1
|
Kelly MP, Nikolaev VO, Gobejishvili L, Lugnier C, Hesslinger C, Nickolaus P, Kass DA, Pereira de Vasconcelos W, Fischmeister R, Brocke S, Epstein PM, Piazza GA, Keeton AB, Zhou G, Abdel-Halim M, Abadi AH, Baillie GS, Giembycz MA, Bolger G, Snyder G, Tasken K, Saidu NEB, Schmidt M, Zaccolo M, Schermuly RT, Ke H, Cote RH, Mohammadi Jouabadi S, Roks AJM. Cyclic nucleotide phosphodiesterases as drug targets. Pharmacol Rev 2025; 77:100042. [PMID: 40081105 DOI: 10.1016/j.pharmr.2025.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 03/15/2025] Open
Abstract
Cyclic nucleotides are synthesized by adenylyl and/or guanylyl cyclase, and downstream of this synthesis, the cyclic nucleotide phosphodiesterase families (PDEs) specifically hydrolyze cyclic nucleotides. PDEs control cyclic adenosine-3',5'monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) intracellular levels by mediating their quick return to the basal steady state levels. This often takes place in subcellular nanodomains. Thus, PDEs govern short-term protein phosphorylation, long-term protein expression, and even epigenetic mechanisms by modulating cyclic nucleotide levels. Consequently, their involvement in both health and disease is extensively investigated. PDE inhibition has emerged as a promising clinical intervention method, with ongoing developments aiming to enhance its efficacy and applicability. In this comprehensive review, we extensively look into the intricate landscape of PDEs biochemistry, exploring their diverse roles in various tissues. Furthermore, we outline the underlying mechanisms of PDEs in different pathophysiological conditions. Additionally, we review the application of PDE inhibition in related diseases, shedding light on current advancements and future prospects for clinical intervention. SIGNIFICANCE STATEMENT: Regulating PDEs is a critical checkpoint for numerous (patho)physiological conditions. However, despite the development of several PDE inhibitors aimed at controlling overactivated PDEs, their applicability in clinical settings poses challenges. In this context, our focus is on pharmacodynamics and the structure activity of PDEs, aiming to illustrate how selectivity and efficacy can be optimized. Additionally, this review points to current preclinical and clinical evidence that depicts various optimization efforts and indications.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Neurobiology, Center for Research on Aging, University of Maryland School of Medicine, Baltimore, Maryland
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leila Gobejishvili
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, Louisville
| | - Claire Lugnier
- Translational CardioVascular Medicine, CRBS, UR 3074, Strasbourg, France
| | | | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Orsay, France
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, Connecticut
| | - Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, Connecticut
| | - Gary A Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Adam B Keeton
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama
| | - Gang Zhou
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Gretchen Snyder
- Molecular Neuropharmacology, Intra-Cellular Therapies Inc (ITI), New York, New York
| | - Kjetil Tasken
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nathaniel E B Saidu
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics and National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ralph T Schermuly
- Department of internal Medicine, Justus Liebig University of Giessen, Giessen, Germany
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina
| | - Rick H Cote
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire
| | - Soroush Mohammadi Jouabadi
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Anton J M Roks
- Section of Vascular and Metabolic Disease, Department of Internal Medicine, Erasmus MC University Medical Center, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Teague CD, Markovic T, Zhou X, Martinez-Rivera FJ, Minier-Toribio A, Zinsmaier A, Pulido NV, Schmidt KH, Lucerne KE, Godino A, van der Zee YY, Ramakrishnan A, Futamura R, Browne CJ, Holt LM, Yim YY, Azizian CH, Walker DM, Shen L, Dong Y, Zhang B, Nestler EJ. Circuit-Wide Gene Network Analysis Reveals Sex-Specific Roles for Phosphodiesterase 1b in Cocaine Addiction. J Neurosci 2024; 44:e1327232024. [PMID: 38637154 PMCID: PMC11154853 DOI: 10.1523/jneurosci.1327-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.
Collapse
Affiliation(s)
- Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Freddyson J Martinez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Angelica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Alexander Zinsmaier
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Nathalia V Pulido
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kyra H Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Kelsey E Lucerne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yentl Y van der Zee
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Corrine H Azizian
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Deena M Walker
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
3
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
4
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
5
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
6
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
7
|
Sharma N, Luhach K, Golani LK, Singh B, Sharma B. Vinpocetine, a PDE1 modulator, regulates markers of cerebral health, inflammation, and oxidative stress in a rat model of prenatal alcohol-induced experimental attention deficit hyperactivity disorder. Alcohol 2022; 105:25-34. [PMID: 35995260 DOI: 10.1016/j.alcohol.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/26/2023]
Abstract
Prenatal alcohol exposure (PAE) has been shown to induce symptomatology associated with attention deficit hyperactivity disorder (ADHD) by altering neurodevelopmental trajectories. Phosphodiesterase-1 (PDE1) is expressed centrally and has been used in various experimental brain conditions. We investigated the role of vinpocetine, a PDE1 inhibitor, on behavioral phenotypes and important biochemical deficits associated with a PAE rat model of ADHD. Protein markers of cerebral health (synapsin-IIa, BDNF, and pCREB), inflammation (IL-6, IL-10, and TNF-α), and oxidative stress (TBARS, GSH, and SOD) were analyzed in three brain regions (frontal cortex, striatum, and cerebellum). Hyperactivity, inattention, and anxiety introduced in the offspring due to PAE were assayed using open-field, Y-maze, and elevated plus maze, respectively. Administration of vinpocetine (10 & 20 mg/kg, p.o. [by mouth]) to PAE rat offspring for 4 weeks resulted in improvement of the behavioral profile of the animals. Additionally, levels of protein markers such as synapsin-IIa, BDNF, pCREB, IL-10, SOD, and GSH were found to be significantly increased, with a significant reduction in markers such as TNF-α, IL-6, and TBARS in selected brain regions of vinpocetine-treated animals. Vinpocetine, a selective PDE1 inhibitor, rectified behavioral phenotypes associated with ADHD, possibly by improving cerebral function, reducing brain inflammation, and reducing brain oxidative stress. This study provides preliminary analysis and suggests that the PDE1 enzyme may be an important pharmacological tool to study ADHD as a result of PAE.
