1
|
Khayat S, Fanaei H, Haji Bagheri KA. Social isolation during pregnancy disrupts maternal behavior and hippocampal neurochemistry in rats: A role for BDNF, corticosterone, and GABAARα1. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2025; 21:100282. [PMID: 39911146 PMCID: PMC11795554 DOI: 10.1016/j.cpnec.2025.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
This study aimed to investigate the effects of social isolation stress during pregnancy on maternal behavior and associated neurochemical changes in the hippocampus of rats. Twenty female Sprague-Dawley rats were randomly assigned to either a group housing (two rats per cage: control group) or a social isolation stress group (one rat per cage: SI group) during pregnancy. At the end of the study, we assessed the levels of BDNF, corticosterone, and GABAARα1 in the hippocampus of the maternal brain, along with evaluating the endurance, integration, and emotional aspects of maternal behavior. Results indicated that social isolation stress significantly decreased maternal endurance, integration, and emotionality (self-calming) of maternal behavior. Concurrently, blood and the hippocampal corticosterone concentration significantly increased, while BDNF concentration significantly decreased in the SI stress group compared to controls. Moreover, GABAARα1 mRNA expression was significantly decreased in the hippocampus of socially isolated rats. These findings demonstrate that social isolation stress during pregnancy profoundly impacts maternal behaviors in rats, including endurance, integration, and self-soothing. The altered concentration of corticosterone and BDNF, and GABAARα1 mRNA expression in the hippocampus of social isolation group suggests disruptions in stress response regulation and synaptic plasticity during pregnancy to form normal maternal behavior.
Collapse
Affiliation(s)
- Samira Khayat
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Midwifery, School of Nursing and Midwifery, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamed Fanaei
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
2
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
3
|
Islas-Preciado D, Estrada-Camarena E, Galea LAM. Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology. Front Neuroendocrinol 2025; 76:101171. [PMID: 39638001 DOI: 10.1016/j.yfrne.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México; Centre for Brain Health, University of British Columbia, Vancouver, Canada; Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México.
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Ciudad de México, México
| | - L A M Galea
- Centre for Brain Health, University of British Columbia, Vancouver, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, ON, Canada.
| |
Collapse
|
4
|
Jin W, Li B, Wang L, Zhu L, Chai S, Hou R. The causal association between gut microbiota and postpartum depression: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1415237. [PMID: 39286351 PMCID: PMC11402819 DOI: 10.3389/fmicb.2024.1415237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background An escalating body of clinical trials and observational studies hints at a plausible link between gut flora and postpartum depression (PPD). The definitive causal dynamics between these two entities remain shrouded in ambiguity. Therefore, in this study, we employed the two-sample Mendelian randomization approach to ascertain the causal link between gut microbiota and PPD. Methods Summary-level GWAS data related to the human gut microbiota were obtained from the international consortium MiBioGen and the Dutch Microbiome Project (species). For PPD, GWAS data were derived from the FinnGen biobank, consisting 57,604 cases and 596,601 controls. The inverse variance weighted method (IVW) as the cornerstone of our analytical approach. Subsequent to this, a comprehensive suite of tests for pleiotropy and heterogeneity were conducted to ensure the reliability and robustness of our findings. Results We identified 12 bacterial taxa associated with the risk of PPD. Veillonellaceae, Ruminococcaceae UCG 011, Bifidobacterium adolescentis, Paraprevotella clara, Clostridium leptum, Eubacterium siraeum, Coprococcus catus exhibited an inversely associated with the risk of PPD. Alphaproteobacteria, Roseburia, FamilyXIIIAD3011group, Alistipes onderdonkii, Bilophila wadsworthia showed a positive correlation with the risk of PPD. Limitations The GWAS data derived from the MiBioGen consortium, DMP, and FinnGen consortium, may introduce selection bias. Moreover, the data primarily originates from European populations, hence extrapolating these results to diverse populations should be approached with caution. The etiological factors behind PPD remain enigmatic, alluding to the existence of potential undisclosed confounders. Conclusion Based on this MR analysis, we found a causal relationship between certain gut microbial communities and PPD. Future clinical studies can further explore the treatment of PPD through the combined use of microorganisms. This not only offers insights into the pathogenesis of PPD but also lays the foundation for utilizing gut microbiota as biotherapeutics in treating neurological disorders.
Collapse
Affiliation(s)
- Wenjun Jin
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Bo Li
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lijun Wang
- Medical Department, Zhengzhou University of Industry Technology, Zhengzhou, Henan, China
| | - Lin Zhu
- Medical Department, Sias University, Zhengzhou, Henan, China
| | - Songhao Chai
- Ultrasound Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Hou
- Medical Department, Sias University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Niepoth N, Merritt JR, Uminski M, Lei E, Esquibies VS, Bando IB, Hernandez K, Gebhardt C, Wacker SA, Lutzu S, Poudel A, Soma KK, Rudolph S, Bendesky A. Evolution of a novel adrenal cell type that promotes parental care. Nature 2024; 629:1082-1090. [PMID: 38750354 PMCID: PMC11329292 DOI: 10.1038/s41586-024-07423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.
Collapse
Affiliation(s)
- Natalie Niepoth
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Jennifer R Merritt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Michelle Uminski
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Emily Lei
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Victoria S Esquibies
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Ina B Bando
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kimberly Hernandez
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Christoph Gebhardt
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Sarah A Wacker
- Department of Chemistry and Biochemistry, Manhattan College, New York, NY, USA
| | - Stefano Lutzu
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Asmita Poudel
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Rudolph
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Feng YF, Zhou YY, Duan KM. The Role of Extrasynaptic GABA Receptors in Postpartum Depression. Mol Neurobiol 2024; 61:385-396. [PMID: 37612480 DOI: 10.1007/s12035-023-03574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Postpartum depression is a serious disease with a high incidence and severe impact on pregnant women and infants, but its mechanism remains unclear. Recent studies have shown that GABA receptors, especially extrasynaptic receptors, are closely associated with postpartum depression. There are many different structures of GABA receptors, so different types of receptors have different functions, even though they transmit information primarily through GABA. In this review, we focus on the function of GABA receptors, especially extrasynaptic GABA receptors, and their association with postpartum depression. We have shown that the extrasynaptic GABA receptor has a significant impact on the activity and function of neurons through tonic inhibition. The extrasynaptic receptor and its ligands undergo drastic changes during pregnancy and childbirth. Abnormal changes or the body's inability to adjust and recover may be an important cause of postpartum depression. Finally, by reviewing the mechanisms of several novel antidepressants, we suggest that extrasynaptic receptors may be potential targets for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Yun Fei Feng
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yin Yong Zhou
- Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Ming Duan
- Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
7
|
Modzelewski S, Oracz A, Iłendo K, Sokół A, Waszkiewicz N. Biomarkers of Postpartum Depression: A Narrative Review. J Clin Med 2023; 12:6519. [PMID: 37892657 PMCID: PMC10607683 DOI: 10.3390/jcm12206519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Postpartum depression (PPD) is a disorder that impairs the formation of the relationship between mother and child, and reduces the quality of life for affected women to a functionally significant degree. Studying markers associated with PPD can help in early detection, prevention, or monitoring treatment. The purpose of this paper is to review biomarkers linked to PPD and to present selected theories on the pathogenesis of the disease based on data from biomarker studies. The complex etiology of the disorder reduces the specificity and sensitivity of markers, but they remain a valuable source of information to help clinicians. The biggest challenge of the future will be to translate high-tech methods for detecting markers associated with postpartum depression into more readily available and less costly ones. Population-based studies are needed to test the utility of potential PPD markers.
Collapse
|
8
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
9
|
Rudzinskas SA, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Divergent Transcriptomic Effects of Allopregnanolone in Postpartum Depression. Genes (Basel) 2023; 14:1234. [PMID: 37372414 PMCID: PMC10298697 DOI: 10.3390/genes14061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Brexanolone, a formulation of the neurosteroid allopregnanolone (ALLO), is approved for treating postpartum depression (PPD) and is being investigated for therapeutic efficacy across numerous neuropsychiatric disorders. Given ALLO's beneficial effects on mood in women with PPD compared to healthy control women, we sought to characterize and compare the cellular response to ALLO in women with (n = 9) or without (n = 10, i.e., Controls) past PPD, utilizing our previously established patient-derived lymphoblastoid cell lines (LCLs). To mimic in vivo PPD ALLO-treatment, LCLs were exposed to ALLO or DMSO vehicle for 60 h and RNA-sequenced to detect differentially expressed genes (DEGs, pnominal < 0.05). Between ALLO-treated Control and PPD LCLs, 269 DEGs were identified, including Glutamate Decarboxylase 1 (GAD1), which was decreased 2-fold in PPD. Network analysis of PPD:ALLO DEGs revealed enriched terms related to synaptic activity and cholesterol biosynthesis. Within-diagnosis analyses (i.e., DMSO vs. ALLO) detected 265 ALLO-induced DEGs in Control LCLs compared to only 98 within PPD LCLs, with just 11 DEGs overlapping. Likewise, the gene ontologies underlying ALLO-induced DEGs in PPD and Control LCLs were divergent. These data suggest that ALLO may activate unique and opposing molecular pathways in women with PPD, which may be tied to its antidepressant mechanism.
