1
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Gupta S, Kawaguchi R, Heinrichs E, Gallardo S, Castellanos S, Mandric I, Novitch BG, Butler SJ. In vitro atlas of dorsal spinal interneurons reveals Wnt signaling as a critical regulator of progenitor expansion. Cell Rep 2022; 40:111119. [PMID: 35858555 PMCID: PMC9414195 DOI: 10.1016/j.celrep.2022.111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Restoring sensation after injury or disease requires a reproducible method for generating large quantities of bona fide somatosensory interneurons. Toward this goal, we assess the mechanisms by which dorsal spinal interneurons (dIs; dI1-dI6) can be derived from mouse embryonic stem cells (mESCs). Using two developmentally relevant growth factors, retinoic acid (RA) and bone morphogenetic protein (BMP) 4, we recapitulate the complete in vivo program of dI differentiation through a neuromesodermal intermediate. Transcriptional profiling reveals that mESC-derived dIs strikingly resemble endogenous dIs, with the correct molecular and functional signatures. We further demonstrate that RA specifies dI4-dI6 fates through a default multipotential state, while the addition of BMP4 induces dI1-dI3 fates and activates Wnt signaling to enhance progenitor proliferation. Constitutively activating Wnt signaling permits the dramatic expansion of neural progenitor cultures. These cultures retain the capacity to differentiate into diverse populations of dIs, thereby providing a method of increasing neuronal yield.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Riki Kawaguchi
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Heinrichs
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Genetics and Genomics Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salena Gallardo
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie Castellanos
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; CIRM Bridges to Research Program, California State University, Northridge, Los Angeles, CA, USA
| | - Igor Mandric
- Department of Computer Science, Samueli School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samantha J Butler
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual & Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Rossi M, Altea-Manzano P, Demicco M, Doglioni G, Bornes L, Fukano M, Vandekeere A, Cuadros AM, Fernández-García J, Riera-Domingo C, Jauset C, Planque M, Alkan HF, Nittner D, Zuo D, Broadfield LA, Parik S, Pane AA, Rizzollo F, Rinaldi G, Zhang T, Teoh ST, Aurora AB, Karras P, Vermeire I, Broekaert D, Elsen JV, Knott MML, Orth MF, Demeyer S, Eelen G, Dobrolecki LE, Bassez A, Brussel TV, Sotlar K, Lewis MT, Bartsch H, Wuhrer M, Veelen PV, Carmeliet P, Cools J, Morrison SJ, Marine JC, Lambrechts D, Mazzone M, Hannon GJ, Lunt SY, Grünewald TGP, Park M, Rheenen JV, Fendt SM. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 2022; 605:747-753. [PMID: 35585241 PMCID: PMC9888363 DOI: 10.1038/s41586-022-04758-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/12/2022] [Indexed: 02/02/2023]
Abstract
Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvβ3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.
Collapse
Affiliation(s)
- Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laura Bornes
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marina Fukano
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Cristina Jauset
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - David Nittner
- Histopathology Expertise Center, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dongmei Zuo
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Antonino Alejandro Pane
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Francesca Rizzollo
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Gianmarco Rinaldi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Arin B Aurora
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Panagiotis Karras
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sofie Demeyer
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Ayse Bassez
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | - Harald Bartsch
- Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan Cools
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Morag Park
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute (GCI), McGill University, Montreal, Quebec, Canada
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
4
|
The Relationship between Cadherin Polymorphisms and the Risk of Delayed Encephalopathy after Acute Carbon Monoxide Poisoning in the Chinese Han Population. Behav Neurol 2022; 2022:3155703. [PMID: 35140817 PMCID: PMC8818434 DOI: 10.1155/2022/3155703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study was to analyze the relationship between cadherin gene single-nucleotide polymorphisms (SNPs) and the risk of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Materials and Methods A total of 416 patients with DEACMP and 754 patients with acute carbon monoxide poisoning (ACMP) were recruited. We used the Sequenom MassARRAY® system to detect cadherin gene SNPs related to DEACMP. Using different genetic analysis models, we evaluated the relationship between the cadherin gene polymorphisms and risk of DEACMP. Results We found that rs1944294 in the N-cadherin (CDH2) gene showed significant differences in genotype frequencies between the two groups under codominant and dominant inheritance models. Similarly, rs2513796 in the cadherin-17 (CDH17) gene showed significant differences under the codominant, dominant, and overdominant genetic models. And the T allele frequency of rs1944294 in the DEACMP group was significantly higher than that in the ACMP group (P = 0.023). Conclusions Cadherin gene SNPs (rs1944294, rs2513796) are associated with an increased risk of DEACMP in the Chinese population.
