1
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
2
|
Bridi MCD, Hong S, Severin D, Moreno C, Contreras A, Kirkwood A. Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity. J Neurosci 2024; 44:e0021232024. [PMID: 39117456 PMCID: PMC11376332 DOI: 10.1523/jneurosci.0021-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Monocular deprivation (MD) causes an initial decrease in synaptic responses to the deprived eye in juvenile mouse primary visual cortex (V1) through Hebbian long-term depression (LTD). This is followed by a homeostatic increase, which has been attributed either to synaptic scaling or to a slide threshold for Hebbian long-term potentiation (LTP) rather than scaling. We therefore asked in mice of all sexes whether the homeostatic increase during MD requires GluN2B-containing NMDA receptor activity, which is required to slide the plasticity threshold but not for synaptic scaling. Selective GluN2B blockade from 2-6 d after monocular lid suture prevented the homeostatic increase in miniature excitatory postsynaptic current (mEPSC) amplitude in monocular V1 of acute slices and prevented the increase in visually evoked responses in binocular V1 in vivo. The decrease in mEPSC amplitude and visually evoked responses during the first 2 d of MD also required GluN2B activity. Together, these results support the idea that GluN2B-containing NMDA receptors first play a role in LTD immediately following eye closure and then promote homeostasis during prolonged MD by sliding the plasticity threshold in favor of LTP.
Collapse
Affiliation(s)
- Michelle C D Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Su Hong
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Altagracia Contreras
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Alfredo Kirkwood
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
3
|
Zhang H, Zhang Y, Xu K, Wang L, Zhou X, Yang M, Xie J, Li H. Inhibition of FLT1 Attenuates Neurodevelopmental Abnormalities and Cognitive Impairment in Offspring Caused by Maternal Prenatal Stress. Appl Biochem Biotechnol 2024; 196:4900-4913. [PMID: 37979086 DOI: 10.1007/s12010-023-04774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Fms-like tyrosine kinase 1 (FLT1) has been shown to regulate processes such as angiogenesis, neurogenesis, and cognitive impairment. However, the role of FLT1 in prenatal stress (PS) is unclear. The purpose of this study was to investigate the role of FLT1 in PS mothers and their offspring. Wire mesh restrainers were used to construct PS rat model. The levels of FLT1, IL-1β, IL-6, and ROS in clinical samples and rat samples were detected by qRT-PCR, ELisa kit, and DCFH-DA fluorescence kit. Morris water maze assay and forced swimming assay were used to test the cognitive function of offspring young rats. The apoptosis level of hippocampal neurons and the expression of NMDARs were detected by MTT assay, TUNEL assay, and Western blot. The results showed that FLT1 was upregulated in PS mothers and positively correlated with PS degree. The level of FLT1 was elevated in PS model rats. Knockdown of FLT1 reduced maternal ROS and MDA levels and increased SOD levels in PS rats. Knockdown of FLT1 also reduced the secretion of IL-1β, IL-6, and cortisol in PS rats. Inhibition of FTL1 alleviated cognitive impairment in PS offspring pups. Inhibition of FTL1 reduced hippocampal neuronal apoptosis and increased the expression of NMDARs in PS progeny. In conclusions, we demonstrated that knockdown of FLT1 inhibits maternal oxidative stress, inflammation, and cortisol secretion in PS rats. In addition, knockdown of FLT1 also alleviated cognitive dysfunction and neurodevelopmental abnormalities in PS offspring pups.
Collapse
Affiliation(s)
- Huifang Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Yudan Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Kaixuan Xu
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lawen Wang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xin Zhou
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Mingge Yang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jiangli Xie
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Hui Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Division of Neonatology, NO.277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
- Division of Neonatology, The Affiliated Children Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China.
| |
Collapse
|
4
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
5
|
Demaestri C, Pisciotta M, Altunkeser N, Berry G, Hyland H, Breton J, Darling A, Williams B, Bath KG. Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice. Nat Commun 2024; 15:5522. [PMID: 38951506 PMCID: PMC11217353 DOI: 10.1038/s41467-024-49828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance. Further, chemogenic inhibition of CeAL CRF+ neurons selectively diminishes startle and produces a long-lasting suppression of threat reactivity. These findings identify a mechanism for sex-differences in susceptibility for anxiety following ELA and have broad implications for understanding the neural circuitry that encodes and gates the behavioral expression of fear.