Collapse
Affiliation(s)
- Sarah A. Rudzinskas
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | - Maria A. Mazzu
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | | | | | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| |
Collapse
|
10
|
Canjels LPW, Ghossein-Doha C, Alers RJ, Rutten S, van den Kerkhof M, Schiffer VMMM, Mulder E, Gerretsen SC, Aldenkamp AP, Hurks PPM, van de Ven V, Spaanderman MEA, Jansen JFA, Backes WH. Functional connectivity of limbic system and prefrontal cortex years after pre-eclampsia: 7-Tesla functional magnetic resonance imaging study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:532-540. [PMID: 35502135 DOI: 10.1002/uog.24928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Pre-eclampsia is a vascular complication of pregnancy, associated with a long-term risk of cerebrovascular and mental disorders. We explored whether formerly pre-eclamptic women exhibit differences in functional brain organization, especially in regions that may explain the commonly reported emotional symptoms and cognitive complaints even years after the pregnancy. METHODS Formerly pre-eclamptic women and control women with a history of normotensive pregnancy underwent structural and functional 7-Tesla magnetic resonance imaging scans. Using graph theoretical analysis, the efficiency and clustering coefficient of the functional brain network were investigated. The study included local analysis focusing on particular brain structures, such as the limbic system and the prefrontal cortex, and global analysis of the whole cerebrum. Univariable and multivariable linear regression was used to investigate the relationship between brain network-related graph measures and the group (formerly pre-eclamptic or control). RESULTS A total of 17 control parous women and 55 women with a history of pre-eclampsia were recruited. The time intervals between the index pregnancy and recruitment were 8.0 and 5.6 years for the two groups, respectively. Compared with control women, formerly pre-eclamptic women had higher local efficiency in the prefrontal cortex (P = 0.048) and anterior cingulate cortex (P = 0.03) but lower local efficiency and local clustering coefficient in the amygdala (P = 0.004 and P = 0.02, respectively) and parahippocampal cortex (P = 0.007 and P = 0.008, respectively). No differences were found in the global functional brain organization. CONCLUSIONS Compared to controls with a history of normotensive pregnancy, formerly pre-eclamptic women displayed a different local functional brain organization. These differences in functional connectivity, especially in the limbic regions and the prefrontal cortex, are in line with the psychological and cognitive complaints reported commonly by women with a history of pre-eclampsia. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L P W Canjels
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- MHeNs, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - R J Alers
- GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Gynaecology and Obstetrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S Rutten
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Scannexus Ultra-High Field MRI Center, Maastricht, The Netherlands
| | - M van den Kerkhof
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- MHeNs, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - V M M M Schiffer
- GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Gynaecology and Obstetrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E Mulder
- GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Gynaecology and Obstetrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S C Gerretsen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A P Aldenkamp
- MHeNs, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht UMC+, Heeze and Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P P M Hurks
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - V van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - M E A Spaanderman
- GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Gynaecology and Obstetrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- MHeNs, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- MHeNs, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
The Genomic Architecture of Pregnancy-Associated Plasticity in the Maternal Mouse Hippocampus. eNeuro 2022; 9:ENEURO.0117-22.2022. [PMID: 36239981 PMCID: PMC9522463 DOI: 10.1523/eneuro.0117-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is associated with extraordinary plasticity in the maternal brain. Studies in humans and other mammals suggest extensive structural and functional remodeling of the female brain during and after pregnancy. However, we understand remarkably little about the molecular underpinnings of this natural phenomenon. To gain insight into pregnancy-associated hippocampal plasticity, we performed single nucleus RNA sequencing (snRNA-seq) and snATAC-seq from the mouse hippocampus before, during, and after pregnancy. We identified cell type-specific transcriptional and epigenetic signatures associated with pregnancy and postpartum adaptation. In addition, we analyzed receptor-ligand interactions and transcription factor (TF) motifs that inform hippocampal cell type identity and provide evidence of pregnancy-associated adaption. In total, these data provide a unique resource of coupled transcriptional and epigenetic data across a dynamic time period in the mouse hippocampus and suggest opportunities for functional interrogation of hormone-mediated plasticity.
Collapse
|
12
|
Marciniak E, Młotkowska P, Roszkowicz-Ostrowska K, Ciska E, Misztal T. Involvement of neurosteroids in the control of prolactin secretion in sheep under basal, stressful and pregnancy conditions. Theriogenology 2022; 190:73-80. [DOI: 10.1016/j.theriogenology.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
|
13
|
Sun Y, Peng Z, Wei X, Zhang N, Huang CS, Wallner M, Mody I, Houser CR. Virally-induced expression of GABAA receptor δ subunits following their pathological loss reveals their role in regulating GABAA receptor assembly. Prog Neurobiol 2022; 218:102337. [PMID: 35934131 PMCID: PMC10091858 DOI: 10.1016/j.pneurobio.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Decreased expression of the δ subunit of the GABAA receptor (GABAAR) has been found in the dentate gyrus in several animal models of epilepsy and other disorders with increased excitability and is associated with altered modulation of tonic inhibition in dentate granule cells (GCs). In contrast, other GABAAR subunits, including α4 and γ2 subunits, are increased, but the relationship between these changes is unclear. The goals of this study were to determine if viral transfection of δ subunits in dentate GCs could increase δ subunit expression, alter expression of potentially-related GABAAR subunits, and restore more normal network excitability in the dentate gyrus in a mouse model of epilepsy. Pilocarpine-induced seizures were elicited in DOCK10-Cre mice that express Cre selectively in dentate GCs, and two weeks later the mice were injected unilaterally with a Cre-dependent δ-GABAAR viral vector. At 4-6 weeks following transfection, δ subunit immunolabeling was substantially increased in dentate GCs on the transfected side compared to the nontransfected side. Importantly, α4 and γ2 subunit labeling was downregulated on the transfected side. Electrophysiological studies revealed enhanced tonic inhibition, decreased network excitability, and increased neurosteroid sensitivity in slices from the δ subunit-transfected side compared to those from the nontransfected side of the same pilocarpine-treated animal, consistent with the formation of δ subunit-containing GABAARs. No differences were observed between sides of eYFP-transfected animals. These findings are consistent with the idea that altering expression of key subunits, such as the δ subunit, regulates GABAAR subunit assemblies, resulting in substantial effects on network excitability.
Collapse
|
14
|
Pan HQ, Liu XX, He Y, Zhou J, Liao CZ, You WJ, Jiang SY, Qin X, Chen WB, Fei EK, Zhang WH, Pan BX. Prefrontal GABA A(δ)R Promotes Fear Extinction through Enabling the Plastic Regulation of Neuronal Intrinsic Excitability. J Neurosci 2022; 42:5755-5770. [PMID: 35705488 PMCID: PMC9302468 DOI: 10.1523/jneurosci.0689-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
Extinguishing the previously acquired fear is critical for the adaptation of an organism to the ever-changing environment, a process requiring the engagement of GABAA receptors (GABAARs). GABAARs consist of tens of structurally, pharmacologically, and functionally heterogeneous subtypes. However, the specific roles of these subtypes in fear extinction remain largely unexplored. Here, we observed that in the medial prefrontal cortex (mPFC), a core region for mood regulation, the extrasynaptically situated, δ-subunit-containing GABAARs [GABAA(δ)Rs], had a permissive role in tuning fear extinction in male mice, an effect sharply contrasting to the established but suppressive role by the whole GABAAR family. First, the fear extinction in individual mice was positively correlated with the level of GABAA(δ)R expression and function in their mPFC. Second, knockdown of GABAA(δ)R in mPFC, specifically in its infralimbic (IL) subregion, sufficed to impair the fear extinction in mice. Third, GABAA(δ)R-deficient mice also showed fear extinction deficits, and re-expressing GABAA(δ)Rs in the IL of these mice rescued the impaired extinction. Further mechanistic studies demonstrated that the permissive effect of GABAA(δ)R was associated with its role in enabling the extinction-evoked plastic regulation of neuronal excitability in IL projection neurons. By contrast, GABAA(δ)R had little influence on the extinction-evoked plasticity of glutamatergic transmission in these cells. Altogether, our findings revealed an unconventional and permissive role of extrasynaptic GABAA receptors in fear extinction through a route relying on nonsynaptic plasticity.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) is one of the kernel brain regions engaged in fear extinction. Previous studies have repetitively shown that the GABAA receptor (GABAAR) family in this region act to suppress fear extinction. However, the roles of specific GABAAR subtypes in mPFC are largely unknown. We observed that the GABAAR-containing δ-subunit [GABAA(δ)R], a subtype of GABAARs exclusively situated in the extrasynaptic membrane and mediating the tonic neuronal inhibition, works oppositely to the whole GABAAR family and promotes (but does not suppress) fear extinction. More interestingly, in striking contrast to the synaptic GABAARs that suppress fear extinction by breaking the extinction-evoked plasticity of glutamatergic transmission, the GABAA(δ)R promotes fear extinction through enabling the plastic regulation of neuronal excitability in the infralimbic subregion of mPFC. Our findings thus reveal an unconventional role of GABAA(δ)R in promoting fear extinction through a route relying on nonsynaptic plasticity.