Collapse
Affiliation(s)
- Niti Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Lalit K Golani
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, United States
| | - Bhagwat Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
8
|
Masilamoni GJ, Sinon CG, Kochoian BA, Singh A, McRiner AJ, Leventhal L, Papa SM. Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of l-DOPA in parkinsonian non-human primates. Neuropharmacology 2022; 212:109060. [PMID: 35461880 PMCID: PMC11698471 DOI: 10.1016/j.neuropharm.2022.109060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Phosphodiesterase 9 (PDE9) degrades selectively the second messenger cGMP, which is an important molecule of dopamine signaling pathways in striatal projection neurons (SPNs). In this study, we assessed the effects of a selective PDE9 inhibitor (PDE9i) in the primate model of Parkinson's disease (PD). Six macaques with advanced parkinsonism were used in the study. PDE9i was administered as monotherapy and co-administration with l-DOPA at two predetermined doses (suboptimal and threshold s.c. doses of l-Dopa methyl ester plus benserazide) using a controlled blinded protocol to assess motor disability, l-DOPA -induced dyskinesias (LID), and other neurologic drug effects. While PDE9i was ineffective as monotherapy, 2.5 and 5 mg/kg (s.c.) of PDE9i significantly potentiated the antiparkinsonian effects of l-DOPA with a clear prolongation of the "on" state (p < 0.01) induced by either the suboptimal or threshold l-DOPA dose. Co-administration of PDE9i had no interaction with l-DOPA pharmacokinetics. PDE9i did not affect the intensity of LID. These results indicate that cGMP upregulation interacts with dopamine signaling to enhance the l-DOPA reversal of parkinsonian motor disability. Therefore, striatal PDE9 inhibition may be further explored as a strategy to improve motor responses to l-DOPA in PD.
Collapse
Affiliation(s)
| | - Christopher G Sinon
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Brik A Kochoian
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Arun Singh
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | | | | | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Samidurai A, Xi L, Das A, Iness AN, Vigneshwar NG, Li PL, Singla DK, Muniyan S, Batra SK, Kukreja RC. Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. Pharmacol Ther 2021; 226:107858. [PMID: 33895190 DOI: 10.1016/j.pharmthera.2021.107858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are superfamily of enzymes that regulate the spatial and temporal relationship of second messenger signaling in the cellular system. Among the 11 different families of PDEs, phosphodiesterase 1 (PDE1) sub-family of enzymes hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) in a mutually competitive manner. The catalytic activity of PDE1 is stimulated by their binding to Ca2+/calmodulin (CaM), resulting in the integration of Ca2+ and cyclic nucleotide-mediated signaling in various diseases. The PDE1 family includes three subtypes, PDE1A, PDE1B and PDE1C, which differ for their relative affinities for cAMP and cGMP. These isoforms are differentially expressed throughout the body, including the cardiovascular, central nervous system and other organs. Thus, PDE1 enzymes play a critical role in the pathophysiology of diseases through the fundamental regulation of cAMP and cGMP signaling. This comprehensive review provides the current research on PDE1 and its potential utility as a therapeutic target in diseases including the cardiovascular, pulmonary, metabolic, neurocognitive, renal, cancers and possibly others.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Audra N Iness
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Navin G Vigneshwar
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|
10
|
Schröder S, Scheunemann M, Wenzel B, Brust P. Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016. Int J Mol Sci 2021; 22:ijms22083832. [PMID: 33917199 PMCID: PMC8068090 DOI: 10.3390/ijms22083832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the research field of intracellular signaling related to the second messenger molecules cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis and staging of numerous diseases associated with altered PDE density or activity in the periphery and the central nervous system as well as the translational evaluation of novel PDE inhibitors as therapeutics. In this follow-up review, we summarize the efforts in the development of novel PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE radioligands since 2016.
Collapse
Affiliation(s)
- Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Matthias Scheunemann
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany; (M.S.); (B.W.); (P.B.)
| |
Collapse
|
11
|
Enomoto T, Nakako T, Goda M, Wada E, Kitamura A, Fujii Y, Ikeda K. A novel phosphodiesterase 1 inhibitor reverses L-dopa-induced dyskinesia, but not motivation deficits, in monkeys. Pharmacol Biochem Behav 2021; 205:173183. [PMID: 33774006 DOI: 10.1016/j.pbb.2021.173183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
The enzyme phosphodiesterase 1 (PDE1) is highly expressed in the striatum and cortex. However, its role in corticostriatal function has not been fully investigated. The present study was aimed at evaluating the therapeutic potential of PDE1 inhibitors in treating motivation deficits and 3,4-dihydroxy-L-phenylalanine (L-dopa)-induced dyskinesia, which are pathological conditions of the corticostriatal system. We used a novel PDE1 inhibitor 3-ethyl-2-{[trans-4-(methoxymethyl)cyclohexyl]oxy}-7-(tetrahydro-2H-pyran-4-yl)-imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-143136), which was identified in our drug discovery program. Motivation in monkeys was measured using a progressive ratio task. L-Dopa-induced dyskinesia and disability scores were measured in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. DSR-143136 had a high selectivity for PDE1 over other PDE families and 67 other biologic targets. A dopamine D1 receptor antagonist SCH-39166 at 0.01, 0.03 and 0.1 mg/kg potently decreased motivation in monkeys. However, DSR-143136 at 0.3 and 3 mg/kg did not affect motivation deficits induced by low-dose SCH-39166 (0.01 mg/kg). On the other hand, DSR-143136 at 3 mg/kg potently decreased L-dopa-induced dyskinesia in the Parkinsonian monkey model. Importantly, this antidyskinesic efficacy was NOT accompanied by detrimental effects on motor function. Further, this compound decreased on-time with marked or severe dyskinesia, without affecting on-time itself. These findings suggest that PDE1 inhibitor could be a therapeutic candidate for treating L-dopa-induced dyskinesia in Parkinson's disease, but not for motivation deficits.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan.
| | - Tomokazu Nakako
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Masao Goda
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Erika Wada
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Atsushi Kitamura
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yuki Fujii
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Kazuhito Ikeda
- Drug Research Division, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| |
Collapse
|
12
|
Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry 2021; 26:4570-4582. [PMID: 33414502 PMCID: PMC8589663 DOI: 10.1038/s41380-020-00997-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.
Collapse
Affiliation(s)
- Sébastien Delhaye
- grid.429194.30000 0004 0638 0649Université Côte d’Azur, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Inserm, CNRS UMR7275, Institute of Molecular and Cellular Pharmacology, 06560, Valbonne, France.