Collapse
Affiliation(s)
- Camila Demaestri
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, USA
| | - Margaux Pisciotta
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Naira Altunkeser
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Georgia Berry
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Hyland
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Jocelyn Breton
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Darling
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Brenna Williams
- Doctoral Program in Cellular and Molecular Physiology & Biophysics, Columbia University, New York, NY, USA
| | - Kevin G Bath
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Koster KP, Flores-Barrera E, Artur de la Villarmois E, Caballero A, Tseng KY, Yoshii A. Loss of Depalmitoylation Disrupts Homeostatic Plasticity of AMPARs in a Mouse Model of Infantile Neuronal Ceroid Lipofuscinosis. J Neurosci 2023; 43:8317-8335. [PMID: 37884348 PMCID: PMC10711723 DOI: 10.1523/jneurosci.1113-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | - Adriana Caballero
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois 60612
- Department of Neurology, University of Illinois at Chicago, Chicago, Illinois 60612
| |
Collapse
|
8
|
Vazquez-Juarez E, Srivastava I, Lindskog M. The effect of ketamine on synaptic mistuning induced by impaired glutamate reuptake. Neuropsychopharmacology 2023; 48:1859-1868. [PMID: 37301901 PMCID: PMC10584870 DOI: 10.1038/s41386-023-01617-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Mistuning of synaptic transmission has been proposed to underlie many psychiatric disorders, with decreased reuptake of the excitatory neurotransmitter glutamate as one contributing factor. Synaptic tuning occurs through several diverging and converging forms of plasticity. By recording evoked field postsynaptic potentials in the CA1 area in hippocampal slices, we found that inhibiting glutamate transporters using DL-TBOA causes retuning of synaptic transmission, resulting in a new steady state with reduced synaptic strength and a lower threshold for inducing long-term synaptic potentiation (LTP). Moreover, a similar reduced threshold for LTP was observed in a rat model of depression with decreased levels of glutamate transporters. Most importantly, we found that the antidepressant ketamine counteracts the effects of increased glutamate on the various steps involved in synaptic retuning. We, therefore, propose that ketamine's mechanism of action as an antidepressant is to restore adequate synaptic tuning.
Collapse
Affiliation(s)
- Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
9
|
Lee HK. Metaplasticity framework for cross-modal synaptic plasticity in adults. Front Synaptic Neurosci 2023; 14:1087042. [PMID: 36685084 PMCID: PMC9853192 DOI: 10.3389/fnsyn.2022.1087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sensory loss leads to widespread adaptation of neural circuits to mediate cross-modal plasticity, which allows the organism to better utilize the remaining senses to guide behavior. While cross-modal interactions are often thought to engage multisensory areas, cross-modal plasticity is often prominently observed at the level of the primary sensory cortices. One dramatic example is from functional imaging studies in humans where cross-modal recruitment of the deprived primary sensory cortex has been observed during the processing of the spared senses. In addition, loss of a sensory modality can lead to enhancement and refinement of the spared senses, some of which have been attributed to compensatory plasticity of the spared sensory cortices. Cross-modal plasticity is not restricted to early sensory loss but is also observed in adults, which suggests that it engages or enables plasticity mechanisms available in the adult cortical circuit. Because adult cross-modal plasticity is observed without gross anatomical connectivity changes, it is thought to occur mainly through functional plasticity of pre-existing circuits. The underlying cellular and molecular mechanisms involve activity-dependent homeostatic and Hebbian mechanisms. A particularly attractive mechanism is the sliding threshold metaplasticity model because it innately allows neurons to dynamically optimize their feature selectivity. In this mini review, I will summarize the cellular and molecular mechanisms that mediate cross-modal plasticity in the adult primary sensory cortices and evaluate the metaplasticity model as an effective framework to understand the underlying mechanisms.