Collapse
Affiliation(s)
- Han-Qing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Neurology Department, The Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Ye He
- Center for Medical Experiments, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jin Zhou
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Cai-Zhi Liao
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wen-Jie You
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Si-Ying Jiang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xia Qin
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
- Jiangsu Provincial Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, People's Republic of China
| | - Wen-Bing Chen
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Er-Kang Fei
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, People's Republic of China
- Department of Biological Science, School of Life Sciences, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
15
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
16
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
17
|
Ragan CM, Ahmed EI, Vitale EM, Linning-Duffy K, Miller-Smith SM, Maguire J, Lonstein JS. Postpartum State, but Not Maternal Caregiving or Level of Anxiety, Increases Medial Prefrontal Cortex GAD65 and vGAT in Female Rats. Front Glob Womens Health 2022; 2:746518. [PMID: 35211693 PMCID: PMC8861351 DOI: 10.3389/fgwh.2021.746518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upregulation of the inhibitory neurotransmitter, GABA, is involved in many of the behavioral differences between postpartum and nulliparous female rodents. This is evidenced by studies showing that pharmacological blockade of GABAergic activity impairs maternal caregiving and postpartum affective behaviors. However, the influence of motherhood on the capacity for GABA synthesis or release in the medial prefrontal cortex (mPFC; brain region involved in many social and affective behaviors) is not well-understood. Western blotting was used to compare postpartum and nulliparous rats in protein levels of the 65-kD isoform of glutamic acid decarboxylase (GAD65; synthesizes most GABA released from terminals) and vesicular GABA transporter (vGAT; accumulates GABA into synaptic vesicles for release) in the mPFC. We found that postpartum mothers had higher GAD65 and vGAT compared to virgins, but such differences were not found between maternally sensitized and non-sensitized virgins, indicating that reproduction rather than just the display of maternal caregiving is required. To test whether GAD65 and vGAT levels in the mPFC were more specifically related to anxiety-related behavior within postpartum mothers, we selected 8 low-anxiety and 8 high-anxiety dams based on their time spent in the open arms of an elevated plus maze on postpartum day 7. There were no significant differences between the anxiety groups in either GAD65 or vGAT levels. These data further indicate that frontal cortical GABA is affected by female reproduction and more likely contributes to differences in the display of socioemotional behaviors across, but not within, female reproductive state.
Collapse
Affiliation(s)
- Christina M. Ragan
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- School of Biology and Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eman I. Ahmed
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Erika M. Vitale
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
| | | | - Stephanie M. Miller-Smith
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joseph S. Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Joseph S. Lonstein
| |
Collapse
|
18
|
Pawluski JL, Hoekzema E, Leuner B, Lonstein JS. Less can be more: Fine tuning the maternal brain. Neurosci Biobehav Rev 2022; 133:104475. [PMID: 34864004 PMCID: PMC8807930 DOI: 10.1016/j.neubiorev.2021.11.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
PAWLUSKI, J.L., Hoekzema, E., Leuner, B., and Lonstein, J.S. Less can be more: Fine tuning the maternal brain. NEUROSCI BIOBEHAV REV (129) XXX-XXX, 2022. Plasticity in the female brain across the lifespan has recently become a growing field of scientific inquiry. This has led to the understanding that the transition to motherhood is marked by some of the most significant changes in brain plasticity in the adult female brain. Perhaps unexpectedly, plasticity occurring in the maternal brain often involves a decrease in brain volume, neurogenesis and glial cell density that presumably optimizes caregiving and other postpartum behaviors. This review summarizes what we know of the 'fine-tuning' of the female brain that accompanies motherhood and highlights the implications of these changes for maternal neurobehavioral health. The first part of the review summarizes structural and functional brain changes in humans during pregnancy and postpartum period with the remainder of the review focusing on neural and glial plasticity during the peripartum period in animal models. The aim of this review is to provide a clear understanding of when 'less is more' in maternal brain plasticity and where future research can focus to improve our understanding of the unique brain plasticity occurring during matrescence.
Collapse
Affiliation(s)
- Jodi L. Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.,Corresponding author: Jodi L. Pawluski, University of Rennes 1, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| | - Elseline Hoekzema
- Brain and Development Laboratory, Leiden Institute for Brain and Cognition (LIBC), Leiden University, Leiden, The Netherlands.,Hoekzema Lab, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology & Department of Neuroscience Columbus, OH, USA
| | - Joseph S. Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Local administration of bicuculline into the ventrolateral and medial preoptic nuclei modifies sleep and maternal behavior in lactating rats. Physiol Behav 2021; 238:113491. [PMID: 34090866 DOI: 10.1016/j.physbeh.2021.113491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022]
Abstract
The preoptic area (POA) is a brain structure classically involved in a wide variety of animal behavior including sleep and maternal care. In the current study, we evaluate the specific effect of disinhibition of two specific regions of the POA, the medial POA nucleus (mPOA) and the ventrolateral POA area (VLPO) on sleep and maternal behavior in lactating rats. For this purpose, mother rats on postpartum day 1 (PPD1) were implanted for polysomnographic recordings and with bilateral cannulae either in the mPOA or in the VLPO. The rats were tested for sleep and maternal behavior on PPD4-8 after the infusion of the GABA-A antagonist, bicuculline (0, 10 or 30 ng/0.2 µl/side). Infusion of bicuculline into the mPOA augmented retrieving and nest building behaviors and reduced both nursing and milk ejections but had almost no effect on sleep. When bicuculine was microinjected into the VLPO, the rats significantly increase the number of retrievings and mouthings and reduced the nursing time without changes in milk ejections, which was associated with an increase in wakefulness and a reduction in light sleep. Our results show that disinhibition of the mPOA, a key area in the control of maternal behavior, increased active maternal behaviors and reduced nursing without affecting wakefulness or sleep time. In contrast, the enhancement of some active maternal behaviors when the drug was infused into the VLPO, a sleep-promoting area, with a concomitant increase in wakefulness suggests that mother rats devote this additional waking time in the active maternal care of the pups. We hypothesize that maternal behavior changes after bicuculine microinjection into the VLPO are caused by a reduction in the sleep drive, rather than a direct effect on maternal behavior.
Collapse
|
20
|
Physiology of the cerebrovascular adaptation to pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2021. [PMID: 32736760 DOI: 10.1016/b978-0-444-64239-4.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The adaptation of the cerebral circulation to pregnancy is unique compared with other organs and circulatory systems, because the brain requires relatively constant blood flow and water and solute composition to maintain homeostasis. Thus, a major adaptation of the maternal cerebrovasculature to pregnancy is to maintain normalcy in the face of expanded plasma volume, increased cardiac output, and high levels of permeability factors. In this chapter, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier (BBB), which protect the maternal brain from changes in BBB permeability. Further, pregnancy-induced changes in the structure and function of cerebral arteries, arterioles, and veins will be discussed as they relate to cerebral vascular resistance, hemodynamics, and cerebral blood flow autoregulation.
Collapse
|
21
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Sabihi S, Goodpaster C, Maurer S, Leuner B. GABA in the medial prefrontal cortex regulates anxiety-like behavior during the postpartum period. Behav Brain Res 2021; 398:112967. [PMID: 33075397 PMCID: PMC7722033 DOI: 10.1016/j.bbr.2020.112967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023]
Abstract
The postpartum period is commonly accompanied by emotional changes, which for many new mothers includes a reduction in anxiety. Previous research in rodents has shown that the postpartum attenuation in anxiety is dependent on offspring contact and has further implicated enhanced GABAergic neurotransmission as an underlying mechanism. However, the specific brain regions where GABA acts to regulate the offspring-induced reduction in postpartum anxiety requires further investigation. Here, we test the hypothesis that offspring interactions suppress anxiety-like behavior in postpartum female rats via GABA signaling in the medial prefrontal cortex (mPFC). Our results show a postpartum reduction in anxiety-like behavior, an effect which was abolished by localized infusion of the GABAA receptor antagonist bicuculline in the mPFC. We also show that activation of GABAA receptors in the mPFC by the agonist muscimol was effective in restoring anxiolyisis in mothers separated from their pups. Lastly, we show that heightened anxiety-like behavior in pup-separated mothers was accompanied by a lower number and percentage of activated GABAergic neurons within the mPFC. Together, these results suggest that mother-offspring interactions reduce anxiety-like behavior in postpartum females via GABAA neurotransmission in the mPFC and in doing so provide insight into mechanisms that may become dysfunctional in mothers who experience high postpartum anxiety.
Collapse
Affiliation(s)
- Sara Sabihi
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Caitlin Goodpaster
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Skyler Maurer
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Schweizer-Schubert S, Gordon JL, Eisenlohr-Moul TA, Meltzer-Brody S, Schmalenberger KM, Slopien R, Zietlow AL, Ehlert U, Ditzen B. Steroid Hormone Sensitivity in Reproductive Mood Disorders: On the Role of the GABA A Receptor Complex and Stress During Hormonal Transitions. Front Med (Lausanne) 2021; 7:479646. [PMID: 33585496 PMCID: PMC7873927 DOI: 10.3389/fmed.2020.479646] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Women worldwide are two to three times more likely to suffer from depression in their lifetime than are men. Female risk for depressive symptoms is particularly high during the reproductive years between menarche and menopause. The term “Reproductive Mood Disorders” refers to depressive disorders triggered by hormonal fluctuations during reproductive transitions including the perimenarchal phase, the pre-menstrual phase, pregnancy, the peripartum period and the perimenopausal transition. Here we focus on reproductive mood disorders manifesting in adult life. We propose a research agenda that draws together several reproductive mood disorders and investigates which genetic, endocrinological, neural, and psychosocial factors can explain depressive symptoms during phases of hormonal transitions in women. Based on current research it is assumed that some women experience an increased sensitivity to not only fluctuations in reproductive steroids (estrogen and progesterone), but also stress-related steroids. We integrate both dynamics into the concept of “steroid hormone sensitivity,” expanding on the concept of “reproductive hormone sensitivity.” We suggest that a differential response of the stress steroid system including corticosteroids, neurosteroids, like allopregnanolone and the GABA-A Receptor complex, as well as a differential (epi)genetic risk in serotonergic and GABAergic signaling, are moderators or mediators between changes in the reproductive steroid system and the physiological, affective, and cognitive outcomes manifesting in reproductive mood disorders. We point to the lack of research on the role of psychosocial factors in increasing a woman's stress level and at some point also the sensitivity of her stress steroid system within the etiology of Reproductive Mood Disorders. Drawing together the evidence on various reproductive mood disorders we seek to present a basis for the development of more effective pharmacological, social, and psychological treatment interventions and prevention strategies for women susceptible to these disorders. This could pave the way for new research as well as medical and psychological teaching and practice- such as a new type of Practice for Gynecological Psychoneuroendocrinology- with the aim of working on and ultimately offering more integrative forms of support not yet available to women suffering from depression during hormonal transitions. In medical history women have been left alone with this integrative challenge.