Collapse
|
5
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Haimson B, Hadas Y, Bernat N, Kania A, Daley MA, Cinnamon Y, Lev-Tov A, Klar A. Spinal lumbar dI2 interneurons contribute to stability of bipedal stepping. eLife 2021; 10:62001. [PMID: 34396953 PMCID: PMC8448531 DOI: 10.7554/elife.62001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in P8 hatchlings, with occasional collapses, variable step profiles and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.
Collapse
Affiliation(s)
- Baruch Haimson
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Yoav Hadas
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerusalem, Israel
| | - Nimrod Bernat
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Artur Kania
- Anatomy and Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Canada
| | - Monica A Daley
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuval Cinnamon
- Institute of Animal Science Poultry and Aquaculture Sci. Dept, Institute of Animal Science Poultry and Aquaculture Sci. Dept. Agricultural Research Organization, The Volcani Center, Israel, Rehovot, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerisalem, Israel
| | - Avihu Klar
- Medical Neurobiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
7
|
Wurmser M, Muppavarapu M, Tait CM, Laumonnerie C, González-Castrillón LM, Wilson SI. Robo2 Receptor Gates the Anatomical Divergence of Neurons Derived From a Common Precursor Origin. Front Cell Dev Biol 2021; 9:668175. [PMID: 34249921 PMCID: PMC8263054 DOI: 10.3389/fcell.2021.668175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022] Open
Abstract
Sensory information relayed to the brain is dependent on complex, yet precise spatial organization of neurons. This anatomical complexity is generated during development from a surprisingly small number of neural stem cell domains. This raises the question of how neurons derived from a common precursor domain respond uniquely to their environment to elaborate correct spatial organization and connectivity. We addressed this question by exploiting genetically labeled mouse embryonic dorsal interneuron 1 (dI1) neurons that are derived from a common precursor domain and give rise to spinal projection neurons with distinct organization of cell bodies with axons projecting either commissurally (dI1c) or ipsilaterally (dI1i). In this study, we examined how the guidance receptor, Robo2, which is a canonical Robo receptor, influenced dI1 guidance during embryonic development. Robo2 was enriched in embryonic dI1i neurons, and loss of Robo2 resulted in misguidance of dI1i axons, whereas dI1c axons remained unperturbed within the mantle zone and ventral commissure. Further, Robo2 profoundly influenced dI1 cell body migration, a feature that was partly dependent on Slit2 signaling. These data suggest that dI1 neurons are dependent on Robo2 for their organization. This work integrated with the field support of a model whereby canonical Robo2 vs. non-canonical Robo3 receptor expression facilitates projection neurons derived from a common precursor domain to read out the tissue environment uniquely giving rise to correct anatomical organization.
Collapse
Affiliation(s)
- Maud Wurmser
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | | | | | | | - Sara Ivy Wilson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
An Atoh1 CRE Knock-In Mouse Labels Motor Neurons Involved in Fine Motor Control. eNeuro 2021; 8:ENEURO.0221-20.2021. [PMID: 33468540 PMCID: PMC7901153 DOI: 10.1523/eneuro.0221-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Motor neurons (MNs) innervating the digit muscles of the intrinsic hand (IH) and intrinsic foot (IF) control fine motor movements. The ability to reproducibly label specifically IH and IF MNs in mice would be a beneficial tool for studies focused on fine motor control. To this end, we find that a CRE knock-in mouse line of Atoh1, a developmentally expressed basic helix-loop-helix (bHLH) transcription factor, reliably expresses CRE-dependent reporter genes in ∼60% of the IH and IF MNs. We determine that CRE-dependent expression in IH and IF MNs is ectopic because an Atoh1 mouse line driving FLPo recombinase does not label these MNs although other Atoh1-lineage neurons in the intermediate spinal cord are reliably identified. Furthermore, the CRE-dependent reporter expression is enriched in the IH and IF MN pools with much sparser labeling of other limb-innervating MN pools such as the tibialis anterior (TA), gastrocnemius (GS), quadricep (Q), and adductor (Ad). Lastly, we find that ectopic reporter expression begins postnatally and labels a mixture of α and γ-MNs. Altogether, the Atoh1 CRE knock-in mouse strain might be a useful tool to explore the function and connectivity of MNs involved in fine motor control when combined with other genetic or viral strategies that can restrict labeling specifically to the IH and IF MNs. Accordingly, we provide an example of sparse labeling of IH and IF MNs using an intersectional genetic approach.