Collapse
|
10
|
Pandey A, Hardingham N, Fox K. Differentiation of Hebbian and homeostatic plasticity mechanisms within layer 5 visual cortex neurons. Cell Rep 2022; 39:110892. [PMID: 35649371 PMCID: PMC9637998 DOI: 10.1016/j.celrep.2022.110892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Cortical layer 5 contains two major types of projection neuron known as IB (intrinsic bursting) cells that project sub-cortically and RS (regular spiking) cells that project between cortical areas. This study describes the plasticity properties of RS and IB cells in the mouse visual cortex during the critical period for ocular dominance plasticity. We find that RS neurons exhibit synaptic depression in response to both dark exposure (DE) and monocular deprivation (MD), and their homeostatic recovery from depression is dependent on TNF-α. In contrast, IB cells demonstrate opposite responses to DE and MD, potentiating to DE and depressing to MD. IB cells' potentiation depends on CaMKII-autophosphorylation and not TNF-α. IB cells show mature synaptic properties at the start of the critical period while RS cells mature during the critical period. Together with observations in somatosensory cortex, these results suggest that differences in RS and IB plasticity mechanisms are a general cortical property.
Collapse
Affiliation(s)
- Anurag Pandey
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK
| | - Neil Hardingham
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
11
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
12
|
Widmer FC, O'Toole SM, Keller GB. NMDA receptors in visual cortex are necessary for normal visuomotor integration and skill learning. eLife 2022; 11:71476. [PMID: 35170429 PMCID: PMC8901170 DOI: 10.7554/elife.71476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
The experience of coupling between motor output and visual feedback is necessary for the development of visuomotor skills and shapes visuomotor integration in visual cortex. Whether these experience-dependent changes of responses in V1 depend on modifications of the local circuit or are the consequence of circuit changes outside of V1 remains unclear. Here, we probed the role of N-methyl-d-aspartate (NMDA) receptor-dependent signaling, which is known to be involved in neuronal plasticity, in mouse primary visual cortex (V1) during visuomotor development. We used a local knockout of NMDA receptors and a photoactivatable inhibition of CaMKII in V1 during the first visual experience to probe for changes in neuronal activity in V1 as well as the influence on performance in a visuomotor task. We found that a knockout of NMDA receptors before, but not after, first visuomotor experience reduced responses to unpredictable stimuli, diminished the suppression of predictable feedback in V1, and impaired visuomotor skill learning later in life. Our results demonstrate that NMDA receptor-dependent signaling in V1 is critical during the first visuomotor experience for shaping visuomotor integration and enabling visuomotor skill learning.
Collapse
Affiliation(s)
- Felix C Widmer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sean M O'Toole
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
13
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
14
|
Gao WJ, Yang SS, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Linda A Chamberlin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| |
Collapse
|
15
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
16
|
Chokshi V, Grier BD, Dykman A, Lantz CL, Niebur E, Quinlan EM, Lee HK. Naturalistic Spike Trains Drive State-Dependent Homeostatic Plasticity in Superficial Layers of Visual Cortex. Front Synaptic Neurosci 2021; 13:663282. [PMID: 33935679 PMCID: PMC8081846 DOI: 10.3389/fnsyn.2021.663282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The history of neural activity determines the synaptic plasticity mechanisms employed in the brain. Previous studies report a rapid reduction in the strength of excitatory synapses onto layer 2/3 (L2/3) pyramidal neurons of the primary visual cortex (V1) following two days of dark exposure and subsequent re-exposure to light. The abrupt increase in visually driven activity is predicted to drive homeostatic plasticity, however, the parameters of neural activity that trigger these changes are unknown. To determine this, we first recorded spike trains in vivo from V1 layer 4 (L4) of dark exposed (DE) mice of both sexes that were re-exposed to light through homogeneous or patterned visual stimulation. We found that delivering the spike patterns recorded in vivo to L4 of V1 slices was sufficient to reduce the amplitude of miniature excitatory postsynaptic currents (mEPSCs) of V1 L2/3 neurons in DE mice, but not in slices obtained from normal reared (NR) controls. Unexpectedly, the same stimulation pattern produced an up-regulation of mEPSC amplitudes in V1 L2/3 neurons from mice that received 2 h of light re-exposure (LE). A Poisson spike train exhibiting the same average frequency as the patterns recorded in vivo was equally effective at depressing mEPSC amplitudes in L2/3 neurons in V1 slices prepared from DE mice. Collectively, our results suggest that the history of visual experience modifies the responses of V1 neurons to stimulation and that rapid homeostatic depression of excitatory synapses can be driven by non-patterned input activity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Bryce D. Grier