| |
Collapse
|
13
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
14
|
Chakroborty S, Manfredsson FP, Dec AM, Campbell PW, Stutzmann GE, Beaumont V, West AR. Phosphodiesterase 9A Inhibition Facilitates Corticostriatal Transmission in Wild-Type and Transgenic Rats That Model Huntington's Disease. Front Neurosci 2020; 14:466. [PMID: 32581668 PMCID: PMC7283904 DOI: 10.3389/fnins.2020.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) results from abnormal expansion in CAG trinucleotide repeats within the HD gene, a mutation which leads to degeneration of striatal medium-sized spiny neurons (MSNs), deficits in corticostriatal transmission, and loss of motor control. Recent studies also indicate that metabolism of cyclic nucleotides by phosphodiesterases (PDEs) is dysregulated in striatal networks in a manner linked to deficits in corticostriatal transmission. The current study assessed cortically-evoked firing in electrophysiologically-identified MSNs and fast-spiking interneurons (FSIs) in aged (9-11 months old) wild-type (WT) and BACHD transgenic rats (TG5) treated with vehicle or the selective PDE9A inhibitor PF-04447943. WT and TG5 rats were anesthetized with urethane and single-unit activity was isolated during low frequency electrical stimulation of the ipsilateral motor cortex. Compared to WT controls, MSNs recorded in TG5 animals exhibited decreased spike probability during cortical stimulation delivered at low to moderate stimulation intensities. Moreover, large increases in onset latency of cortically-evoked spikes and decreases in spike probability were observed in FSIs recorded in TG5 animals. Acute systemic administration of the PDE9A inhibitor PF-04447943 significantly decreased the onset latency of cortically-evoked spikes in MSNs recorded in WT and TG5 rats. PDE9A inhibition also increased the proportion of MSNs responding to cortical stimulation and reversed deficits in spike probability observed in TG5 rats. As PDE9A is a cGMP specific enzyme, drugs such as PF-04447943 which act to facilitate striatal cGMP signaling and glutamatergic corticostriatal transmission could be useful therapeutic agents for restoring striatal function and alleviating motor and cognitive symptoms associated with HD.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Alexander M Dec
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Peter W Campbell
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
15
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
16
|
Multiple rare inherited variants in a four generation schizophrenia family offer leads for complex mode of disease inheritance. Schizophr Res 2020; 216:288-294. [PMID: 31813803 PMCID: PMC8958857 DOI: 10.1016/j.schres.2019.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 02/01/2023]
Abstract
Schizophrenia is a clinically and genetically heterogeneous neuropsychiatric disorder, with a polygenic basis but identification of the specific determinants is a continuing challenge. In this study, we analyzed a multigenerational family, with all healthy individuals in the first two generations, and four progeny affected with schizophrenia in the subsequent two generations, using whole exome sequencing. We identified five rare protein sequence altering heterozygous variants, in five different genes namely SMARCA5, PDE1B, TNIK, SMARCA2 and FLRT shared among all affected members and predicted to be damaging. Variants in SMARCA5 and PDE1B were inherited from the unaffected father whereas variants in TNIK, SMARCA2 and FLRT1 were inherited from the unaffected mother in all the three affected individuals in the third generation; and notably all these five variants were transmitted by an affected mother to her affected son. Microsatellite based analysis lent a modest linkage support (LOD score of 1.2; θ=0.0 at each variant). Of note, analysis of exome data of an ancestry matched unrelated schizophrenia cohort (n = 350), revealed a total of 16 rare variants (MAF < 0.01) in these five genes. Interestingly, these five genes involved in neurodevelopmental and/or neurotransmitter signaling processes are implicated in the etiology of schizophrenia previously. This study provides good evidence for a likely cumulative contribution of multiple rare variants from disease relevant genes with a threshold effect in disease development and seems to explain the unusual disease transmission pattern generally witnessed in such conditions, but warrants extensive replication efforts in families with similar complex disease inheritance profiles.
Collapse
|
17
|
Enomoto T, Tatara A, Goda M, Nishizato Y, Nishigori K, Kitamura A, Kamada M, Taga S, Hashimoto T, Ikeda K, Fujii Y. A Novel Phosphodiesterase 1 Inhibitor DSR-141562 Exhibits Efficacies in Animal Models for Positive, Negative, and Cognitive Symptoms Associated with Schizophrenia. J Pharmacol Exp Ther 2019; 371:692-702. [PMID: 31578257 DOI: 10.1124/jpet.119.260869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/18/2019] [Indexed: 01/09/2023] Open
Abstract
In our drug discovery program, we identified a novel orally available and brain-penetrant phosphodiesterase (PDE) 1 inhibitor, 3-methyl-7-(tetrahydro-2H-pyran-4-yl)-2-{[trans-4-(trifluoromethyl)cyclohexyl]-methoxy}imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-141562). In the present study, we characterized the preclinical profile of DSR-141562. This compound has preferential selectivity for predominantly brain-expressed PDE1B over other PDE1 family members, and high selectivity for the PDE1 family over other PDE families and 65 other tested biologic targets. Oral administration of DSR-141562 at 10 mg/kg slightly elevated the cGMP concentration, and it potently enhanced the increase of cGMP induced by a dopamine D1 receptor agonist in mouse brains. The cGMP level in monkey cerebrospinal fluid was also elevated after treatment with DSR-141562 at 30 and 100 mg/kg and could be used as a translational biomarker. Since PDE1B is believed to regulate dopaminergic and glutamatergic signal transduction, we evaluated the effects of this compound using schizophrenia-related behavioral assays. DSR-141562 at 3-30 mg/kg potently inhibited methamphetamine-induced locomotor hyperactivity in rats, while it had only minimal effects on the spontaneous locomotor activity. Furthermore, DSR-141562 at 1-100 mg/kg did not induce any signs of catalepsy in rats. DSR-141562 at 0.3-3 mg/kg reversed social interaction and novel object recognition deficits induced by repeated treatment with an N-methyl-D-aspartate receptor antagonist, phencyclidine, in mice and rats, respectively. In common marmosets, DSR-141562 at 3 and 30 mg/kg improved the performance in object retrieval with detour tasks. These results suggest that DSR-141562 is a therapeutic candidate for positive, negative, and cognitive symptoms in schizophrenia. SIGNIFICANCE STATEMENT: This is the first paper showing that a phosphodiesterase 1 inhibitor is efficacious in animal models for positive and negative symptoms associated with schizophrenia. Furthermore, we demonstrated that this compound improved cognitive function in the common marmoset, a nonhuman primate.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Ayaka Tatara
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Masao Goda
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Yohei Nishizato
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Kantaro Nishigori
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Atsushi Kitamura
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Mami Kamada
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Shiori Taga
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Takashi Hashimoto
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Kazuhito Ikeda
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Yuki Fujii
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| |
Collapse
|
18
|
Harms JF, Menniti FS, Schmidt CJ. Phosphodiesterase 9A in Brain Regulates cGMP Signaling Independent of Nitric-Oxide. Front Neurosci 2019; 13:837. [PMID: 31507355 PMCID: PMC6716477 DOI: 10.3389/fnins.2019.00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
PDE9A is a cGMP-specific phosphodiesterase expressed in neurons throughout the brain that has attracted attention as a therapeutic target to treat cognitive disorders. Indeed, PDE9A inhibitors are under evaluation in clinical trials as a treatment for Alzheimer's disease and schizophrenia. However, little is known about the cGMP signaling cascades regulated by PDE9A. Canonical cGMP signaling in brain follows the activation of neuronal nitric oxide synthase (nNOS) and the generation of nitric oxide, which activates soluble guanylyl cyclase and cGMP synthesis. However, we show that in mice, PDE9A regulates a pool of cGMP that is independent of nNOS, specifically, and nitric oxide signaling in general. This PDE9A-regulated cGMP pool appears to be highly compartmentalized and independent of cGMP pools regulated by several PDEs. These findings provide a new foundation for study of the upstream and downstream signaling elements regulated by PDE9A and its potential as a therapeutic target for brain disease.