Collapse
Affiliation(s)
- Sophie Schweizer-Schubert
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany.,Practice for Psychoendocrinology and Psychotherapy, Heilbronn, Germany
| | | | - Tory A Eisenlohr-Moul
- Women's Mental Health Research Program, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Katja M Schmalenberger
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| | - Radoslaw Slopien
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna-Lena Zietlow
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Ehlert
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Beate Ditzen
- Center for Psychosocial Medicine, Institute of Medical Psychology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Johnson AC, Li Z, Orfila JE, Herson PS, Cipolla MJ. Hippocampal network dysfunction as a mechanism of early-onset dementia after preeclampsia and eclampsia. Prog Neurobiol 2020; 199:101938. [PMID: 33130230 DOI: 10.1016/j.pneurobio.2020.101938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can involve dangerous neurological symptoms such as spontaneous seizures (eclampsia). Despite being diseases specific to the pregnant state, preeclampsia and eclampsia have long-lasting neurological consequences later in life, including changes in brain structure and cognitive decline at relatively young ages. However, the effects of preeclampsia on brain regions central to memory and cognition, such as the hippocampus, are unclear. Here, we present a case reporting the progressive and permanent cognitive decline in a woman that had eclamptic seizures in the absence of evidence of brain injury on MRI. We then use rat models of normal pregnancy and preeclampsia to investigate mechanisms by which eclampsia-like seizures may disrupt hippocampal function. We show that experimental preeclampsia causes delayed memory decline in rats and disruption of hippocampal neuroplasticity. Further, seizures in pregnancy and preeclampsia caused acute memory dysfunction and impaired neuroplasticity but did not cause acute neuronal cell death. Importantly, hippocampal dysfunction persisted 5 weeks postpartum, suggesting seizure-induced injury is long lasting and may be permanent. Our data provide the first evidence of a model of preeclampsia that may mimic the cognitive decline of formerly preeclamptic women, and that preeclampsia and eclampsia affect hippocampal network plasticity and impair memory.
Collapse
Affiliation(s)
- Abbie C Johnson
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Zhaojin Li
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - James E Orfila
- Dept. of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Paco S Herson
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Dept. of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Marilyn J Cipolla
- Dept. of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA; Dept. of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA; Dept. of Ob/Gyn & Repro Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
25
|
Morrison KE, Cole AB, Kane PJ, Meadows VE, Thompson SM, Bale TL. Pubertal adversity alters chromatin dynamics and stress circuitry in the pregnant brain. Neuropsychopharmacology 2020; 45:1263-1271. [PMID: 32045935 PMCID: PMC7297802 DOI: 10.1038/s41386-020-0634-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023]
Abstract
Women who have experienced adverse childhood events (ACEs) around puberty are at the greatest risk for neuropsychiatric disorders across the lifespan. This population is exceptionally vulnerable to neuropsychiatric disease presentation during the hormonally dynamic state of pregnancy. We previously established that chronic adversity around puberty in female mice significantly altered their HPA axis function specifically during pregnancy, modeling the effects of pubertal ACEs we also reported in women. We hypothesized that the pregnancy hormone, allopregnanolone, was involved in presentation of the blunted stress response phenotype by its interaction with the molecular programming that had occurred during pubertal adversity experience. Here, in adult mice previously stressed during puberty, allopregnanolone administration was sufficient to reproduce the decreased corticosterone response after acute stress. Examination of neuronal activation and the electrophysiological properties of CRF neurons in the paraventricular nucleus of the hypothalamus (PVN) found no significant changes in synaptic function that corresponded with the blunted HPA axis reactivity. However, at the chromatin level, utilization of ATAC-Seq profiling demonstrated a dramatic remodeling of DNA accessibility in the PVN following pubertal adversity. Altogether, these data establish a potential molecular mechanism whereby adversity during puberty can enact lasting transcriptional control that manifests only during a unique period of the lifespan where dynamic hormonal changes occur. These results highlight a biological process that may impart an increased risk for a highly vulnerable population, whereby pubertal programming of the PVN results in aberrant HPA axis responsiveness when exposed to the hormonal changes unique to pregnancy.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony B Cole
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Neuroscience, Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick J Kane
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria E Meadows
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Littlejohn EL, Fedorchak S, Boychuk CR. Sex-steroid-dependent plasticity of brain-stem autonomic circuits. Am J Physiol Regul Integr Comp Physiol 2020; 319:R60-R68. [PMID: 32493037 DOI: 10.1152/ajpregu.00357.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the central nervous system (CNS), nuclei of the brain stem play a critical role in the integration of peripheral sensory information and the regulation of autonomic output in mammalian physiology. The nucleus tractus solitarius of the brain stem acts as a relay center that receives peripheral sensory input from vagal afferents of the nodose ganglia, integrates information from within the brain stem and higher central centers, and then transmits autonomic efferent output through downstream premotor nuclei, such as the nucleus ambiguus, the dorsal motor nucleus of the vagus, and the rostral ventral lateral medulla. Although there is mounting evidence that sex and sex hormones modulate autonomic physiology at the level of the CNS, the mechanisms and neurocircuitry involved in producing these functional consequences are poorly understood. Of particular interest in this review is the role of estrogen, progesterone, and 5α-reductase-dependent neurosteroid metabolites of progesterone (e.g., allopregnanolone) in the modulation of neurotransmission within brain-stem autonomic neurocircuits. This review will discuss our understanding of the actions and mechanisms of estrogen, progesterone, and neurosteroids at the cellular level of brain-stem nuclei. Understanding the complex interaction between sex hormones and neural signaling plasticity of the autonomic nervous system is essential to elucidating the role of sex in overall physiology and disease.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
27
|
Cheng YC, Huang YC, Huang WL. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depress Anxiety 2020; 37:549-564. [PMID: 32365423 DOI: 10.1002/da.23025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/27/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The several meta-analyses of the effect of vitamin D on depression have produced inconsistent results and studies dealing with anxiety were not incorporated. There has been no comprehensive analysis of how results are affected by the nature of the sample or the dosage and duration of supplementation. The study is aimed to investigate whether vitamin D supplementation reduces negative emotions and to analyze the possible influence of sample and regimen. METHOD We conducted a systematic review and meta-analysis of randomized controlled trials comparing the effect of vitamin D and placebo on negative emotion. Databases were searched for relevant articles published before February 2019. RESULTS The analysis covered 25 trials with a total of 7,534 participants and revealed an effect of vitamin D on negative emotion (Hedges' g = -0.4990, 95% CI [-0.8453, -0.1528], p = .0047, I2 = 97.7%). Subgroup analysis showed that vitamin D had an effect on patients with major depressive disorder and on subjects with serum 25(OH)D levels ≤50 nmol/L. The pooled data from trials of vitamin D supplementation lasting ≥8 weeks and dosage ≤4,000 IU/day indicated that vitamin D had an effect. CONCLUSIONS Our results support the hypothesis that vitamin D supplementation can reduce negative emotions. Patients with major depressive disorder and individuals with vitamin D deficiency are most likely to benefit from supplementation. But to interpret the results with high heterogeneity should still be cautious.
Collapse
Affiliation(s)
- Ying-Chih Cheng
- Department of Psychiatry, Taoyuan Psychiatric Centre, Ministry of Health and Welfare, Taoyuan City, Taiwan.,Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Huang
- Research Center of Big Data and Meta-analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, School of Medicine and College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
Koukopoulos AE, Angeletti G, Sani G, Janiri D, Manfredi G, Kotzalidis GD, De Chiara L. Perinatal Mixed Affective State: Wherefore Art Thou? Psychiatr Clin North Am 2020; 43:113-126. [PMID: 32008678 DOI: 10.1016/j.psc.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mixed states in patients with a perinatal mood episode is seldom encountered. Lack of appropriate assessment tools could be partly responsible for this observation. The authors conducted a selective review of studies dealing with the reporting of mixed symptoms in women during the perinatal period with the intention to quantify the phenomenon. In many instances of reported postpartum depression, either a first onset or an onset in the context of bipolar disorder, mixed states were identifiable. However, the strict application of the Diagnostic and Statistical Manual of Mental Disorders, 5th edition, mixed features specifier to these episodes risks misdiagnosis.