Collapse
|
9
|
Coughlan E, Garside VC, Wong SFL, Liang H, Kraus D, Karmakar K, Maheshwari U, Rijli FM, Bourne J, McGlinn E. A Hox Code Defines Spinocerebellar Neuron Subtype Regionalization. Cell Rep 2019; 29:2408-2421.e4. [DOI: 10.1016/j.celrep.2019.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
|
10
|
Kaneyama T, Shirasaki R. Post-crossing segment of dI1 commissural axons forms collateral branches to motor neurons in the developing spinal cord. J Comp Neurol 2019; 526:1943-1961. [PMID: 29752714 DOI: 10.1002/cne.24464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022]
Abstract
The dI1 commissural axons in the developing spinal cord, upon crossing the midline through the floor plate, make a sharp turn to grow rostrally. These post-crossing axons initially just extend adjacent to the floor plate without entering nearby motor columns. However, it remains poorly characterized how these post-crossing dI1 axons behave subsequently to this process. In the present study, to address this issue, we examined in detail the behavior of post-crossing dI1 axons in mice, using the Atoh1 enhancer-based conditional expression system that enables selective and sparse labeling of individual dI1 axons, together with Hb9 and ChAT immunohistochemistry for precise identification of spinal motor neurons (MNs). We found unexpectedly that the post-crossing segment of dI1 axons later gave off collateral branches that extended laterally to invade motor columns. Interestingly, these collateral branches emerged at around the time when their primary growth cones initiated invasion into motor columns. In addition, although the length of the laterally growing collateral branches increased with age, the majority of them remained within motor columns. Strikingly, these collateral branches further gave rise to multiple secondary branches in the region of MNs that innervate muscles close to the body axis. Moreover, these axonal branches formed presynaptic terminals on MNs. These observations demonstrate that dI1 commissural neurons develop axonal projection to spinal MNs via collateral branches arising later from the post-crossing segment of these axons. Our findings thus reveal a previously unrecognized projection of dI1 commissural axons that may contribute directly to generating proper motor output.
Collapse
Affiliation(s)
- Takeshi Kaneyama
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Shirasaki
- Cellular and Molecular Neurobiology Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Abstract
The cadherin superfamily comprises a large, diverse collection of cell surface receptors that are expressed in the nervous system throughout development and have been shown to be essential for the proper assembly of the vertebrate nervous system. As our knowledge of each family member has grown, it has become increasingly clear that the functions of various cadherin subfamilies are intertwined: they can be present in the same protein complexes, impinge on the same developmental processes, and influence the same signaling pathways. This interconnectedness may illustrate a central way in which core developmental events are controlled to bring about the robust and precise assembly of neural circuitry.
Collapse
Affiliation(s)
- James D Jontes
- Department of Neuroscience, Ohio State University, Ohio 43210
| |
Collapse
|
12
|
Nishida K, Ito S. Developmental origin of long-range neurons in the superficial dorsal spinal cord. Eur J Neurosci 2017; 46:2608-2619. [DOI: 10.1111/ejn.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| |
Collapse
|
13
|
Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development 2017; 143:3434-3448. [PMID: 27702783 DOI: 10.1242/dev.139592] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.