Collapse
Affiliation(s)
- John F. Harms
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| | - Frank S. Menniti
- George & Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Christopher J. Schmidt
- Pfizer Innovation and Research Lab Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| |
Collapse
|
19
|
Liu T, Zhou J, Cui H, Li P, Luo J, Li T, He F, Wang Y, Tang T. iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:244-254. [PMID: 30502478 DOI: 10.1016/j.jep.2018.11.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is a traditional Chinese medicine(TCM), that possesses neuroprotective, anti-inflammatory, antibacterial, antioxidative, purgative and anticancer properties, and has been used to treat intracerebral hemorrhage (ICH) and many other diseases. AIMS OF THE STUDY This study aimed to investigate the changes of brain protein in ICH rats treated with rhubarb and to explore the multi-target mechanism of rhubarb in the treatment of ICH via bioinformatics analysis of differentially expressed proteins (DEPs). MATERIALS AND METHODS Rats were subjected to collagenase-induced ICH and then treated orally with 3 or 12 g/kg rhubarb daily for 2 days following ICH. After sacrifice, total protein of brain tissue was extracted, and isobaric tag for relative and absolute quantification (iTRAQ)-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was employed to quantitatively identify of the DEPs in two treatment groups compared with the vehicle group. The DEPs were analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and STRING databases. Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was used to predict the target of rhubarb and western blotting was used for verification. RESULTS In total, 1356 proteins were identified with a 1% false discovery rate (FDR). Among them, 55 DEPs were significantly altered in the sham, vehicle, low dose rhubarb group (LDR, 3 g/kg), and high dose rhubarb group (HDR, 12 g/kg). Enrichment analysis of GO annotations indicated that rhubarb mainly regulated expression of some neuron projection proteins involved in the response to drug and nervous system development. The dopaminergic synapse pathway was found to be the most significant DEP in the combined analysis of the KEGG and BATMAN-TCM databases. Based on the results of the STRING analysis, oxidative stress (OS), calcium binding protein regulation, vascularization, and energy metabolism were important in the rhubarb therapeutic process. CONCLUSION Rhubarb achieves its effects mainly through the dopaminergic synapse pathway in ICH treatment. The ICH-treating mechanisms of rhubarb may also involve anti-OS, calcium binding protein regulation, angiogenic regulation, and energy metabolism improvement. This study adds new evidence to clinical applications of rhubarb for ICH.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000 Urumqi, China
| | - Jing Zhou
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Pengfei Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Teng Li
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China
| | - Feng He
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| | - Tao Tang
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China; National Research Center of geriatrics, Xiangya Hospital, Central South University, China.
| |
Collapse
|
20
|
McQuown S, Xia S, Baumgärtel K, Barido R, Anderson G, Dyck B, Scott R, Peters M. Phosphodiesterase 1b (PDE1B) Regulates Spatial and Contextual Memory in Hippocampus. Front Mol Neurosci 2019; 12:21. [PMID: 30792627 PMCID: PMC6374598 DOI: 10.3389/fnmol.2019.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
Augmentation of cyclic nucleotide signaling through inhibition of phosphodiesterase (PDE) activity has long been understood to enhance memory. Efforts in this domain have focused predominantly on PDE4, a cAMP-specific phosphodiesterase implicated in consolidation. But less is known about the function of other PDEs expressed in neuroanatomical regions critical to memory. The PDE1 isoforms are the only PDEs to regulate neuronal cAMP and cGMP levels in a Ca2+/Calmodulin (CaM) dependent manner. Here, we show that knock-down of PDE1B in hippocampus of adult mice enhances contextual and spatial memory without effect on non-cognitive behaviors. Pharmacological augmentation of memory in rats was observed with a selective inhibitor of PDE1 dosed before and immediately after training, but not with drug dosed either 1 h after training or before recall. Our data clearly demonstrate a role for the PDE1B isoforms as negative regulators of memory, and they implicate PDE1 in an early phase of consolidation, but not retrieval. Inhibition of PDE1B is a promising therapeutic mechanism for treating memory impairment.
Collapse
Affiliation(s)
- Susan McQuown
- Dart NeuroScience, LLC, San Diego, CA, United States
| | - Shouzhen Xia
- Dart NeuroScience, LLC, San Diego, CA, United States
| | | | | | - Gary Anderson
- Dart NeuroScience, LLC, San Diego, CA, United States
| | - Brian Dyck
- Dart NeuroScience, LLC, San Diego, CA, United States
| | | | - Marco Peters
- Dart NeuroScience, LLC, San Diego, CA, United States
| |
Collapse
|
21
|
Pekcec A, Schülert N, Stierstorfer B, Deiana S, Dorner-Ciossek C, Rosenbrock H. Targeting the dopamine D 1 receptor or its downstream signalling by inhibiting phosphodiesterase-1 improves cognitive performance. Br J Pharmacol 2018; 175:3021-3033. [PMID: 29726015 PMCID: PMC6016630 DOI: 10.1111/bph.14350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/08/2018] [Accepted: 04/09/2018] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Insufficient prefrontal dopamine 1 (D1) receptor signalling has been linked to cognitive dysfunction in several psychiatric conditions. Because the PDE1 isoform B (PDE1B) is postulated to regulate D1 receptor‐dependent signal transduction, in this study we aimed to elucidate the role of PDE1 in cognitive processes reliant on D1 receptor function. Experimental Approach Cognitive performance of the D1 receptor agonist, SKF38393, was studied in the T‐maze continuous alternation task and 5‐choice serial reaction time task. D1 receptor/PDE1B double‐immunohistochemistry was performed using human and rat prefrontal brain sections. The pharmacological activity of the PDE1 inhibitor, ITI‐214, was assessed by measuring the increase in cAMP/cGMP in prefrontal brain tissue and its effect on working memory performance. Mechanistic studies on the modulation of prefrontal neuronal transmission by SKF38393 and ITI‐214 were performed using extracellular recordings in brain slices. Key Results SKF38393 improved working memory and attentional performance in rodents. D1 receptor/PDE1B co‐expression was verified in both human and rat prefrontal brain sections. The pharmacological activity of ITI‐214 on its target, PDE1, was demonstrated by its ability to increase prefrontal cAMP/cGMP. In addition, ITI‐214 improved working memory performance. Both SKF38393 and ITI‐214 facilitated neuronal transmission in prefrontal brain slices. Conclusion and Implications We hypothesize that PDE1 inhibition improves working memory performance by increasing prefrontal synaptic transmission and/or postsynaptic D1 receptor signalling, by modulating prefrontal downstream second messenger levels. These data, therefore, support the use of PDE1 inhibitors as a potential approach for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Anton Pekcec
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Niklas Schülert
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Birgit Stierstorfer
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Serena Deiana
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Cornelia Dorner-Ciossek
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Holger Rosenbrock
- CNS Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| |
Collapse
|
22
|
Padovan-Neto FE, West AR. Regulation of Striatal Neuron Activity by Cyclic Nucleotide Signaling and Phosphodiesterase Inhibition: Implications for the Treatment of Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2018; 17:257-283. [PMID: 28956336 DOI: 10.1007/978-3-319-58811-7_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of cyclic nucleotides (cAMP/cGMP) in the brain. Several classes of PDE enzymes with distinct tissue distributions, cyclic nucleotide selectivity, and regulatory factors are highly expressed in brain regions subserving cognitive and motor processes known to be disrupted in neurodegenerative diseases such as Parkinson's disease (PD). Furthermore, small-molecule inhibitors of several different PDE family members alter cyclic nucleotide levels and favorably enhance motor performance and cognition in animal disease models. This chapter will explore the roles and therapeutic potential of non-selective and selective PDE inhibitors on neural processing in fronto-striatal circuits in normal animals and models of DOPA-induced dyskinesias (LIDs) associated with PD. The impact of selective PDE inhibitors and augmentation of cAMP and cGMP signaling on the membrane excitability of striatal medium-sized spiny projection neurons (MSNs) will be discussed. The effects of cyclic nucleotide signaling and PDE inhibitors on synaptic plasticity of striatonigral and striatopallidal MSNs will be also be reviewed. New data on the efficacy of PDE10A inhibitors for reversing behavioral and electrophysiological correlates of L-DOPA-induced dyskinesias in a rat model of PD will also be presented. Together, these data will highlight the potential of novel PDE inhibitors for treatment of movement disorders such as PD which are associated with abnormal corticostriatal transmission.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