Collapse
Affiliation(s)
- Alexia Emilia Koukopoulos
- SPDC, Azienda Ospedaliera Universitaria Policlinico Umberto I, Sapienza School of Medicine and Dentistry, Rome, Italy; Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy.
| | - Gloria Angeletti
- Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy; NESMOS Department, Sapienza School of Medicine and Psychology, Sant'Andrea University Hospital, Rome, Italy
| | - Gabriele Sani
- Institute of Psychiatry, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Psychiatry, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| | - Delfina Janiri
- Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy; NESMOS Department, Sapienza School of Medicine and Psychology, Sant'Andrea University Hospital, Rome, Italy
| | - Giovanni Manfredi
- Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy; NESMOS Department, Sapienza School of Medicine and Psychology, Sant'Andrea University Hospital, Rome, Italy
| | - Georgios D Kotzalidis
- Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy; NESMOS Department, Sapienza School of Medicine and Psychology, Sant'Andrea University Hospital, Rome, Italy
| | - Lavinia De Chiara
- Centro Lucio Bini, Rome, Italy; Azienda Ospedaliera Sant'Andrea, UOC di Psichiatria, Via di Grottarossa 1035, CAP 00189, Rome 00185, Italy; NESMOS Department, Sapienza School of Medicine and Psychology, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
29
|
Abstract
Trauma is the leading cause of nonobstetric maternal mortality and affects up to 8% of all pregnancies. Pregnant patients with traumatic brain injury (TBI) are an especially vulnerable population, and their management is complex, with multiple special considerations that must be taken into account. These include but are not limited to alterations in maternal physiology that occur with pregnancy, potential teratogenicity of pharmacologic therapies and diagnostic studies using ionizing radiation, need for fetal monitoring, Rh immunization status, placental abruption, and preterm labor. Despite these challenges, evidence regarding management of the pregnant patient with a TBI is lacking, limited to only case reports/series and retrospective analyses. Despite this uncertainty, expert opinion on management of these patients seems to be that, overall, the standard therapies for management of TBI are safe and effective in pregnancy, with a few notable exceptions described in this chapter. Significant work is needed to continue to develop best-practice and evidence-based guidelines for the management of TBI pregnancy.
Collapse
Affiliation(s)
- Matthew R Leach
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher G Zammit
- Department of Critical Care Medicine and Neuroscience Institute, TriHealth, Cincinnati, OH, United States.
| |
Collapse
|
30
|
Allopregnanolone-based treatments for postpartum depression: Why/how do they work? Neurobiol Stress 2019; 11:100198. [PMID: 31709278 PMCID: PMC6838978 DOI: 10.1016/j.ynstr.2019.100198] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Recent FDA approval of an allopregnanolone-based treatment specifically for postpartum depression, brexanolone, now commercially called Zulresso®, is an exciting development for patients and families impacted by postpartum depression and allows us to start asking questions about why and how this compound is so effective. Allopregnanolone is a neuroactive steroid, or neurosteroid, which can be synthesized from steroid hormone precursors, such as progesterone, or synthesized de novo from cholesterol. Neurosteroids are positive allosteric modulators at GABAA receptors (GABAARs), a property which is thought to mediate the therapeutic effects of these compounds. However, the durability of effect of brexanolone in clinical trials questions the mechanism of action mediating the remarkable antidepressant effects, leading us to ask why and how does this drug work. Asking why this drug is effective may provide insight into the underlying neurobiology of postpartum depression. Exploring how this drug works will potentially elucidate a novel antidepressant mechanism of action and may provide useful information for next generation drug development. In this review, we examine the clinical and preclinical evidence supporting a role for allopregnanolone in the underlying neurobiology of postpartum depression as well as foundational evidence supporting the therapeutic effects of allopregnanolone for treatment of postpartum depression.
Collapse
|
31
|
Morrison KE, Cole AB, Thompson SM, Bale TL. Brexanolone for the treatment of patients with postpartum depression. Drugs Today (Barc) 2019; 55:537-544. [PMID: 31584571 PMCID: PMC8033597 DOI: 10.1358/dot.2019.55.9.3040864] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On March 19, 2019, the United States Food and Drug Administration (FDA) approved Zulresso (brexanolone) for intravenous use for the treatment of postpartum depression (PPD) in adult women. The decision was based on three recent clinical trials following an FDA priority review and breakthrough therapy designation. Brexanolone is now available through a restricted process called the Zulresso Risk Evaluation and Mitigation Strategy Program that requires the drug to be administered by a healthcare provider in a certified healthcare facility. Brexanolone represents an important new treatment option to address treatment-resistant depressive symptoms. In this article, we discuss the current critical need for PPD treatments, the mechanisms of brexanolone action, and the efficacy and drug safety studies that led to FDA approval. Additionally, we discuss some limitations of the current formulation, specific populations of women that might benefit from this treatment, and how new drugs on the horizon may increase the ability to treat PPD in a variety of patient populations.
Collapse
Affiliation(s)
- K E Morrison
- Departments of Pharmacology and Psychiatry and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - A B Cole
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - S M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - T L Bale
- Departments of Pharmacology and Psychiatry and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
32
|
Yu J, Wang DS, Bonin RP, Penna A, Alavian-Ghavanini A, Zurek AA, Rauw G, Baker GB, Orser BA. Gabapentin increases expression of δ subunit-containing GABA A receptors. EBioMedicine 2019; 42:203-213. [PMID: 30878595 PMCID: PMC6491385 DOI: 10.1016/j.ebiom.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Gabapentin is a structural analog of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Its anticonvulsant, analgesic and anxiolytic properties suggest that it increases GABAergic inhibition; however, the molecular basis for these effects is unknown as gabapentin does not directly modify GABA type A (GABAA) receptor function, nor does it modify synaptic inhibition. Here, we postulated that gabapentin increases expression of δ subunit-containing GABAA (δGABAA) receptors that generate a tonic inhibitory conductance in multiple brain regions including the cerebellum and hippocampus. METHODS Cell-surface biotinylation, Western blotting, electrophysiologic recordings, behavioral assays, high-performance liquid chromatography and gas chromatography-mass spectrometry studies were performed using mouse models. FINDINGS Gabapentin enhanced expression of δGABAA receptors and increased a tonic inhibitory conductance in neurons. This increased expression likely contributes to GABAergic effects as gabapentin caused ataxia and anxiolysis in wild-type mice but not δ subunit null-mutant mice. In contrast, the antinociceptive properties of gabapentin were observed in both genotypes. Levels of GABAA receptor agonists and neurosteroids in the brain were not altered by gabapentin. INTERPRETATION These results provide compelling evidence to account for the GABAergic properties of gabapentin. Since reduced expression of δGABAA receptor occurs in several disorders, gabapentin may have much broader therapeutic applications than is currently recognized. FUND: Supported by a Foundation Grant (FDN-154312) from the Canadian Institutes of Health Research (to B.A.O.); a NSERC Discovery Grant (RGPIN-2016-05538), a Canada Research Chair in Sensory Plasticity and Reconsolidation, and funding from the University of Toronto Centre for the Study of Pain (to R.P.B.).
Collapse
Affiliation(s)
- Jieying Yu
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert P Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Antonello Penna
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Anesthesia and Centro de Investigación Clínica Avanzada, Universidad de Chile, Santiago, 838 0456, Chile
| | | | - Agnieszka A Zurek
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gail Rauw
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Anesthesia, University of Toronto, Toronto, ON M5G 1E2, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
33
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
34
|
Frieder A, Fersh M, Hainline R, Deligiannidis KM. Pharmacotherapy of Postpartum Depression: Current Approaches and Novel Drug Development. CNS Drugs 2019; 33:265-282. [PMID: 30790145 PMCID: PMC6424603 DOI: 10.1007/s40263-019-00605-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Postpartum depression is one of the most common complications of childbirth. Untreated postpartum depression can have substantial adverse effects on the well-being of the mother and child, negatively impacting child cognitive, behavioral, and emotional development with lasting consequences. There are a number of therapeutic interventions for postpartum depression including pharmacotherapy, psychotherapy, neuromodulation, and hormonal therapy among others, most of which have been adapted from the treatment of major depressive disorder outside of the peripartum period. Current evidence of antidepressant treatment for postpartum depression is limited by the small number of randomized clinical trials, underpowered samples, and the lack of long-term follow-up. The peripartum period is characterized by rapid and significant physiological change in plasma levels of endocrine hormones, peptides, and neuroactive steroids. Evidence supporting the role of neuroactive steroids and γ-aminobutyric acid (GABA) in the pathophysiology of postpartum depression led to the investigation of synthetic neuroactive steroids and their analogs as potential treatment for postpartum depression. Brexanolone, a soluble proprietary intravenous preparation of synthetic allopregnanolone, has been developed. A recent series of open-label and placebo-controlled randomized clinical trials of brexanolone in postpartum depression demonstrated a rapid reduction in depressive symptoms, and has led to the submission for regulatory approval to the US Food and Drug Administration (decision due in March 2019). SAGE-217, an allopregnanolone analog, with oral bioavailability, was recently tested in a randomized, double-blind, placebo-controlled phase III study in severe postpartum depression, with reportedly positive results. Finally, a 3β-methylated synthetic analog of allopregnanolone, ganaxolone, is being tested in both intravenous and oral forms, in randomized, double-blind, placebo-controlled phase II studies in severe postpartum depression.
Collapse
Affiliation(s)
- Ariela Frieder
- Department of Psychiatry, Women's Behavioral Health, Zucker Hillside Hospital, Northwell Health, 75-59 263rd Street, New York, NY, 11004, USA
| | - Madeleine Fersh
- Department of Psychiatry, Women's Behavioral Health, Zucker Hillside Hospital, Northwell Health, 75-59 263rd Street, New York, NY, 11004, USA
| | - Rachel Hainline
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Kristina M Deligiannidis
- Department of Psychiatry, Women's Behavioral Health, Zucker Hillside Hospital, Northwell Health, 75-59 263rd Street, New York, NY, 11004, USA.