Collapse
Affiliation(s)
- Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Direction of commissural axon projections in different regions of the spinal cord during chicken embryonic development. Neuroscience 2017; 358:269-276. [DOI: 10.1016/j.neuroscience.2017.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/30/2023]
|
15
|
Levy SL, White JJ, Lackey EP, Schwartz L, Sillitoe RV. WGA-Alexa Conjugates for Axonal Tracing. ACTA ACUST UNITED AC 2017; 79:1.28.1-1.28.24. [PMID: 28398642 DOI: 10.1002/cpns.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Anatomical labeling approaches are essential for understanding brain organization. Among these approaches are various methods of performing tract tracing. However, a major hurdle to overcome when marking neurons in vivo is visibility. Poor visibility makes it challenging to image a desired neuronal pathway so that it can be easily differentiated from a closely neighboring pathway. As a result, it becomes impossible to analyze individual projections or their connections. The tracer that is chosen for a given purpose has a major influence on the quality of the tracing. Here, we describe the wheat germ agglutinin (WGA) tracer conjugated to Alexa fluorophores for reliable high-resolution tracing of central nervous system projections. Using the mouse cerebellum as a model system, we implement WGA-Alexa tracing for marking and mapping neural circuits that control motor function. We also show its utility for marking localized regions of the cerebellum after performing single-unit extracellular recordings in vivo. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sabrina L Levy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Elizabeth P Lackey
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Lindsey Schwartz
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, Texas.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Lin J, Fu S, Yang C, Redies C. Pax3 overexpression induces cell aggregation and perturbs commissural axon projection during embryonic spinal cord development. J Comp Neurol 2017; 525:1618-1632. [PMID: 27864937 DOI: 10.1002/cne.24146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/06/2016] [Accepted: 10/23/2016] [Indexed: 12/12/2022]
Abstract
Pax3 is a transcription factor that belongs to the paired box family. In the developing spinal cord it is expressed in the dorsal commissural neurons, which project ascending axons contralaterally to form proper spinal cord-brain circuitry. While it has been shown that Pax3 induces cell aggregation in vitro, little is known about the role of Pax3 in cell aggregation and spinal circuit formation in vivo. We have reported that Pax3 is involved in neuron differentiation and that its overexpression induces ectopic cadherin-7 expression. In this study we report that Pax3 overexpression also induces cell aggregation in vivo. Tissue sections and open book preparations revealed that Pax3 overexpression prevents commissural axons from projecting to the contralateral side of the spinal cord. Cells overexpressing Pax3 aggregated in cell clusters that contained shortened neurites with perturbed axon growth and elongation. Pax3-specific shRNA partially rescued the morphological change induced by Pax3 overexpression in vivo. Our results indicate that the normal expression of Pax3 is necessary for proper axonal pathway finding and commissural axon projection. In conclusion, Pax3 regulates neural circuit formation during embryonic development. J. Comp. Neurol. 525:1618-1632, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany.,Henan Key Lab of Medical Tissue Regeneration, College of Life Science and Technology, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Sulei Fu
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| | - Ciqing Yang
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany.,Henan Key Lab of Medical Tissue Regeneration, College of Life Science and Technology, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Sonic -'Jack-of-All-Trades' in Neural Circuit Formation. J Dev Biol 2017; 5:jdb5010002. [PMID: 29615560 PMCID: PMC5831768 DOI: 10.3390/jdb5010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022] Open
Abstract
As reflected by the term morphogen, molecules such as Shh and Wnts were identified based on their role in early development when they instruct precursor cells to adopt a specific cell fate. Only much later were they implicated in neural circuit formation. Both in vitro and in vivo studies indicated that morphogens direct axons during their navigation through the developing nervous system. Today, the best understood role of Shh and Wnt in axon guidance is their effect on commissural axons in the spinal cord. Shh was shown to affect commissural axons both directly and indirectly via its effect on Wnt signaling. In fact, throughout neural circuit formation there is cross-talk and collaboration of Shh and Wnt signaling. Thus, although the focus of this review is on the role of Shh in neural circuit formation, a separation from Wnt signaling is not possible.
Collapse
|
18
|
Abstract
During neural circuit formation, axons need to navigate to their target cells in a complex, constantly changing environment. Although we most likely have identified most axon guidance cues and their receptors, we still cannot explain the molecular background of pathfinding for any subpopulation of axons. We lack mechanistic insight into the regulation of interactions between guidance receptors and their ligands. Recent developments in the field of axon guidance suggest that the regulation of surface expression of guidance receptors comprises transcriptional, translational, and post-translational mechanisms, such as trafficking of vesicles with specific cargos, protein-protein interactions, and specific proteolysis of guidance receptors. Not only axon guidance molecules but also the regulatory mechanisms that control their spatial and temporal expression are involved in synaptogenesis and synaptic plasticity. Therefore, it is not surprising that genes associated with axon guidance are frequently found in genetic and genomic studies of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Esther Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
de Ramon Francàs G, Zuñiga NR, Stoeckli ET. The spinal cord shows the way - How axons navigate intermediate targets. Dev Biol 2016; 432:43-52. [PMID: 27965053 DOI: 10.1016/j.ydbio.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Functional neural circuits depend on the establishment of specific connections between neurons and their target cells. To this end, many axons have to travel long distances to reach their target cells during development. Studies addressing the molecular mechanisms of axon guidance have to overcome the complexity of subpopulation-specific requirements with respect to pathways, guidance cues, and target recognition. Compared to the brain, the relatively simple structure of the spinal cord provides an advantage for experimental studies of axon guidance mechanisms. Therefore, the so far best understood model for axon guidance is the dI1 population of dorsal interneurons of the spinal cord. They extend their axons ventrally towards the floor plate. After midline crossing, they turn rostrally along the contralateral floor-plate border. Despite the fact that the trajectory of dI1 axons seems to be rather simple, the number of axon guidance molecules involved in the decisions taken by these axons is bewildering. Because guidance molecules and mechanisms are conserved throughout the developing nervous system, we can generalize what we have learned about the navigation of the floor plate as an intermediate target for commissural axons to the brain.