23
|
Wennogle LP, Hoxie H, Peng Y, Hendrick JP. Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction. ADVANCES IN NEUROBIOLOGY 2018; 17:349-384. [PMID: 28956339 DOI: 10.1007/978-3-319-58811-7_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The focus of this chapter is on the cyclic nucleotide phosphodiesterase 1 (PDE1) family. PDE1 is one member of the 11 PDE families (PDE 1-11). It is the only phosphodiesterase family that is calcium/calmodulin activated. As a result, whereas other families of PDEs 2-11 play a dominant role controlling basal levels of cyclic nucleotides, PDE1 is involved when intra-cellular calcium levels are elevated and, thus, has an "on demand" or activity-dependent involvement in the control of cyclic nucleotides in excitatory cells including neurons, cardiomyocytes and smooth muscle. As a Class 1 phosphodiesterase, PDE1 hydrolyzes the 3' bond of 3'-5'-cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Here, we review evidence for this family of enzymes as drug targets for development of therapies aimed to address disorders of the central nervous system (CNS) and of degenerative diseases. The chapter includes sections on the potential for cognitive enhancement in mental disorders, as well as a review of PDE1 enzyme structure, enzymology, tissue distribution, genomics, inhibitors, pharmacology, clinical trials, and therapeutic indications. Information is taken from public databases. A number of excellent reviews of the phosphodiesterase family have been written as well as reviews of the PDE1 family. References cited here are not comprehensive, rather pointing to major reviews and key publications.
Collapse
Affiliation(s)
- Lawrence P Wennogle
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA.
| | - Helen Hoxie
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA
| | - Youyi Peng
- Rutgers University, 7 College Ave, New Brunswick, NJ, 08901, USA
| | - Joseph P Hendrick
- Alexandria Center for Life Science, Intra-Cellular Therapies, Inc., New York, 10016, NY, USA
| |
Collapse
|
24
|
Hufgard JR, Williams MT, Vorhees CV. Phosphodiesterase-1b deletion confers depression-like behavioral resistance separate from stress-related effects in mice. GENES BRAIN AND BEHAVIOR 2017; 16:756-767. [PMID: 28488329 DOI: 10.1111/gbb.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/17/2017] [Accepted: 05/06/2017] [Indexed: 12/20/2022]
Abstract
Phosphodiesterase-1b (Pde1b) is highly expressed in striatum, dentate gyrus, CA3 and substantia nigra. In a new Floxed Pde1b × CreCMV global knockout (KO) mouse model, we show an immobility-resistance phenotype that recapitulates that found in constitutive Pde1b KO mice. We use this new mouse model to show that the resistance to acute stress-induced depression-like phenotype is not the product of changes in locomotor activity or reactivity to other stressors (learned helplessness, novelty suppressed feeding or dexamethasone suppression), and is not associated with anhedonia using the sucrose preference test. Using tamoxifen inducible Cre, we show that the immobility-resistant phenotype depends on the age of induction. The effect is present when Pde1b is Reduced from conception, P0 or P32, but not if reduced as adults (P60). We also mapped regional brain expression of PDE1B protein and of the Cre driver. These data add to the suggestion that PDE1B may be a target for drug development with therapeutic potential in depression alone or in combination with existing antidepressants.
Collapse
Affiliation(s)
- J R Hufgard
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M T Williams
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C V Vorhees
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a. Psychopharmacology (Berl) 2017; 234:1803-1813. [PMID: 28337525 DOI: 10.1007/s00213-017-4587-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/21/2023]
Abstract
RATIONALE Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. OBJECTIVES We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. METHODS Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. RESULTS Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. CONCLUSIONS PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.
Collapse
|
26
|
Dyck B, Branstetter B, Gharbaoui T, Hudson AR, Breitenbucher JG, Gomez L, Botrous I, Marrone T, Barido R, Allerston CK, Cedervall EP, Xu R, Sridhar V, Barker R, Aertgeerts K, Schmelzer K, Neul D, Lee D, Massari ME, Andersen CB, Sebring K, Zhou X, Petroski R, Limberis J, Augustin M, Chun LE, Edwards TE, Peters M, Tabatabaei A. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties. J Med Chem 2017; 60:3472-3483. [DOI: 10.1021/acs.jmedchem.7b00302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Dyck
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Bryan Branstetter
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tawfik Gharbaoui
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Andrew R. Hudson
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - J. Guy Breitenbucher
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Laurent Gomez
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Iriny Botrous
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Tami Marrone
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Richard Barido
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Charles K. Allerston
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - E. Peder Cedervall
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Rui Xu
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Vandana Sridhar
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ryan Barker
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kathleen Aertgeerts
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kara Schmelzer
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - David Neul
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Dong Lee
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Mark Eben Massari
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Carsten B. Andersen
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Kristen Sebring
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Xianbo Zhou
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Robert Petroski
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - James Limberis
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Martin Augustin
- Proteros Biostructures GmbH, Bunsenstraße 7a, D-82152 Martinsried, Germany
| | - Lawrence E. Chun
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Thomas E. Edwards
- Berylllium, 7869 NE Day Road West, Bainbridge
Island, Washington 98110, United States
| | - Marco Peters
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| | - Ali Tabatabaei
- Dart Neuroscience LLC, 12278 Scripps Summit Drive, San Diego, California 92131, United States
| |
Collapse
|
27
|
Can Cyclic Nucleotide Phosphodiesterase Inhibitors Be Drugs for Parkinson's Disease? Mol Neurobiol 2017; 55:822-834. [PMID: 28062949 DOI: 10.1007/s12035-016-0355-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) has no known cure; available therapies are only capable of offering temporary, symptomatic relief to the patients. Varied therapeutic strategies that are clinically used for PD are pharmacological therapies including dopamine replacement therapies (with or without adjuvant), postsynaptic dopamine receptor stimulation, dopamine catabolism inhibitors and also anticholinergics. Surgical therapies like deep brain stimulation and ablative surgical techniques are also employed. Phosphodiesterases (PDEs) are enzymes that degrade the phosphodiester bond in the second messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). A number of PDE families are highly expressed in the striatum including PDE1-4, PDE7, PDE9 and PDE10. There are growing evidences to suggest that these enzymes play a critical role in modulating cAMP-mediated dopamine signalling at the postsynaptic region. Therefore, it is clear that PDEs, given the broad range of subtypes and their varied tissue- and region-specific distributions, will be able to provide a range of possibilities as drug targets. There is no phosphodiesterase inhibitor currently approved for use against PD. The development of small molecule inhibitors against cyclic nucleotide PDE is a particularly hot area of investigation, and a lot of research and development is geared in this direction with major players in the pharmaceutical industry investing heavily in developing such potential drug entities. This review, while critically assessing the existing body of literature on brain PDEs with particular interest in the striatum in the context of motor function regulation, indicates it is certainly likely that PDE inhibitors could be developed as therapeutic agents against PD.