- Departments of Psychiatry and Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
35
|
Keating N, Zeak N, Smith SS. Pubertal hormones increase hippocampal expression of α4βδ GABA A receptors. Neurosci Lett 2019; 701:65-70. [PMID: 30742936 DOI: 10.1016/j.neulet.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
CA1 hippocampal expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty in female mice, an effect dependent upon the decline in hippocampal levels of the neurosteroid THP (3α-OH-5α-pregnan-20-one) which occurs at this time. The present study further characterized the mechanisms underlying α4βδ expression, assessed in vivo. Blockade of pubertal levels of 17β-estradiol (E2) (formestane, 0.5 mg/kg, i.p. 3 d) reduced α4 and δ expression by 75-80% (P < 0.05) in CA1 hippocampus of female mice, assessed using Western blot techniques. Conversely, E2 administration increased α4 and δ expression by 50-100% in adults, an effect enhanced by more than 2-fold by concomitant administration of the 5α-reductase blocker finasteride (50 mg/kg, i.p., 3d, P < 0.05), suggesting that both declining THP levels and increasing E2 levels before puberty trigger α4βδ expression. This effect was blocked by ICI 182,780 (20 mg/kg, s.c., 3 d), a selective blocker of E2 receptor-α (ER-α). These results suggest that both the rise in circulating levels of E2 and the decline in hippocampal THP levels at the onset of puberty trigger maximal levels of α4βδ expression in the CA1 hippocampus.
Collapse
Affiliation(s)
- Nicole Keating
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Nicole Zeak
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
36
|
Melón LC, Nasman JT, John AS, Mbonu K, Maguire JL. Interneuronal δ-GABA A receptors regulate binge drinking and are necessary for the behavioral effects of early withdrawal. Neuropsychopharmacology 2019; 44:425-434. [PMID: 30089884 PMCID: PMC6300562 DOI: 10.1038/s41386-018-0164-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
Extensive evidence points to a role for GABAergic signaling in the amygdala in mediating the effects of alcohol, including presynaptic changes in GABA release, suggesting effects on GABAergic neurons. However, the majority of studies focus solely on the effects of alcohol on principal neurons. Here we demonstrate that δ-GABAARs, which have been suggested to confer ethanol sensitivity, are expressed at a high density on parvalbumin (PV) interneurons in the basolateral amygdala (BLA). Thus, we hypothesized that δ-GABAARs on PV interneurons may represent both an initial pharmacological target for alcohol and a site for plasticity associated with the expression of various behavioral maladaptations during withdrawal from binge drinking. To investigate this, we used a mouse model of voluntary alcohol intake (Drinking-in-the-Dark-Multiple Scheduled Access) to induce escalating heavy binge drinking and anxiety-like behavior in mice. This pattern of intake was associated with increased δ protein expression on parvalbumin positive interneurons in both the BLA and hippocampus. Loss of δ-GABAARs specifically in PV interneurons (PV:δ-/-) increased binge drinking behavior, reduced sensitivity to alcohol-induced motor incoordination, enhanced sensitivity to alcohol-induced hyperlocomotion and blocked the expression of withdrawal from binge drinking. This study is the first to demonstrate a role for δGABAARs specifically in PV-expressing interneurons in modulating binge alcohol intake and withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Laverne C. Melón
- 0000 0000 8934 4045grid.67033.31Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111 USA
| | - James T. Nasman
- 0000 0000 8934 4045grid.67033.31Building Diversity in Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Ashley St. John
- 0000 0000 8934 4045grid.67033.31Building Diversity in Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Kenechukwu Mbonu
- 0000 0000 8934 4045grid.67033.31Building Diversity in Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111 USA
| | - Jamie L. Maguire
- 0000 0000 8934 4045grid.67033.31Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111 USA
| |
Collapse
|
37
|
Payne JL, Maguire J. Pathophysiological mechanisms implicated in postpartum depression. Front Neuroendocrinol 2019; 52:165-180. [PMID: 30552910 PMCID: PMC6370514 DOI: 10.1016/j.yfrne.2018.12.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
This review aims to summarize the diverse proposed pathophysiological mechanisms contributing to postpartum depression, highlighting both clinical and basic science research findings. The risk factors for developing postpartum depression are discussed, which may provide insight into potential neurobiological underpinnings. The evidence supporting a role for neuroendocrine changes, neuroinflammation, neurotransmitter alterations, circuit dysfunction, and the involvement of genetics and epigenetics in the pathophysiology of postpartum depression are discussed. This review integrates clinical and preclinical findings and highlights the diversity in the patient population, in which numerous pathophysiological changes may contribute to this disorder. Finally, we attempt to integrate these findings to understand how diverse neurobiological changes may contribute to a common pathological phenotype. This review is meant to serve as a comprehensive resource reviewing the proposed pathophysiological mechanisms underlying postpartum depression.
Collapse
Affiliation(s)
- Jennifer L Payne
- Department of Psychiatry, Women's Mood Disorders Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
38
|
Macut D, Milutinović DV, Rašić-Marković A, Nestorov J, Bjekić-Macut J, Stanojlović O. A decade in female reproduction: an endocrine view of the past and into the future. Hormones (Athens) 2018; 17:497-505. [PMID: 30421155 DOI: 10.1007/s42000-018-0073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/10/2018] [Indexed: 12/01/2022]
Abstract
Over the last decade, huge achievements have been made in the fields of neurophysiology, molecular endocrinology, and biochemistry, as well as in the successful translation of clinical research into diseases into clinical practice. As regards female reproduction, most of the advances made in this area were achieved in gonadal axis regulation, regulation of behavior through sex steroids, reproductive genetics, preservation of ovarian reproductive function, steroid profiling, and metabolic and overall reproductive outcomes. The coming years are expected to bring further understanding of the relationships between nutrition, energy metabolism, and reproductive function and to succeed in identifying new genetic markers linked to adverse metabolic and unfavorable cardiovascular outcomes in women. From our perspective, future research in the field of female reproduction should be directed toward doing research into genetic reproductive abnormalities and neuroendocrine diseases, pathophysiology, long-term health outcomes for oligo/amenorrhea, hyperandrogenism, and ovulatory dysfunction. It is additionally expected that a better understanding will be gained of the endocrinology of the placenta and of pregnancy, the role of the microbiome in female reproduction, the role of insulin sensitizers, anti-obesity and anti-diabetic drugs, and various advances in the prevention of ovarian damage caused by various oncology therapies, while new therapeutic options for the treatment of infertility, including kisspeptin, will be developed.
Collapse
Affiliation(s)
- Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Dr Subotića 13, Belgrade, 11000, Serbia.
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | | | - Jelena Nestorov
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jelica Bjekić-Macut
- UMC Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlović
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
39
|
Changes in the structure and function of the brain years after Pre-eclampsia. Ageing Res Rev 2018; 47:49-54. [PMID: 30026172 DOI: 10.1016/j.arr.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/02/2018] [Accepted: 06/29/2018] [Indexed: 11/23/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy specific syndrome that affects multiple organs including the brain. PE resolves after delivery of the placenta. Nonetheless, PE is a predisposing factor for cardiovascular disorders and hypertension later in life. These conditions are associated with a cognitive decline and dementia later in life. Studies have suggested that there may be long term pathological changes within the brain of the woman after PE/eclampsia and PE may be a risk marker for early cerebrovascular impairment. The aim of this review is to provide an insight into the possible long-term effect of PE and eclampsia on the brain structure and function with the probability of PE being a risk factor for neurodegenerative development. Long term effects of PE include cognitive impairment such as memory loss, attention deficit and motor speed impairment. Also, the pathology of the brain seems to be much affected later in life in women with history of PE/eclampsia. Certain changes in the structure and function of the brain observed among women with history of PE/eclampsia are similar to neurological disease like Alzheimer's disease (AD) and dementia.
Collapse
|
40
|
Anagnostou I, Reyes-Mendoza J, Morales T. Glial cells as mediators of protective actions of prolactin (PRL) in the CNS. Gen Comp Endocrinol 2018; 265:106-110. [PMID: 29378204 DOI: 10.1016/j.ygcen.2018.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Abstract
Prolactin (PRL) is a hormone with multiple actions in the central nervous system (CNS) spanning from physiology to pathology. PRL exerts different actions through its receptors that can be found in both neurons and glial cells (astrocytes, microglia and oligodendrocytes) of the brain. Even though its effects during pregnancy and lactation, stress, anxiety, and depression are well studied, recent work on this hormone has brought to light a new role of PRL: that of a protective agent against brain damage and, consequently, against neurodegeneration. The mechanisms through which this protection takes place have not been fully elucidated; however, neurogenesis and anti-apoptosis are some of the plausible mechanisms that could mediate this effect. There is substantial information that implies the involvement of glial activation in this PRL effect, as shown in various models of brain damage. Taking into account glial cell dynamics and actions in various pathological conditions, combined with the neuroprotective effect of PRL, we consider of importance the revision of all the information about the interaction between these two cell types, as it will provide comprehensive knowledge about this new target of PRL against neuropathology.
