1
|
Jarovi J, Pilkiw M, Takehara-Nishiuchi K. Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection. Cell Rep 2023; 42:113492. [PMID: 37999978 DOI: 10.1016/j.celrep.2023.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions.
Collapse
Affiliation(s)
- Justin Jarovi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Nokia MS, Waselius T, Penttonen M. CA3-CA1 long-term potentiation occurs regardless of respiration and cardiac cycle phases in urethane-anesthetized rats. Hippocampus 2023; 33:1228-1232. [PMID: 37221699 DOI: 10.1002/hipo.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
3
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
4
|
Waselius T, Xu W, Sparre JI, Penttonen M, Nokia MS. -Cardiac cycle and respiration phase affect responses to the conditioned stimulus in young adults trained in trace eyeblink conditioning. J Neurophysiol 2022; 127:767-775. [PMID: 35138956 DOI: 10.1152/jn.00298.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhythms of breathing and heartbeat are linked to each other as well as to rhythms of the brain. Our recent studies suggest that presenting the conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning an eyeblink classical conditioning task. To date, it has not been examined whether utilizing information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning trace eyeblink conditioning in healthy young adults. The results were consistent with previous reports: Timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that non-invasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.
Collapse
Affiliation(s)
- Tomi Waselius
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Weiyong Xu
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Julia Isabella Sparre
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Markku Penttonen
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S Nokia
- Department of Psychology and Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Zhang WW, Li RR, Zhang J, Yan J, Zhang QH, Hu ZA, Hu B, Yao ZX, Chen H. Hippocampal Interneurons are Required for Trace Eyeblink Conditioning in Mice. Neurosci Bull 2021; 37:1147-1159. [PMID: 33991316 PMCID: PMC8353031 DOI: 10.1007/s12264-021-00700-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian-Hui Zhang
- Department of Foreign Language, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China. .,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, 400038, China.
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
6
|
Dohmatob E, Dumas G, Bzdok D. Dark control: The default mode network as a reinforcement learning agent. Hum Brain Mapp 2020; 41:3318-3341. [PMID: 32500968 PMCID: PMC7375062 DOI: 10.1002/hbm.25019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022] Open
Abstract
The default mode network (DMN) is believed to subserve the baseline mental activity in humans. Its higher energy consumption compared to other brain networks and its intimate coupling with conscious awareness are both pointing to an unknown overarching function. Many research streams speak in favor of an evolutionarily adaptive role in envisioning experience to anticipate the future. In the present work, we propose a process model that tries to explain how the DMN may implement continuous evaluation and prediction of the environment to guide behavior. The main purpose of DMN activity, we argue, may be described by Markov decision processes that optimize action policies via value estimates through vicarious trial and error. Our formal perspective on DMN function naturally accommodates as special cases previous interpretations based on (a) predictive coding, (b) semantic associations, and (c) a sentinel role. Moreover, this process model for the neural optimization of complex behavior in the DMN offers parsimonious explanations for recent experimental findings in animals and humans.
Collapse
Affiliation(s)
- Elvis Dohmatob
- Criteo AI LabParisFrance
- INRIA, Parietal TeamSaclayFrance
- Neurospin, CEAGif‐sur‐YvetteFrance
| | - Guillaume Dumas
- Institut Pasteur, Human Genetics and Cognitive Functions UnitParisFrance
- CNRS UMR 3571 Genes, Synapses and Cognition, Institut PasteurParisFrance
- University Paris Diderot, Sorbonne Paris CitéParisFrance
- Centre de Bioinformatique, Biostatistique et Biologie IntégrativeParisFrance
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer ScienceMcGill UniversityMontrealCanada
- Mila—Quebec Artificial Intelligence InstituteMontrealCanada
| |
Collapse
|
7
|
The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat Rev Neurosci 2019; 19:744-757. [PMID: 30356103 DOI: 10.1038/s41583-018-0077-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Various cognitive functions have long been known to require the hippocampus. Recently, progress has been made in identifying the hippocampal neural activity patterns that implement these functions. One such pattern is the sharp wave-ripple (SWR), an event associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Hippocampal spiking during SWRs can represent past or potential future experience, and SWR-related interventions can alter subsequent memory performance. These findings and others suggest that SWRs support both memory consolidation and memory retrieval for processes such as decision-making. In addition, studies have identified distinct types of SWR based on representational content, behavioural state and physiological features. These various findings regarding SWRs suggest that different SWR types correspond to different cognitive functions, such as retrieval and consolidation. Here, we introduce another possibility - that a single SWR may support more than one cognitive function. Taking into account classic psychological theories and recent molecular results that suggest that retrieval and consolidation share mechanisms, we propose that the SWR mediates the retrieval of stored representations that can be utilized immediately by downstream circuits in decision-making, planning, recollection and/or imagination while simultaneously initiating memory consolidation processes.