Collapse
Affiliation(s)
- Gemma de Ramon Francàs
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nikole R Zuñiga
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- University of Zurich, Department of Molecular Life Sciences and Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
20
|
Yang C, Li X, Wang C, Fu S, Li H, Guo Z, Zhao S, Lin J. N-cadherin regulates beta-catenin signal and its misexpression perturbs commissural axon projection in the developing chicken spinal cord. J Mol Histol 2016; 47:541-554. [PMID: 27650519 DOI: 10.1007/s10735-016-9698-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
N-cadherin is a calcium-sensitive cell adhesion molecule that plays an important role in the formation of the neural circuit and the development of the nervous system. In the present study, we investigated the function of N-cadherin in cell-cell connection in vitro with HEK293T cells, and in commissural axon projections in the developing chicken spinal cord using in ovo electroporation. Cell-cell connections increased with N-cadherin overexpression in HEK293T cells, while cell contacts disappeared after co-transfection with an N-cadherin-shRNA plasmid. The knockdown of N-cadherin caused the accumulation of β-catenin in the nucleus, supporting the notion that N-cadherin regulates β-catenin signaling in vitro. Furthermore, N-cadherin misexpression perturbed commissural axon projections in the spinal cord. The overexpression of N-cadherin reduced the number of axons that projected alongside the contralateral margin of the floor plate, and formed intermediate longitudinal commissural axons. In contrast, the knockdown of N-cadherin perturbed commissural axon projections significantly, affecting the projections alongside the contralateral margin of the floor plate, but did not affect intermediate longitudinal commissural axons. Taken together, these findings suggest that N-cadherin regulates commissural axon projections in the developing chicken spinal cord.
Collapse
Affiliation(s)
- Ciqing Yang
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Xiaoying Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Congrui Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Sulei Fu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Han Li
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, 453003, China. .,Institute of Anatomy I, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
21
|
Kulkarni A, Ertekin D, Lee CH, Hummel T. Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. eLife 2016; 5:e13715. [PMID: 26987017 PMCID: PMC4846375 DOI: 10.7554/elife.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
The precise recognition of appropriate synaptic partner neurons is a critical step during neural circuit assembly. However, little is known about the developmental context in which recognition specificity is important to establish synaptic contacts. We show that in the Drosophila visual system, sequential segregation of photoreceptor afferents, reflecting their birth order, lead to differential positioning of their growth cones in the early target region. By combining loss- and gain-of-function analyses we demonstrate that relative differences in the expression of the transcription factor Sequoia regulate R cell growth cone segregation. This initial growth cone positioning is consolidated via cell-adhesion molecule Capricious in R8 axons. Further, we show that the initial growth cone positioning determines synaptic layer selection through proximity-based axon-target interactions. Taken together, we demonstrate that birth order dependent pre-patterning of afferent growth cones is an essential pre-requisite for the identification of synaptic partner neurons during visual map formation in Drosophila.
Collapse
Affiliation(s)
| | - Deniz Ertekin
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Origin of a Non-Clarke's Column Division of the Dorsal Spinocerebellar Tract and the Role of Caudal Proprioceptive Neurons in Motor Function. Cell Rep 2015; 13:1258-1271. [PMID: 26527010 DOI: 10.1016/j.celrep.2015.09.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.