Collapse
Affiliation(s)
- Ilektra Anagnostou
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Julio Reyes-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
41
|
Hooper A, Paracha R, Maguire J. Seizure-induced activation of the HPA axis increases seizure frequency and comorbid depression-like behaviors. Epilepsy Behav 2018; 78:124-133. [PMID: 29186699 PMCID: PMC7847314 DOI: 10.1016/j.yebeh.2017.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022]
Abstract
Our laboratory recently demonstrated that seizures activate the hypothalamic-pituitary-adrenal (HPA) axis, increasing circulating levels of corticosterone (O'Toole et al., 2013). Given the well-established proconvulsant actions of corticosterone, we hypothesized that seizure-induced activation of the HPA axis may contribute to future seizure susceptibility. Further, since hypercortisolism is associated with depression, we propose that seizure-induced activation of the HPA axis may contribute to comorbid depression and epilepsy. To test this hypothesis, we generated mice lacking the GABAA receptor (GABAAR) δ subunit specifically in corticotropin-releasing hormone (CRH) neurons (Gabrd/Crh mice), which exhibit hyporeactivity of the HPA axis (Lee et al., 2014). Gabrd/Crh mice exhibit blunted seizure-induced elevations in corticosterone, establishing a useful tool to investigate the contribution of HPA axis dysfunction on epilepsy and associated comorbidities. Interestingly, Gabrd/Crh mice exhibit decreased acute seizure susceptibility following kainic acid (KA) administration. Furthermore, chronically epileptic Gabrd/Crh mice exhibit a decrease in both spontaneous seizure frequency and depression-like behaviors compared with chronically epileptic Cre-/- littermates. Seizure susceptibility and associated depression-like behaviors can be restored to wild type levels by treating Gabrd/Crh mice with exogenous corticosterone. Similarly, chemogenetic activation of CRH neurons in the paraventricular nucleus (PVN) is sufficient to increase seizure susceptibility; whereas, chemogenetic inhibition of CRH neurons in the PVN of the hypothalamus is sufficient to decrease seizure susceptibility and depression-like behaviors in chronically epileptic mice. These data suggest that seizure-induced activation of the HPA axis promotes seizure susceptibility and comorbid depression-like behaviors, suggesting that the HPA axis may be a novel target for seizure control.
Collapse
Affiliation(s)
- Andrew Hooper
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111
| | | | - Jamie Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA 02111, United States.
| |
Collapse
|
42
|
Melón L, Hammond R, Lewis M, Maguire J. A Novel, Synthetic, Neuroactive Steroid Is Effective at Decreasing Depression-Like Behaviors and Improving Maternal Care in Preclinical Models of Postpartum Depression. Front Endocrinol (Lausanne) 2018; 9:703. [PMID: 30532739 PMCID: PMC6265503 DOI: 10.3389/fendo.2018.00703] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Preclinical testing of treatments for postpartum depression (PPD) has been limited due to the lack of available animal models of such a complex disorder. To address this limitation, our laboratory has generated unique preclinical mouse models that exhibit abnormal postpartum behaviors. Mice with a loss or reduction in the expression of the GABAA receptor (GABAAR) δ subunit (Gabrd -/- or Gabrd +/-, respectively) and mice that lack the K+/Cl- co-transporter, KCC2, specifically in corticotropin-releasing hormone (CRH) neurons (KCC2/Crh mice) exhibit depression-like behaviors restricted to the postpartum period and deficits in maternal care, which serve as useful tools for testing novel therapeutic compounds. Utilizing these preclinical models, we tested the ability of a novel, synthetic, neuroactive steroid developed by SAGE Therapeutics, SGE-516, to improve abnormal postpartum behaviors. Gabrd -/-, Gabrd +/-, and KCC2/Crh dams treated with SGE-516 (450 mg/kg chow) during late pregnancy exhibit a decrease in depression-like behaviors and improvements in maternal care at 48 h postpartum. Interestingly, acute treatment with SGE-516 also exhibits robust therapeutic effects in these preclinical PPD models. We previously discovered abnormal stress reactivity associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with depression-like behaviors in the preclinical PPD models, evident from an increase in stress-induced corticosterone levels and dephosphorylation and downregulation of KCC2 in the paraventricular nucleus of the hypothalamus (PVN) during the peripartum period. Here we demonstrated that SGE-516 treatment is sufficient to prevent the stress-induced increase in corticosterone and dephosphorylation and downregulation of KCC2 in the PVN. In contrast, and consistent with the distinct pharmacology of SGE-516 compared to benzodiazepines, treatment with clobazam (250 mg/kg chow) did not alter the depression-like phenotype or deficits in maternal care observed in these preclinical models of PPD. These findings are consistent with the positive double-blind, randomized, placebo-controlled trial findings of a similar compound, brexanolone, in the treatment of patients with postpartum depression. Further, these findings validate the use of these preclinical models of PPD for screening novel compounds for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Laverne Melón
- TEACRS Program, Tufts University School of Medicine, Boston, MA, United States
| | | | - Mike Lewis
- SAGE Therapeutics, Cambridge, MA, United States
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Jamie Maguire
| |
Collapse
|
43
|
Marsh WK, Penny JL, Rothschild AJ. Vitamin D supplementation in bipolar depression: A double blind placebo controlled trial. J Psychiatr Res 2017; 95:48-53. [PMID: 28777983 DOI: 10.1016/j.jpsychires.2017.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/02/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Bipolar depression is difficult to treat. Vitamin D supplementation is well tolerated and may improve mood via its neurotransmitter synthesis regulation, nerve growth factor enhancement and antioxidant properties. Vitamin D adjunct reduces unipolar depression, but has not been tried in bipolar depression. METHODS 18-70yos with DSM IV bipolar depression and Vitamin D deficiency (<30 ng/ml) were randomized in a controlled double blind trial of 5000IU Vitamin D3 po qday supplementation versus placebo for twelve weeks. Change in Montgomery-Åsberg Depression Rating Scale (MADRS), Hamilton Anxiety Rating Scale (HAM-A), Young Mania Rating Scale (YMRS), medication, and tolerance were assessed q2weeks. RESULTS 16 VitD vs 17 placebo subjects did not differ in baseline characteristics (mean = 44 yo, SD = 13), VitD level (19.2 ± 65.8 g/ml vs 19.3 ± 5.5 ng/ml respectively) or mood ratings (MADRS 21.3 ± 6.4 vs 22.8 ± 6.9 respectively). At 12wks, the placebo group VitD levels remained unchanged, while the VitD group levels increased to 28 ng/ml. MADRS score decreased significantly in both placebo (mean = 6.42 (95% CI [2.28 to 10.56]) and VitD groups (mean = 9.54 (95% CI[3.51 to 15.56]) (p = 0.031), but there were no differences between treatment groups (time by treatment interaction estimate: 0.29, t(23) = 0.14, p = 0.89); VitD and placebo groups had similar reductions in YMRS and HAM-A. Vitamin D3 was well tolerated. CONCLUSIONS In this small study, despite a greater rise in Vitamin D levels in the VitD supplementation group, there was no significant difference reduction in depressive symptoms. However both groups' VitD levels remained deficient. Vitamin D3 supplementation vs placebo did not improve reduction in mood elevation or anxiety symptoms.
Collapse
Affiliation(s)
- Wendy K Marsh
- Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA, USA.
| | - Jessica L Penny
- BSN, Psychiatric NP - Class of 2019, Regis College, School of Nursing, 235 Wellesley Street Weston, MA 02493, USA
| | - Anthony J Rothschild
- Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA, USA
| |
Collapse
|
44
|
Visual evoked potentials in women with and without preeclampsia during pregnancy and postpartum. J Hypertens 2017; 36:319-325. [PMID: 28837424 DOI: 10.1097/hjh.0000000000001521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Preeclampsia is a severe hypertensive disorder of pregnancy which may lead to brain complications such as eclampsia. Visual symptoms are present in ∼25% of preeclamptic women suggesting the visual cortex to be altered during preeclampsia. Visual evoked potentials (VEPs) measure the functional neuronal integrity of the visual pathway from retina to the occipital cortex of the brain. The objective of this study was to compare neurophysiological changes in women with preeclampsia and other hypertensive disorders of pregnancy, using VEPs. We hypothesized that women with preeclampsia and other hypertensive disorders of pregnancy develop abnormal latency and amplitude of VEPs as compared with normotensive pregnant women. METHODS We performed a prospective observational study in 15 women with mild preeclampsia, 33 with severe preeclampsia (sPE), eight women with chronic hypertension, nine with pregnancy-induced hypertension, and 29 normotensive pregnant women. VEP measurements were made at four different time points of gestation (12-14 weeks, 26-28 weeks, 32-34 weeks, 36-40 weeks) and 6-8 weeks postpartum. RESULTS We defined reference values for normotensive pregnant women. Normotensive pregnant women had a shorter latency during pregnancy compared to their postpartum value (P = 0.005). Women with sPE had a prolonged latency of VEPs compared with normotensive pregnant women (P = 0.006), a difference that disappeared postpartum. CONCLUSION Our study showed neurophysiological adaptation to pregnancy of the visual cortex in normotensive pregnant women, that seemed to be absent in women with sPE. The study groups of women with chronic hypertension and pregnancy-induced hypertension were to small to draw any conslusions from.
Collapse
|
45
|
Simonsen C, Boddum K, von Schoubye NL, Kloppenburg A, Sønderskov K, Hansen SL, Kristiansen U. Anticonvulsive evaluation of THIP in the murine pentylenetetrazole kindling model: lack of anticonvulsive effect of THIP despite functional δ-subunit-containing GABA A receptors in dentate gyrus granule cells. Pharmacol Res Perspect 2017; 5. [PMID: 28805971 PMCID: PMC5684853 DOI: 10.1002/prp2.322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
THIP (4,5,6,7‐tetrahydroisoxazolo[5,4‐c]pyridin‐3‐ol) is a GABAA receptor agonist with varying potencies and efficacies at γ‐subunit‐containing receptors. More importantly, THIP acts as a selective superagonist at δ‐subunit‐containing receptors (δ‐GABAARs) at clinically relevant concentrations. Evaluation of THIP as a potential anticonvulsant has given contradictory results in different animal models and for this reason, we reevaluated the anticonvulsive properties of THIP in the murine pentylenetetrazole (PTZ) kindling model. As loss of δ‐GABAAR in the dentate gyrus has been associated with several animal models of epilepsy, we first investigated the presence of functional δ‐GABAA receptors. Both immunohistochemistry and Western blot data demonstrated that δ‐GABAAR expression is not only present in the dentate gyrus, but also the expression level was enhanced in the early phase after PTZ kindling. Whole‐cell patch‐clamp studies in acute hippocampal brain slices revealed that THIP was indeed able to induce a tonic inhibition in dentate gyrus granule cells. However, THIP induced a tonic current of similar magnitude in the PTZ‐kindled mice compared to saline‐treated animals despite the observed upregulation of δ‐GABAARs. Even in the demonstrated presence of functional δ‐GABAARs, THIP (0.5–4 mg/kg) showed no anticonvulsive effect in the PTZ kindling model using a comprehensive in vivo evaluation of the anticonvulsive properties.