Collapse
|
28
|
Snyder GL, Vanover KE. PDE Inhibitors for the Treatment of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2017; 17:385-409. [DOI: 10.1007/978-3-319-58811-7_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. ADVANCES IN NEUROBIOLOGY 2017; 17:15-43. [DOI: 10.1007/978-3-319-58811-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Fusco FR, Paldino E. Role of Phosphodiesterases in Huntington’s Disease. ADVANCES IN NEUROBIOLOGY 2017; 17:285-304. [DOI: 10.1007/978-3-319-58811-7_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Ye H, Wang X, Sussman CR, Hopp K, Irazabal MV, Bakeberg JL, LaRiviere WB, Manganiello VC, Vorhees CV, Zhao H, Harris PC, van Deursen J, Ward CJ, Torres VE. Modulation of Polycystic Kidney Disease Severity by Phosphodiesterase 1 and 3 Subfamilies. J Am Soc Nephrol 2016; 27:1312-20. [PMID: 26374610 PMCID: PMC4849815 DOI: 10.1681/asn.2015010057] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/04/2015] [Indexed: 11/03/2022] Open
Abstract
Aberrant intracellular calcium levels and increased cAMP signaling contribute to the development of polycystic kidney disease (PKD). cAMP can be hydrolyzed by various phosphodiesterases (PDEs). To examine the role of cAMP hydrolysis and the most relevant PDEs in the pathogenesis of PKD, we examined cyst development in Pde1- or Pde3-knockout mice on the Pkd2(-/WS25) background (WS25 is an unstable Pkd2 allele). These PDEs were selected because of their importance in cross-talk between calcium and cyclic nucleotide signaling (PDE1), control of cell proliferation and cystic fibrosis transmembrane conductance regulator (CFTR) -driven fluid secretion (PDE3), and response to vasopressin V2 receptor activation (both). In Pkd2(-/WS25) mice, knockout of Pde1a, Pde1c, or Pde3a but not of Pde1b or Pde3b aggravated the development of PKD and was associated with higher levels of protein kinase A-phosphorylated (Ser133) cAMP-responsive binding protein (P-CREB), activating transcription factor-1, and CREB-induced CRE modulator proteins in kidney nuclear preparations. Immunostaining also revealed higher expression of P-CREB in Pkd2(-/) (WS25);Pde1a(-/-), Pkd2(-) (/WS25);Pde1c(-/-), and Pkd2(-/) (WS25);Pde3a(-/-) kidneys. The cystogenic effect of desmopressin administration was markedly enhanced in Pkd2(-/WS25);Pde3a(-/-) mice, despite PDE3 accounting for only a small fraction of renal cAMP PDE activity. These observations show that calcium- and calmodulin-dependent PDEs (PDE1A and PDE1C) and PDE3A modulate the development of PKD, possibly through the regulation of compartmentalized cAMP pools that control cell proliferation and CFTR-driven fluid secretion. Treatments capable of increasing the expression or activity of these PDEs may, therefore, retard the development of PKD.
Collapse
Affiliation(s)
- Hong Ye
- Division of Nephrology and Hypertension and
| | | | | | | | | | - Jason L Bakeberg
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, US National Institutes of Health, Bethesda, Maryland
| | - Charles V Vorhees
- Department of Pediatrics, Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati, Cincinnati, Ohio; and
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Christopher J Ward
- Division of Nephrology and Hypertension, The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | |
Collapse
|
32
|
Hannah-Shmouni F, Faucz FR, Stratakis CA. Alterations of Phosphodiesterases in Adrenocortical Tumors. Front Endocrinol (Lausanne) 2016; 7:111. [PMID: 27625633 PMCID: PMC5003917 DOI: 10.3389/fendo.2016.00111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs.
Collapse
Affiliation(s)
- Fady Hannah-Shmouni
- Program on Developmental Endocrinology and Genetics (PDEGEN), Section on Endocrinology and Genetics (SEGEN), National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R. Faucz
- Program on Developmental Endocrinology and Genetics (PDEGEN), Section on Endocrinology and Genetics (SEGEN), National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantine A. Stratakis
- Program on Developmental Endocrinology and Genetics (PDEGEN), Section on Endocrinology and Genetics (SEGEN), National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- *Correspondence: Constantine A. Stratakis,
| |
Collapse
|
33
|
Wilson JM, Ogden AML, Loomis S, Gilmour G, Baucum AJ, Belecky-Adams TL, Merchant KM. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015; 99:379-86. [DOI: 10.1016/j.neuropharm.2015.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
|
34
|
Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis 2014; 21:e25-50. [PMID: 25056711 DOI: 10.1111/odi.12275] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
By catalyzing hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. As these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A, and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multimolecular signaling/regulatory complexes, called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners.
Collapse
Affiliation(s)
- F Ahmad
- Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
35
|
Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, de Alexandre RB, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014; 35:195-233. [PMID: 24311737 PMCID: PMC3963262 DOI: 10.1210/er.2013-1053] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes that have the unique function of terminating cyclic nucleotide signaling by catalyzing the hydrolysis of cAMP and GMP. They are critical regulators of the intracellular concentrations of cAMP and cGMP as well as of their signaling pathways and downstream biological effects. PDEs have been exploited pharmacologically for more than half a century, and some of the most successful drugs worldwide today affect PDE function. Recently, mutations in PDE genes have been identified as causative of certain human genetic diseases; even more recently, functional variants of PDE genes have been suggested to play a potential role in predisposition to tumors and/or cancer, especially in cAMP-sensitive tissues. Mouse models have been developed that point to wide developmental effects of PDEs from heart function to reproduction, to tumors, and beyond. This review brings together knowledge from a variety of disciplines (biochemistry and pharmacology, oncology, endocrinology, and reproductive sciences) with emphasis on recent research on PDEs, how PDEs affect cAMP and cGMP signaling in health and disease, and what pharmacological exploitations of PDEs may be useful in modulating cyclic nucleotide signaling in a way that prevents or treats certain human diseases.