Collapse
|
8
|
Waselius T, Wikgren J, Penttonen M, Nokia MS. Breathe out and learn: Expiration‐contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning. Psychophysiology 2019; 56:e13387. [DOI: 10.1111/psyp.13387] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Tomi Waselius
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
| | - Jan Wikgren
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
- Centre for Interdisciplinary Brain Research University of Jyvaskyla Jyvaskyla Finland
| | - Markku Penttonen
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
| | - Miriam S. Nokia
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
- Neuroscience Center Helsinki Institute of Life Science, University of Helsinki Helsinki Finland
| |
Collapse
|
9
|
Ciliberti D, Michon F, Kloosterman F. Real-time classification of experience-related ensemble spiking patterns for closed-loop applications. eLife 2018; 7:36275. [PMID: 30373716 PMCID: PMC6207426 DOI: 10.7554/elife.36275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Communication in neural circuits across the cortex is thought to be mediated by spontaneous temporally organized patterns of population activity lasting ~50 –200 ms. Closed-loop manipulations have the unique power to reveal direct and causal links between such patterns and their contribution to cognition. Current brain–computer interfaces, however, are not designed to interpret multi-neuronal spiking patterns at the millisecond timescale. To bridge this gap, we developed a system for classifying ensemble patterns in a closed-loop setting and demonstrated its application in the online identification of hippocampal neuronal replay sequences in the rat. Our system decodes multi-neuronal patterns at 10 ms resolution, identifies within 50 ms experience-related patterns with over 70% sensitivity and specificity, and classifies their content with 95% accuracy. This technology scales to high-count electrode arrays and will help to shed new light on the contribution of internally generated neural activity to coordinated neural assembly interactions and cognition.
Collapse
Affiliation(s)
- Davide Ciliberti
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Frédéric Michon
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Brain and Cognition, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,imec, Leuven, Belgium
| |
Collapse
|
10
|
Age Is Associated with Reduced Sharp-Wave Ripple Frequency and Altered Patterns of Neuronal Variability. J Neurosci 2017; 36:5650-60. [PMID: 27194342 DOI: 10.1523/jneurosci.3069-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/06/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Spatial and episodic memory performance declines with age, and the neural basis for this decline is not well understood. Sharp-wave ripples are brief (∼70 ms) high-frequency oscillatory events generated in the hippocampus and are associated with the consolidation of spatial memories. Given the connection between ripple oscillations and memory consolidation, we investigated whether the structure of ripple oscillations and ripple-triggered patterns of single-unit activity are altered in aged rats. Local field and single-unit activity surrounding sharp-wave ripple events were examined in the CA1 region of the hippocampus of old (n = 5) and young (n = 6) F344 rats during periods of rest preceding and following performance on a place-dependent eyeblink-conditioning task. Neural responses in aged rats differed from responses in young rats in several ways. First, compared with young rats, the rate of ripple occurrence (ripple density) is reduced in aged rats during postbehavior rest. Second, mean ripple frequency during prebehavior and postbehavior rest is lower in aged animals (aged: 132 Hz; young: 146 Hz). Third, single neurons in aged animals responded more consistently from ripple to ripple. Fourth, variability in interspike intervals was greater in aged rats. Finally, neurons were tuned to a narrower range of phases of the ripple oscillation relative to young animals. Together, these results suggest that the CA1 network in aged animals has a reduced "vocabulary" of available representational states. SIGNIFICANCE STATEMENT The hippocampus is a structure that is critical for the formation of episodic memories. Sharp-wave ripple events generated in the hippocampus have been implicated in memory consolidation processes critical to memory stabilization. We examine here whether these ripple oscillations are altered over the course of the life span, which could contribute to hippocampus-dependent memory deficits that occur during aging. This experiment used young and aged memory-impaired rats to examine age-related changes in ripple architecture, ripple-triggered spike variance, and spike-phase coherence. We found that there are, indeed, significant changes in characteristics of ripples in older animals that could impact consolidation processes and memory stabilization in the aged brain.
