasic GABA A receptor-mediated inhibition to similar degrees at amnesic concentrations. This pattern differs from etomidate, which at low concentrations selectively enhances slow inhibition. These effects of isoflurane are sufficiently large that they may contribute substantially to its suppression of hippocampal learning and memory.
Collapse
|
49
|
Anzini M, Valenti S, Braile C, Cappelli A, Vomero S, Alcaro S, Ortuso F, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Daniele S, Martini C, Ghelardini C, Di Cesare Mannelli L, Giorgi G, Mascia MP, Biggio G. New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds. J Med Chem 2011; 54:5694-711. [PMID: 21751815 DOI: 10.1021/jm2001597] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds were synthesized as central benzodiazepine receptor (CBR) ligands. Most of the compounds showed high affinity for bovine and human CBR, their K(i) values spanning from the low nanomolar to the submicromolar range. In particular, imidazoester 5f was able to promote a massive flow of (36)Cl(-) in rat cerebrocortical synaptoneurosomes overlapping its efficacy profile with that of a typical full agonist. Compound 5f was then examined in mice for its pharmacological effects where it proved to be a safe anxiolytic agent devoid of the unpleasant myorelaxant and amnesic effects of the classical 1,4-benzodiazepines. Moreover, the selectivity of some selected compounds has been assessed in recombinant α(1)β(2)γ(2)L, α(2)β(1)γ(2)L, and α(5)β(2)γ(2)L human GABA(A) receptors. Finally, some compounds were submitted to molecular docking calculations along with molecular dynamics simulations in the Cromer's GABA(A) homology model.
Collapse
Affiliation(s)
- Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Takamatsu I, Sekiguchi M, Yonamine R, Wada K, Kazama T. The effect of a new water-soluble sedative-hypnotic drug, JM-1232(-), on long-term potentiation in the CA1 region of the mouse hippocampus. Anesth Analg 2011; 113:1043-9. [PMID: 21788318 DOI: 10.1213/ane.0b013e3182291782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND JM-1232(-) {(-)-3-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-2-phenyl-3,5,6,7-tetrahydrocyclopenta[f]isoindol-1(2H)-one} is a new water-soluble sedative-hypnotic drug with affinity for the benzodiazepine binding site on γ-aminobutyric acid A receptors. The effects of JM-1232(-) on synaptic transmission in the brain are not known. In the present study, we investigated the effects of JM-1232(-) on synaptic transmission, synaptic plasticity (i.e., long-term potentiation [LTP] and paired-pulse facilitation), and excitatory/inhibitory postsynaptic currents (EPSCs/IPSCs) of pyramidal neurons in the CA1 region of mouse hippocampal slices. METHODS We recorded Schaffer collateral-evoked field excitatory postsynaptic potentials and EPSCs and IPSCs of pyramidal neurons using whole-cell patch-clamp techniques in the CA1 region of mouse hippocampal slices. RESULTS JM-1232(-) had no significant effect on the field excitatory postsynaptic potentials. Application of JM-1232(-) for 20 minutes before theta-burst stimulation dose dependently impaired LTP. JM-1232(-) impaired paired-pulse facilitation. The benzodiazepine antagonist flumazenil abolished the inhibitory effect of JM-1232(-) on LTP and paired-pulse facilitation. JM-1232(-) had no effect on Schaffer collateral stimulation-evoked EPSCs, whereas it potentiated the amplitude and prolonged the decay of evoked IPSCs in CA1 pyramidal neurons. Flumazenil blocked the effect of JM-1232(-) on the amplitude and decay of evoked IPSCs. JM-1232(-) suppressed the action potential discharge in the CA1 pyramidal neurons during theta-burst stimulation, which was reversed by flumazenil. CONCLUSION JM-1232(-) enhances synaptic inhibition and impairs LTP and paired-pulse facilitation in area CA1 of the mouse hippocampus. These effects were mediated by benzodiazepine binding sites on γ-aminobutyric acid A receptors.
Collapse
Affiliation(s)
- Isao Takamatsu
- Department of Anesthesiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | |
Collapse
|