Collapse
Affiliation(s)
- Monalisa F Azevedo
- Section on Endocrinology Genetics (M.F.A., F.R.F., E.B., A.H., I.L., R.B.d.A., C.A.S.), Program on Developmental Endocrinology Genetics, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland 20892; Section of Endocrinology (M.F.A.), University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia 70840-901, Brazil; Group for Advanced Molecular Investigation (F.R.F., R.B.d.A.), Graduate Program in Health Science, Medical School, Pontificia Universidade Catolica do Paraná, Curitiba 80215-901, Brazil; Cardiovascular Pulmonary Branch (F.A., V.M.), National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland 20892; and Pediatric Endocrinology Inter-Institute Training Program (C.A.S.), NICHD, NIH, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Humphrey JM, Yang E, Ende CWA, Arnold EP, Head JL, Jenkinson S, Lebel LA, Liras S, Pandit J, Samas B, Vajdos F, Simons SP, Evdokimov A, Mansour M, Menniti FS. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00113c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the discovery of potent, selective, brain penetrable quinazoline inhibitors of PDE1 that represent valuable new tools for the dissection of related biological events.
Collapse
Affiliation(s)
- John M. Humphrey
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Eddie Yang
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | | | - Eric P. Arnold
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Jenna L. Head
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Stephen Jenkinson
- Safety Pharmacology CoE
- Pfizer World Wide Research and Development
- 10646 Science Center Drive
- San Diego, USA
| | - Lorraine A. Lebel
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Spiros Liras
- Pfizer World Wide Research and Development
- Cambridge, USA
| | - Jayvardhan Pandit
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Brian Samas
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Felix Vajdos
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Samuel P. Simons
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Artem Evdokimov
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | - Mahmoud Mansour
- Neuroscience Medicinal Chemistry
- Pfizer World Wide Research and Development
- Groton, USA
| | | |
Collapse
|
37
|
Review: Modulation of striatal neuron activity by cyclic nucleotide signaling and phosphodiesterase inhibition. ACTA ACUST UNITED AC 2013; 3:137-146. [PMID: 24490129 DOI: 10.1016/j.baga.2013.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclic nucleotides cAMP and cGMP are common signaling molecules synthesized in neurons following the activation of adenylyl or guanylyl cyclase. In the striatum, the synthesis and degradation of cAMP and cGMP is highly regulated as these second messengers have potent effects on the activity of striatonigral and striatopallidal neurons. This review will summarize the literature on cyclic nucleotide signaling in the striatum with a particular focus on the impact of cAMP and cGMP on the membrane excitability of striatal medium-sized spiny output neurons (MSNs). The effects of non-selective and selective phosphodiesterase (PDE) inhibitors on membrane activity and synaptic plasticity of MSNs will also be reviewed. Lastly, this review will discuss the implications of the effects PDE modulation on electrophysiological activity of striatal MSNs as it relates to the treatment of neurological disorders such as Huntington's and Parkinson's disease.
Collapse
|
38
|
Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3',5'-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 2013; 26:383-97. [PMID: 24184653 DOI: 10.1016/j.cellsig.2013.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/13/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIβ, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.
Collapse
Affiliation(s)
- Michy P Kelly
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA.
| | - Wendy Adamowicz
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Susan Bove
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Alexander J Hartman
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Abigail Mariga
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Geetanjali Pathak
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology & Neuroscience, 6439 Garners Ferry Rd, Columbia, SC 29209, USA
| | - Veronica Reinhart
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA
| | - Alison Romegialli
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| | - Robin J Kleiman
- Pfizer Global Research and Development, Neuroscience Research Unit, Eastern point Road, Groton, CT 06340, USA.
| |
Collapse
|
39
|
The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology 2013; 74:86-95. [PMID: 23357335 DOI: 10.1016/j.neuropharm.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 01/19/2023]
Abstract
Phosphodiesterases (PDEs) degrade cyclic nucleotides, signalling molecules that play important roles in synaptic plasticity and memory. Inhibition of PDEs may therefore enhance synaptic plasticity and memory as a result of elevated levels of these signalling molecules, and this has led to interest in PDE inhibitors as cognitive enhancers. The development of new mouse models in which PDE subtypes have been selectively knocked out and increasing selectivity of PDE antagonists means that this field is currently expanding. Roles for PDE2, 4, 5 and 9 in synaptic plasticity have so far been demonstrated and we review these studies here in the context of cyclic nucleotide signalling more generally. The role of other PDE families in synaptic plasticity has not yet been investigated, and this area promises to advance our understanding of cyclic nucleotide signalling in synaptic plasticity in the future. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
|
40
|
Lee DI, Kass DA. Phosphodiesterases and cyclic GMP regulation in heart muscle. Physiology (Bethesda) 2012; 27:248-58. [PMID: 22875455 DOI: 10.1152/physiol.00011.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cyclic nucleotide cGMP and its corresponding activated kinase cGK-1 serve as a counterbalance to acute and chronic myocardial stress. cGMP hydrolysis by several members of the phosphodiesterase (PDE) superfamily, PDE1, PDE2, and PDE5, regulate this signaling in the heart. This review details new insights regarding how these PDEs modulate cGMP and cGK-1 to influence heart function and chronic stress responses, and how their inhibition may provide potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong I Lee
- Division of Cardiology, Department of Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA
| | | |
Collapse
|
41
|
Girault JA. Integrating neurotransmission in striatal medium spiny neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:407-29. [PMID: 22351066 DOI: 10.1007/978-3-7091-0932-8_18] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The striatum is a major entry structure of the basal ganglia. Its role in information processing in close interaction with the cerebral cortex and thalamus has various behavioral consequences depending on the regions concerned, including control of body movements and motivation. A general feature of striatal information processing is the control by reward-related dopamine signals of glutamatergic striatal inputs and of their plasticity. This relies on specific sets of receptors and signaling proteins in medium-sized spiny neurons which belong to two groups, striatonigral and striatopallidal neurons. Some signaling pathways are activated only by dopamine or glutamate, but many provide multiple levels of interactions. For example, the cAMP pathway is mostly regulated by dopamine D1 receptors in striatonigral neurons, whereas the ERK pathway detects a combination of glutamate and dopamine signals and is essential for long-lasting modifications. These adaptations require changes in gene expression, and the signaling pathways linking synaptic activity to nuclear function and epigenetic changes are beginning to be deciphered. Their alteration underlies many aspects of striatal dysfunction in pathological conditions which include a decrease or an increase in dopamine transmission, as encountered in Parkinson's disease or exposure to addictive drugs, respectively.