Collapse
|
11
|
Shan KQ, Lubenov EV, Papadopoulou M, Siapas AG. Spatial tuning and brain state account for dorsal hippocampal CA1 activity in a non-spatial learning task. eLife 2016; 5. [PMID: 27487561 PMCID: PMC4972538 DOI: 10.7554/elife.14321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
The hippocampus is a brain area crucial for episodic memory in humans. In contrast, studies in rodents have highlighted its role in spatial learning, supported by the discovery of place cells. Efforts to reconcile these views have found neurons in the rodent hippocampus that respond to non-spatial events but have not unequivocally dissociated the spatial and non-spatial influences on these cells. To disentangle these influences, we trained freely moving rats in trace eyeblink conditioning, a hippocampally dependent task in which the animal learns to blink in response to a tone. We show that dorsal CA1 pyramidal neurons are all place cells, and do not respond to the tone when the animal is moving. When the animal is inactive, the apparent tone-evoked responses reflect an arousal-mediated resumption of place-specific firing. These results suggest that one of the main output stages of the hippocampus transmits only spatial information, even in this non-spatial task. DOI:http://dx.doi.org/10.7554/eLife.14321.001
Collapse
Affiliation(s)
- Kevin Q Shan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Maria Papadopoulou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Athanassios G Siapas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
12
|
Cicchese JJ, Berry SD. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction. Front Psychiatry 2016; 7:1. [PMID: 26903886 PMCID: PMC4751249 DOI: 10.3389/fpsyt.2016.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 11/30/2022] Open
Abstract
Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3-7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain-computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric pathology.
Collapse
Affiliation(s)
- Joseph J Cicchese
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| | - Stephen D Berry
- Department of Psychology, Center for Neuroscience, Miami University , Oxford, OH , USA
| |
Collapse
|
13
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1049] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
14
|
Sethi A, Kemere C. Real time algorithms for sharp wave ripple detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2637-40. [PMID: 25570532 DOI: 10.1109/embc.2014.6944164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural activity during sharp wave ripples (SWR), short bursts of co-ordinated oscillatory activity in the CA1 region of the rodent hippocampus, is implicated in a variety of memory functions from consolidation to recall. Detection of these events in an algorithmic framework, has thus far relied on simple thresholding techniques with heuristically derived parameters. This study is an investigation into testing and improving the current methods for detection of SWR events in neural recordings. We propose and profile methods to reduce latency in ripple detection. Proposed algorithms are tested on simulated ripple data. The findings show that simple realtime algorithms can improve upon existing power thresholding methods and can detect ripple activity with latencies in the range of 10-20 ms.
Collapse
|
15
|
Nokia MS, Waselius T, Mikkonen JE, Wikgren J, Penttonen M. Phase matters: responding to and learning about peripheral stimuli depends on hippocampal θ phase at stimulus onset. ACTA ACUST UNITED AC 2015; 22:307-17. [PMID: 25979993 PMCID: PMC4436652 DOI: 10.1101/lm.038166.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022]
Abstract
Hippocampal θ (3-12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local θ oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular hippocampal θ-band responses (that predict good learning) were elicited by the CS when it was timed to commence at the fissure θ trough (Trough group). Regardless, learning in this group was not enhanced compared with a yoked control group, possibly due to a ceiling effect. However, when the CS was consistently presented to the peak of θ (Peak group), hippocampal θ-band responding was less organized and learning was retarded. In well-trained animals, the hippocampal θ phase at CS onset no longer affected performance of the learned response, suggesting a time-limited role for hippocampal processing in learning. To our knowledge, this is the first study to demonstrate that timing a peripheral stimulus to a specific phase of the hippocampal θ cycle produces robust effects on the synchronization of neural responses and affects learning at the behavioral level. Our results support the notion that the phase of spontaneous hippocampal θ oscillation is a means of regulating the processing of information in the brain to a behaviorally relevant degree.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyvaskyla, FI-40014 Jyväskylän, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyvaskyla, FI-40014 Jyväskylän, Finland
| | - Jarno E Mikkonen
- Department of Psychology, University of Jyvaskyla, FI-40014 Jyväskylän, Finland Centre for Interdisciplinary Brain Research, University of Jyvaskyla, FI-40014 Jyväskylän, Finland
| | - Jan Wikgren
- Department of Psychology, University of Jyvaskyla, FI-40014 Jyväskylän, Finland Centre for Interdisciplinary Brain Research, University of Jyvaskyla, FI-40014 Jyväskylän, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyvaskyla, FI-40014 Jyväskylän, Finland
| |
Collapse
|
16
|
Hoffmann LC, Cicchese JJ, Berry SD. Hippocampal Theta-Based Brain Computer Interface. BRAIN-COMPUTER INTERFACES 2015. [DOI: 10.1007/978-3-319-10978-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Hippocampal Sequences and the Cognitive Map. SPRINGER SERIES IN COMPUTATIONAL NEUROSCIENCE 2015. [DOI: 10.1007/978-1-4939-1969-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 2013; 80:751-64. [PMID: 24183025 DOI: 10.1016/j.neuron.2013.10.002] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, Center for Neural Science, School of Medicine, New York University, New York, NY 10016, USA.