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Andrew Dykman
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Crystal L. Lantz
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Ernst Niebur
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Quinlan
- Department of Biology, University of Maryland, College Park, MD, United States
- Neuroscience and Cognitive Science Program, Brain and Behavior Institute, University of Maryland, College Park, MD, United States
| | - Hey-Kyoung Lee
- The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
- Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
17
|
Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020; 318:C1264-C1283. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plasticity within the neuronal networks of the brain underlies the ability to learn and retain new information. The initial discovery of synaptic plasticity occurred by measuring synaptic strength in vivo, applying external stimulation and observing an increase in synaptic strength termed long-term potentiation (LTP). Many of the molecular pathways involved in LTP and other forms of synaptic plasticity were subsequently uncovered in vitro. Over the last few decades, technological advances in recording and imaging in live animals have seen many of these molecular mechanisms confirmed in vivo, including structural changes both pre- and postsynaptically, changes in synaptic strength, and changes in neuronal excitability. A well-studied aspect of neuronal plasticity is the capacity of the brain to adapt to its environment, gained by comparing the brains of deprived and experienced animals in vivo, and in direct response to sensory stimuli. Multiple in vivo studies have also strongly linked plastic changes to memory by interfering with the expression of plasticity and by manipulating memory engrams. Plasticity in vivo also occurs in the absence of any form of external stimulation, i.e., during spontaneous network activity occurring with brain development. However, there is still much to learn about how plasticity is induced during natural learning and how this is altered in neurological disorders.
Collapse
Affiliation(s)
- Juliette E Cheyne
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Lee HK, Kirkwood A. Mechanisms of Homeostatic Synaptic Plasticity in vivo. Front Cell Neurosci 2019; 13:520. [PMID: 31849610 PMCID: PMC6901705 DOI: 10.3389/fncel.2019.00520] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced in vitro systems, such as neuronal cultures, to in vivo intact circuitry. While most of the cellular and molecular mechanisms of homeostatic synaptic plasticity have been worked out using reduced preparations, there are unique challenges present in intact circuitry in vivo, which deserve further consideration. For example, in an intact circuit, neurons receive distinct set of inputs across their dendritic tree which carry unique information. Homeostatic synaptic plasticity in vivo needs to operate without compromising processing of these distinct set of inputs to preserve information processing while maintaining network stability. In this mini review, we will summarize unique features of in vivo homeostatic synaptic plasticity, and discuss how sliding threshold and synaptic scaling may act across different activity regimes to provide homeostasis.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
Chokshi V, Gao M, Grier BD, Owens A, Wang H, Worley PF, Lee HK. Input-Specific Metaplasticity in the Visual Cortex Requires Homer1a-Mediated mGluR5 Signaling. Neuron 2019; 104:736-748.e6. [PMID: 31563294 DOI: 10.1016/j.neuron.2019.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
Effective sensory processing depends on sensory experience-dependent metaplasticity, which allows homeostatic maintenance of neural network activity and preserves feature selectivity. Following a strong increase in sensory drive, plasticity mechanisms that decrease the strength of excitatory synapses are preferentially engaged to maintain stability in neural networks. Such adaptation has been demonstrated in various model systems, including mouse primary visual cortex (V1), where excitatory synapses on layer 2/3 (L2/3) neurons undergo rapid reduction in strength when visually deprived mice are reexposed to light. Here, we report that this form of plasticity is specific to intracortical inputs to V1 L2/3 neurons and depends on the activity of NMDA receptors (NMDARs) and group I metabotropic glutamate receptor 5 (mGluR5). Furthermore, we found that expression of the immediate early gene (IEG) Homer1a (H1a) and its subsequent interaction with mGluR5s are necessary for this input-specific metaplasticity.
Collapse
Affiliation(s)
- Varun Chokshi
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ming Gao
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryce D Grier
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Owens
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Wang
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA; Cell Molecular Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|