Collapse
Affiliation(s)
- Jean-Antoine Girault
- Institut du Fer à Moulin, UMR-S 839, Inserm and Université Pierre et Marie Curie, 17 rue du Fer à Moulin, 75005 Paris, France.
| |
Collapse
|
42
|
Girault JA. Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:33-62. [PMID: 22340713 DOI: 10.1016/b978-0-12-396456-4.00006-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The striatum is a deep region of the forebrain involved in action selection, control of movement, and motivation. It receives a convergent excitatory glutamate input from the cerebral cortex and the thalamus, controlled by dopamine (DA) released in response to unexpected rewards and other salient stimuli. Striatal function and its dysfunction in drug addiction or Parkinson's disease depend on the interplay between these neurotransmitters. Signaling cascades in striatal medium-sized spiny neurons (MSNs) involve multiple kinases, phosphatases, and phosphoproteins, some of which are highly enriched in these neurons. They control the properties of ion channels and the plasticity of MSNs, in part through their effects on gene transcription. This chapter summarizes signaling in MSNs and focuses on the regulation of multiple protein phosphatases through DA and glutamate receptors and the role of ERK. It is hypothesized that these pathways are particularly adapted to the specific computing properties of MSNs and the function of the basal ganglia circuits in which they participate.
Collapse
|
43
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
44
|
Piccart E, Gantois I, Laeremans A, de Hoogt R, Meert T, Vanhoof G, Arckens L, D'Hooge R. Impaired appetitively as well as aversively motivated behaviors and learning in PDE10A-deficient mice suggest a role for striatal signaling in evaluative salience attribution. Neurobiol Learn Mem 2010; 95:260-9. [PMID: 21130175 DOI: 10.1016/j.nlm.2010.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/07/2010] [Accepted: 11/28/2010] [Indexed: 10/18/2022]
Abstract
Phosphodiesterase 10A (PDE10A) hydrolyzes both cAMP and cGMP, and is a key element in the regulation of medium spiny neuron (MSN) activity in the striatum. In the present report, we investigated the effects of targeted disruption of PDE10A on spatial learning and memory as well as aversive and appetitive conditioning in C57BL/6J mice. Because of its putative role in motivational processes and reward learning, we also determined the expression of the immediate early gene zif268 in striatum and anterior cingulate cortex. Animals showed decreased response rates in scheduled appetitive operant conditioning, as well as impaired aversive conditioning in a passive avoidance task. Morris water maze performance revealed not-motor related spatial learning and memory deficits. Anxiety and social explorative behavior was not affected in PDE10A-deficient mice. Expression of zif268 was increased in striatum and anterior cingulate cortex, which suggests alterations in the neural connections between striatum and anterior cingulate cortex in PDE10A-deficient mice. The changes in behavior and plasticity in these PDE10A-deficient mice were in accordance with the proposed role of striatal MSNs and corticostriatal connections in evaluative salience attribution.
Collapse
Affiliation(s)
- Elisabeth Piccart
- Laboratory of Biological Psychology, Department of Psychology, University of Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li H, Aluko RE. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11471-6. [PMID: 20929253 DOI: 10.1021/jf102538g] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pea protein isolate was hydrolyzed with alcalase, and the hydrolysate passed through a 1 kDa cutoff ultrafiltration membrane. The permeate was freeze-dried and fractionated on a cationic solid-phase extraction (SPE) column. All fractions were tested for their inhibitory activities against angiotensin-converting enzyme (ACE), renin, and calmodulin-dependent phosphodiesterase 1 (CaMPDE). With the exception of the first eluted fraction, inhibitory properties of the SPE fractions against CaMPDE (but not ACE and renin) were directly related to cationic character (residence time on the column). However, the fraction that eluted with 1% ammonium hydroxide (SPE 1%) had the highest peptide yield and was subsequently fractionated using two consecutive rounds of reversed-phase high-performance liquid chromatography to obtain three peaks with major peptides identified as IR, KF, and EF by ultra performance liquid chromatography-tandem mass spectrometry. The three dipeptides showed weak inhibitory properties toward CaMPDE but strong inhibitions (IC50 values <25 mM) of ACE and renin. In general, the peptides had higher potency against ACE than against renin. It is indicated from our results that these peptides may be used as potential ingredients to formulate multifunctional food products and nutraceuticals.
Collapse
Affiliation(s)
- Huan Li
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada R3T 2N2
| | | |
Collapse
|
46
|
Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010; 59:367-74. [DOI: 10.1016/j.neuropharm.2010.05.004] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/07/2010] [Accepted: 05/14/2010] [Indexed: 11/30/2022]
|
47
|
Nishi A, Kuroiwa M, Shuto T. Role of phosphodiesterases in dopamine signal transduction. Nihon Yakurigaku Zasshi 2010; 135:8-13. [PMID: 20075564 DOI: 10.1254/fpj.135.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Nishi A, Snyder GL. Advanced Research on Dopamine Signaling to Develop Drugs for the Treatment of Mental Disorders: Biochemical and Behavioral Profiles of Phosphodiesterase Inhibition in Dopaminergic Neurotransmission. J Pharmacol Sci 2010; 114:6-16. [DOI: 10.1254/jphs.10r01fm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
49
|
Kelly MP, Brandon NJ. Differential function of phosphodiesterase families in the brain: gaining insights through the use of genetically modified animals. PROGRESS IN BRAIN RESEARCH 2009; 179:67-73. [PMID: 20302819 DOI: 10.1016/s0079-6123(09)17908-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphodiesterases (PDEs) are the only known enzymes to degrade cAMP and cGMP, intracellular signaling molecules key to numerous cellular functions. There are 11 PDE families identified to date, and each is expressed in a unique pattern across brain regions. Here, we review genetic mouse models in which PDEs are either directly manipulated (e.g., genetically deleted) or are changed in a compensatory manner due to the manipulation of another target. We believe these genetic mouse models have contributed to our understanding of how the PDE1, PDE4, and PDE10 families contribute uniquely to overall brain function.
Collapse
|
50
|
Kitagawa Y, Hirano T, Kawaguchi SY. Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity. Mol Syst Biol 2009; 5:280. [PMID: 19536203 PMCID: PMC2710870 DOI: 10.1038/msb.2009.39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/14/2009] [Indexed: 11/09/2022] Open
Abstract
Synaptic plasticity, neuronal activity-dependent sustained alteration of the efficacy of synaptic transmission, underlies learning and memory. Activation of positive-feedback signaling pathways by an increase in intracellular Ca2+ concentration ([Ca2+]i) has been implicated in synaptic plasticity. However, the mechanism that determines the [Ca2+]i threshold for inducing synaptic plasticity is elusive. Here, we developed a kinetic simulation model of inhibitory synaptic plasticity in the cerebellum, and systematically analyzed the behavior of intricate molecular networks composed of protein kinases, phosphatases, etc. The simulation showed that Ca2+/calmodulin-dependent protein kinase II (CaMKII), which is essential for the induction of synaptic plasticity, was persistently activated or suppressed in response to different combinations of stimuli. The sustained CaMKII activation depended on synergistic actions of two positive-feedback reactions, CaMKII autophosphorylation and CaMKII-mediated inhibition of a CaM-dependent phosphodiesterase, PDE1. The simulation predicted that PDE1-mediated feedforward inhibition of CaMKII predominantly controls the Ca2+ threshold, which was confirmed by electrophysiological experiments in primary cerebellar cultures. Thus, combined application of simulation and experiments revealed that the Ca2+ threshold for the cerebellar inhibitory synaptic plasticity is primarily determined by PDE1.
Collapse
Affiliation(s)
- Yuichi Kitagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|