| | | | | |
Collapse
|
19
|
Nokia MS, Wikgren J. Phase-locked hippocampal theta-band responses are related to discriminative eyeblink conditioned responding. Behav Brain Res 2013; 256:575-9. [PMID: 24029698 DOI: 10.1016/j.bbr.2013.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/16/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
Hippocampal electrophysiological oscillatory activity is undoubtedly related to learning and memory. The relative power of spontaneously occurring hippocampal theta (∼4-8 Hz) oscillations predicts how fast and how well an animal will learn: more theta predicts faster acquisition of the conditioned response in eyeblink conditioning in both rats and rabbits. Here, our aim was to study how hippocampal theta-band responses to conditioned stimuli elicited during very-long delay discrimination eyeblink conditioning relate to the accompanying conditioned behavior. We trained adult male New Zealand White rabbits using 1500-ms auditory stimuli as conditioned stimuli and a 100-ms airpuff as an unconditioned stimulus. The reinforced conditioned stimulus overlapped and co-terminated with the unconditioned stimulus whereas the non-reinforced conditioned stimulus was always presented alone. Consistent with previous results, hippocampal theta-band responses to the conditioned stimuli diminished in amplitude across training. Interestingly, hippocampal theta-band responses were most consistently time-locked when a well-trained animal failed to suppress behavioral learned responses to the non-reinforced conditioned stimulus. We suggest that phase-locking of hippocampal theta-band oscillations in response to external stimuli reflects retrieval of the dominant memory trace (adaptive or not) along with initiating the most prominent action scheme related to that memory trace.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | | |
Collapse
|
20
|
Nokia MS, Mikkonen JE, Penttonen M, Wikgren J. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front Behav Neurosci 2012; 6:84. [PMID: 23316148 PMCID: PMC3540934 DOI: 10.3389/fnbeh.2012.00084] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/16/2012] [Indexed: 12/03/2022] Open
Abstract
Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4–8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyväskylä Jyväskylä, Finland
| | | | | | | |
Collapse
|
21
|
Laasonen M, Kauppinen J, Leppämäki S, Tani P, Harno H, Hokkanen L, Wikgren J. Project DyAdd: classical eyeblink conditioning in adults with dyslexia and ADHD. Exp Brain Res 2012; 223:19-32. [PMID: 22948736 DOI: 10.1007/s00221-012-3237-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
In this study of the project DyAdd (Adult Dyslexia and Attention Deficit Disorder in Finland), classical eyeblink conditioning (EBC) was investigated in both delay and trace paradigms in adults (18-55 years) with dyslexia (n = 37), attention deficit-hyperactivity disorder (ADHD; n = 21), their comorbid combination (n = 8), and healthy controls (n = 35). In addition, the profiles of three participants with a rare autosomal dominant cerebellar disease were assessed (episodic ataxia type 2, EA-2). We found that participants with dyslexia were overall slower learners than controls in eyeblink conditioning. Further, they were the only group that had a reduced number of CRs in mediotemporal-dependent trace paradigm compared to the more cerebellum-dependent delay paradigm. Second, ADHD was found to be related to larger CR amplitude. Third, those with a comorbid condition learned faster and manifested CRs that were not well timed. Fourth, the cerebellar patients showed nearly no conditioning at all. Correlations between EBC and various neuropsychological domains (phonological processing, reading, spelling, arithmetic, executive functions, attention, and fine motor control) over all participants resulted in significant relations only for the delay paradigm: Increased amount of reading errors related with later peak latency and increased amount of self-corrections in fine motor control related with larger response magnitude. Within those who conditioned, relations emerged only for the trace paradigm: better spelling was related to larger response magnitude. These results do not lend support to the cerebellar hypothesis of dyslexia. On the contrary, dyslexia in its pure form seems to be related to a relative dysfunction of a larger hippocampal-cerebellar network. Further, larger responses in the ADHD group are suggested to result from their lowered responding threshold.