Collapse
Affiliation(s)
- Charlotte Simonsen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia L von Schoubye
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alissa Kloppenburg
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Sønderskov
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne L Hansen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Kristiansen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
van den Berg CB, Duvekot JJ, Güzel C, Hansson SR, de Leeuw TG, Steegers EAP, Versendaal J, Luider TM, Stoop MP. Elevated levels of protein AMBP in cerebrospinal fluid of women with preeclampsia compared to normotensive pregnant women. Proteomics Clin Appl 2016; 11. [PMID: 27615121 DOI: 10.1002/prca.201600082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To investigate the cerebrospinal fluid (CSF) proteome of patients with preeclampsia (PE) and normotensive pregnant women, in order to provide a better understanding of brain involvement in PE. EXPERIMENTAL DESIGN Ninety-eight CSF samples (43 women with PE and 55 normotensive controls) were analyzed by LC-MS/MS proteome profiling. CSF was obtained during the spinal puncture before caesarean delivery. RESULTS Eight proteins were higher abundant and 17 proteins were lower abundant in patients with PE. The most significantly differentially abundant protein was protein AMBP (alpha-1-microglobulin/bikunin precursor). This finding was validated by performing an ELISA experiment (p = 0.002). CONCLUSIONS AND CLINICAL RELEVANCE The current study showed a clear difference between the protein profiles of CSF from patients with PE and normotensive pregnant women. Protein AMBP is a precursor of a heme-binding protein that counteracts the damaging effects of free hemoglobin, which may be related to the presence of free hemoglobin in CSF. Protein levels showed correlations with clinical symptoms during pregnancy and postpartum. To our knowledge, this is the first LC-MS/MS proteome profiling study on a unique set of CSF samples from (severe) preeclamptic patients and normotensive pregnant women.
Collapse
Affiliation(s)
- Caroline B van den Berg
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes J Duvekot
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas G de Leeuw
- Department of Anaesthesiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Johannes Versendaal
- Department of Obstetrics and Gynecology, Division of Obstetrics and Prenatal Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Neuro-Oncology, Clinical and Cancer Proteomics Laboratory, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Schiller CE, Johnson SL, Abate AC, Schmidt PJ, Rubinow DR. Reproductive Steroid Regulation of Mood and Behavior. Compr Physiol 2016; 6:1135-60. [PMID: 27347888 PMCID: PMC6309888 DOI: 10.1002/cphy.c150014] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we examine evidence supporting the role of reproductive steroids in the regulation of mood and behavior in women and the nature of that role. In the first half of the article, we review evidence for the following: (i) the reproductive system is designed to regulate behavior; (ii) from the subcellular to cellular to circuit to behavior, reproductive steroids are powerful neuroregulators; (iii) affective disorders are disorders of behavioral state; and (iv) reproductive steroids affect virtually every system implicated in the pathophysiology of depression. In the second half of the article, we discuss the diagnosis of the three reproductive endocrine-related mood disorders (premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression) and present evidence supporting the relevance of reproductive steroids to these conditions. Existing evidence suggests that changes in reproductive steroid levels during specific reproductive states (i.e., the premenstrual phase of the menstrual cycle, pregnancy, parturition, and the menopause transition) trigger affective dysregulation in susceptible women, thus suggesting the etiopathogenic relevance of these hormonal changes in reproductive mood disorders. Understanding the source of individual susceptibility is critical to both preventing the onset of illness and developing novel, individualized treatments for reproductive-related affective dysregulation. © 2016 American Physiological Society. Compr Physiol 6:1135-1160, 2016e.
Collapse
Affiliation(s)
- Crystal Edler Schiller
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah L. Johnson
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna C. Abate
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter J. Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - David R. Rubinow
- Psychiatry Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Shen H, Sabaliauskas N, Yang L, Aoki C, Smith SS. Role of α4-containing GABA A receptors in limiting synaptic plasticity and spatial learning of female mice during the pubertal period. Brain Res 2016; 1654:116-122. [PMID: 26826007 DOI: 10.1016/j.brainres.2016.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty on dendritic spines of CA1 hippocampal pyramidal cells. These receptors reduce activation of NMDA receptors (NMDARs), impair induction of long-term potentiation (LTP) and reduce hippocampal-dependent spatial learning. These effects are not seen in the δ-/- mouse, implicating α4βδ GABARs. Here we show that knock-out of α4 also restores synaptic plasticity and spatial learning in female mice at the onset of puberty (verified by vaginal opening). To this end, field excitatory post-synaptic potentials (fEPSPs) were recorded from the stratum radiatum of CA1 hippocampus in the slice from +/+ and α4-/- pubertal mice (PND 35-44). Induction of LTP, in response to stimulation of the Schaffer collaterals with theta burst stimulation (TBS), was unsuccessful in the +/+ hippocampus, but reinstated by α4 knock-out (~65% potentiation) but not by blockade of α5-GABARs with L-655,708 (50nM). In order to compare spatial learning in the two groups of mice, animals were trained in an active place avoidance task where the latency to first enter a shock zone is a measure of learning. α4-/- mice had significantly longer latencies by the third learning trial, suggesting better spatial learning, compared to +/+ animals, who did not reach the criterion for learning (120s latency). These findings suggest that knock-out of the GABAR α4 subunit restores synaptic plasticity and spatial learning at puberty and is consistent with the concept that the dendritic α4βδ GABARs which emerge at puberty selectively impair CNS plasticity. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070 China; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Nicole Sabaliauskas
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Lie Yang
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
49
|
Sivakumaran S, Maguire J. Bumetanide reduces seizure progression and the development of pharmacoresistant status epilepticus. Epilepsia 2015; 57:222-32. [PMID: 26659482 DOI: 10.1111/epi.13270] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE We investigated the role of chloride homeostasis in seizure progression and development of pharmacoresistant status epilepticus (SE) by pharmacologically targeting the Na-K-Cl cotransporter (NKCC1) with bumetanide. We also investigated the ability of bumetanide to restore the efficacy of diazepam following SE. METHODS Kainic acid (KA)-induced SE in vivo and 0-Mg(2+) -induced seizure-like events (SLEs) in vitro were monitored using electroencephalography (EEG) recordings in freely moving adult male mice and extracellular field potential recordings in acute entorhinal cortex-hippocampus slices, respectively. The ability of bumetanide to decrease epileptiform activity and prevent the development of pharmacoresistance to diazepam following SE was evaluated. RESULTS Bumetanide treatment significantly reduced KA-induced ictal activity in vivo and SLEs in vitro. In addition, bumetanide restored the efficacy of diazepam in decreasing ictal activity following SE in both the in vivo and in vitro models. SIGNIFICANCE Our data demonstrate an anticonvulsant effect of bumetanide on KA-induced seizures in adult mice, suggesting a role for chloride plasticity in seizure progression. These data also demonstrate that the erosion of inhibition during seizure progression could underlie the development of pharmacoresistant SE and implicate a role for chloride plasticity in this process.
Collapse
Affiliation(s)
- Sudhir Sivakumaran
- Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, U.S.A
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
50
|
Chan RW, Ho LC, Zhou IY, Gao PP, Chan KC, Wu EX. Structural and Functional Brain Remodeling during Pregnancy with Diffusion Tensor MRI and Resting-State Functional MRI. PLoS One 2015; 10:e0144328. [PMID: 26658306 PMCID: PMC4675543 DOI: 10.1371/journal.pone.0144328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023] Open
Abstract
Although pregnancy-induced hormonal changes have been shown to alter the brain at the neuronal level, the exact effects of pregnancy on brain at the tissue level remain unclear. In this study, diffusion tensor imaging (DTI) and resting-state functional MRI (rsfMRI) were employed to investigate and document the effects of pregnancy on the structure and function of the brain tissues. Fifteen Sprague-Dawley female rats were longitudinally studied at three days before mating (baseline) and seventeen days after mating (G17). G17 is equivalent to the early stage of the third trimester in humans. Seven age-matched nulliparous female rats served as non-pregnant controls and were scanned at the same time-points. For DTI, diffusivity was found to generally increase in the whole brain during pregnancy, indicating structural changes at microscopic levels that facilitated water molecular movement. Regionally, mean diffusivity increased more pronouncedly in the dorsal hippocampus while fractional anisotropy in the dorsal dentate gyrus increased significantly during pregnancy. For rsfMRI, bilateral functional connectivity in the hippocampus increased significantly during pregnancy. Moreover, fractional anisotropy increase in the dentate gyrus appeared to correlate with the bilateral functional connectivity increase in the hippocampus. These findings revealed tissue structural modifications in the whole brain during pregnancy, and that the hippocampus was structurally and functionally remodeled in a more marked manner.
Collapse
Affiliation(s)
- Russell W. Chan
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leon C. Ho
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick P. Gao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kevin C. Chan
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|