Collapse
|
23
|
Martinez E, Tran TS. Vertebrate spinal commissural neurons: a model system for studying axon guidance beyond the midline. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:283-97. [PMID: 25619385 DOI: 10.1002/wdev.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
For bilaterally symmetric organisms, the transfer of information between the left and right side of the nervous system is mediated by commissures formed by neurons that project their axons across the body midline to the contralateral side of the central nervous system (CNS). After crossing the midline, many of these axons must travel long distances to reach their targets, including those that extend from spinal commissural neurons. Owing to the highly stereotyped trajectories of spinal commissural neurons that can be divided into several segments as these axons project to their targets, it is an ideal system for investigators to ask fundamental questions related to mechanisms of short- and long-range axon guidance, fasciculation, and choice point decisions at the midline intermediate target. In addition, studies of patterning genes of the nervous system have revealed complex transcription factor codes that function in a combinatorial fashion to specify individual classes of spinal neurons including commissural neurons. Despite these advances and the functional importance of spinal commissural neurons in mediating the transfer of external sensory information from the peripheral nervous system (PNS) to the CNS, only a handful of studies have begun to elucidate the mechanistic logic underlying their long-range pathfinding and the characterization of their synaptic targets. Using in vitro assays, in vivo labeling methodologies, in combination with both loss- and gain-of-function experiments, several studies have revealed that the molecular mechanisms of long-range spinal commissural axon pathfinding involve an interplay between classical axon guidance cues, morphogens and cell adhesion molecules. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Edward Martinez
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
24
|
The Beneficial Effect of Chitooligosaccharides on Cell Behavior and Function of Primary Schwann Cells is Accompanied by Up-Regulation of Adhesion Proteins and Neurotrophins. Neurochem Res 2014; 39:2047-57. [DOI: 10.1007/s11064-014-1387-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 01/12/2023]
|
25
|
Lin J, Wang C, Redies C. Restricted expression of classic cadherins in the spinal cord of the chicken embryo. Front Neuroanat 2014; 8:18. [PMID: 24744704 PMCID: PMC3978366 DOI: 10.3389/fnana.2014.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/12/2014] [Indexed: 01/12/2023] Open
Abstract
Classic cadherins belong to the family of cadherin genes and play important roles in neurogenesis, neuron migration, and axon growth. In the present study, we compared the expression patterns of 10 classic cadherins (Cdh2, Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh11, Cdh12, Cdh18, and Cdh20) in the developing chicken spinal cord (SP) by in situ hybridization. Our results indicate that each of the investigated cadherins exhibits a spatially restricted and temporally regulated pattern of expression. At early developmental stages (E2.5–E3), Cdh2 is expressed throughout the neuroepithelial layer. Cdh6 is strongly positive in the roof plate and later also in the floor plate. Cdh7, Cdh11, Cdh12, and Cdh20 are expressed in restricted regions of the basal plate of the SP. At intermediate stages of development (E4–E10), specific expression profiles are observed for all investigated cadherins in the differentiating mantle layer along the dorsoventral, mediolateral, and rostrocaudal dimensions. Expression profiles are especially diverse for Cdh2, Cdh4, Cdh8, Cdh11, and Cdh20 in the dorsal horn, while different pools of motor neurons exhibit signal for Cdh6, Cdh7, Cdh8, Cdh9, Cdh12, and Cdh20 in the ventral horn. Interestingly, subpopulations of cells in the dorsal root ganglion express combinations of different cadherins. In the surrounding tissues, such as the boundary cap cells and the notochord, the cadherins are also expressed differentially. The highly regulated spatiotemporal expression patterns of the classic cadherins indicate that these genes potentially play multiple and diverse roles during the development of the SP and its surrounding tissues.
Collapse
Affiliation(s)
- Juntang Lin
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany ; Xinxiang Medical University Xinxiang, Henan, China
| | - Congrui Wang
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany ; Xinxiang Medical University Xinxiang, Henan, China
| | - Christoph Redies
- Institute of Anatomy I, University of Jena School of Medicine - Jena University Hospital Jena, Germany
| |
Collapse
|
26
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Morpholinos: studying gene function in the chick. Methods 2013; 66:454-65. [PMID: 24184187 DOI: 10.1016/j.ymeth.2013.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 09/25/2013] [Accepted: 10/11/2013] [Indexed: 11/21/2022] Open
Abstract
The use of morpholinos for perturbing gene function in the chick, Gallus gallus, has led to many important discoveries in developmental biology. This technology makes use of in vivo electroporation, which allows gain and loss of function in a temporally, and spatially controlled manner. Using this method, morpholinos can be transfected into embryonic tissues from early to late developmental stages. In this article, we describe the methods currently used in our laboratory to knock down gene function using morpholinos in vivo. We also detail how morpholinos are used to provide consistency of the results, and describe two protocols to visualise the morpholino after electroporation. In addition, we provide guidance on avoiding potential pitfalls, and suggestions for troubleshooting solutions. These revised techniques provide a practical starting point for investigating gene function in the chick.