Collapse
Affiliation(s)
- Marja Laasonen
- Division of Cognitive and Neuropsychology, Institute of Behavioural Sciences, University of Helsinki, Siltavuorenpenger 1, P.O. Box 9, 00014, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nokia MS, Sisti HM, Choksi MR, Shors TJ. Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis. PLoS One 2012; 7:e31375. [PMID: 22348078 PMCID: PMC3277498 DOI: 10.1371/journal.pone.0031375] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/06/2012] [Indexed: 12/01/2022] Open
Abstract
Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America.
| | | | | | | |
Collapse
|
23
|
Reactivation, replay, and preplay: how it might all fit together. Neural Plast 2011; 2011:203462. [PMID: 21918724 PMCID: PMC3171894 DOI: 10.1155/2011/203462] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022] Open
Abstract
Sequential activation of neurons that occurs during “offline” states, such as sleep or awake rest, is correlated with neural sequences recorded during preceding exploration phases. This so-called reactivation, or replay, has been observed in a number of different brain regions such as the striatum, prefrontal cortex, primary visual cortex and, most prominently, the hippocampus. Reactivation largely co-occurs together with hippocampal sharp-waves/ripples, brief high-frequency bursts in the local field potential. Here, we first review the mounting evidence for the hypothesis that reactivation is the neural mechanism for memory consolidation during sleep. We then discuss recent results that suggest that offline sequential activity in the waking state might not be simple repetitions of previously experienced sequences. Some offline sequential activity occurs before animals are exposed to a novel environment for the first time, and some sequences activated offline correspond to trajectories never experienced by the animal. We propose a conceptual framework for the dynamics of offline sequential activity that can parsimoniously describe a broad spectrum of experimental results. These results point to a potentially broader role of offline sequential activity in cognitive functions such as maintenance of spatial representation, learning, or planning.
Collapse
|
24
|
Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsáki G. Relationships between hippocampal sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. J Neurosci 2011; 31:8605-16. [PMID: 21653864 PMCID: PMC3134187 DOI: 10.1523/jneurosci.0294-11.2011] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 11/21/2022] Open
Abstract
Hippocampal sharp waves (SPWs) and associated fast ("ripple") oscillations (SPW-Rs) in the CA1 region are among the most synchronous physiological patterns in the mammalian brain. Using two-dimensional arrays of electrodes for recording local field potentials and unit discharges in freely moving rats, we studied the emergence of ripple oscillations (140-220 Hz) and compared their origin and cellular-synaptic mechanisms with fast gamma oscillations (90-140 Hz). We show that (1) hippocampal SPW-Rs and fast gamma oscillations are quantitatively distinct patterns but involve the same networks and share similar mechanisms; (2) both the frequency and magnitude of fast oscillations are positively correlated with the magnitude of SPWs; (3) during both ripples and fast gamma oscillations the frequency of network oscillation is higher in CA1 than in CA3; and (4) the emergence of CA3 population bursts, a prerequisite for SPW-Rs, is biased by activity patterns in the dentate gyrus and entorhinal cortex, with the highest probability of ripples associated with an "optimum" level of dentate gamma power. We hypothesize that each hippocampal subnetwork possesses distinct resonant properties, tuned by the magnitude of the excitatory drive.
Collapse
Affiliation(s)
- David Sullivan
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
| | - Jozsef Csicsvari
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom, and
| | - Kenji Mizuseki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
| | - Sean Montgomery
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
| | - Kamran Diba
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, Wisconsin 53211
| | - György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey 07102 New Jersey
| |
Collapse
|
25
|
Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 2011; 21:452-9. [PMID: 21371881 DOI: 10.1016/j.conb.2011.02.005] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/03/2023]
|