Collapse
|
28
|
James G, Foster SR, Key B, Beverdam A. The expression pattern of EVA1C, a novel Slit receptor, is consistent with an axon guidance role in the mouse nervous system. PLoS One 2013; 8:e74115. [PMID: 24040182 PMCID: PMC3767613 DOI: 10.1371/journal.pone.0074115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
The Slit/Robo axon guidance families play a vital role in the formation of neural circuitry within select regions of the developing mouse nervous system. Typically Slits signal through the Robo receptors, however they also have Robo-independent functions. The novel Slit receptor Eva-1, recently discovered in C. elegans, and the human orthologue of which is located in the Down syndrome critical region on chromosome 21, could account for some of these Robo independent functions as well as provide selectivity to Robo-mediated axon responses to Slit. Here we investigate the expression of the mammalian orthologue EVA1C in regions of the developing mouse nervous system which have been shown to exhibit Robo-dependent and -independent responses to Slit. We report that EVA1C is expressed by axons contributing to commissures, tracts and nerve pathways of the developing spinal cord and forebrain. Furthermore it is expressed by axons that display both Robo-dependent and -independent functions of Slit, supporting a role for EVA1C in Slit/Robo mediated neural circuit formation in the developing nervous system.
Collapse
Affiliation(s)
- Gregory James
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Simon R. Foster
- School of Biomedical Science, University of Queensland, Brisbane, Australia
| | - Brian Key
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| | - Annemiek Beverdam
- School of Biomedical Science, University of Queensland, Brisbane, Australia
- * E-mail: (BK); (AB)
| |
Collapse
|
29
|
Tran TS, Carlin E, Lin R, Martinez E, Johnson JE, Kaprielian Z. Neuropilin2 regulates the guidance of post-crossing spinal commissural axons in a subtype-specific manner. Neural Dev 2013; 8:15. [PMID: 23902858 PMCID: PMC3737016 DOI: 10.1186/1749-8104-8-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Spinal commissural axons represent a model system for deciphering the molecular logic that regulates the guidance of midline-crossing axons in the developing central nervous system (CNS). Whether the same or specific sets of guidance signals control the navigation of molecularly distinct subtypes of these axons remains an open and largely unexplored question. Although it is well established that post-crossing commissural axons alter their responsiveness to midline-associated guidance cues, our understanding of the repulsive mechanisms that drive the post-crossing segments of these axons away from the midline and whether the underlying guidance systems operate in a commissural axon subtype-specific manner, remains fragmentary at best. RESULTS Here, we utilize axonally targeted transgenic reporter mice to visualize genetically distinct dorsal interneuron (dI)1 and dI4 commissural axons and show that the repulsive class 3 semaphorin (Sema3) guidance receptor Neuropilin 2 (Npn2), is selectively expressed on the dI1 population and is required for the guidance of post-crossing dI1, but not dI4, axons. Consistent with these observations, the midline-associated Npn2 ligands, Sema3F and Sema3B, promote the collapse of dI1, but not dI4, axon-associated growth cones in vitro. We also identify, for the first time, a discrete GABAergic population of ventral commissural neurons/axons in the embryonic mouse spinal cord that expresses Npn2, and show that Npn2 is required for the proper guidance of their post-crossing axons. CONCLUSIONS Together, our findings indicate that Npn2 is selectively expressed in distinct populations of commissural neurons in both the dorsal and ventral spinal cord, and suggest that Sema3-Npn2 signaling regulates the guidance of post-crossing commissural axons in a population-specific manner.
Collapse
Affiliation(s)
- Tracy S Tran
- Department of Biological Sciences, Rutgers University, Boyden 206, 195 University Ave,, Newark, NJ 07102, USA.
| | | | | | | | | | | |
Collapse
|