1
|
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci 2023; 17:1211530. [PMID: 37745783 PMCID: PMC10512466 DOI: 10.3389/fnsys.2023.1211530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Performing successful adaptive behaviour relies on our ability to process a wide range of temporal intervals with certain precision. Studies on the role of the cerebellum in temporal information processing have adopted the dogma that the cerebellum is involved in sub-second processing. However, emerging evidence shows that the cerebellum might be involved in suprasecond temporal processing as well. Here we review the reciprocal loops between cerebellum and cerebral cortex and provide a theoretical account of cerebro-cerebellar interactions with a focus on how cerebellar output can modulate cerebral processing during learning of complex sequences. Finally, we propose that while the ability of the cerebellum to support millisecond timescales might be intrinsic to cerebellar circuitry, the ability to support supra-second timescales might result from cerebellar interactions with other brain regions, such as the prefrontal cortex.
Collapse
Affiliation(s)
- Ellen Boven
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Neural and Machine Learning Group, Bristol Computational Neuroscience Unit, Intelligent Systems Labs, School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Nadia L. Cerminara
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Gruart A, Delgado-García JM. Neural bases of freedom and responsibility. Front Neural Circuits 2023; 17:1191996. [PMID: 37334060 PMCID: PMC10272542 DOI: 10.3389/fncir.2023.1191996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
This review presents a broad perspective of the Neuroscience of our days with special attention to how the brain generates our behaviors, emotions, and mental states. It describes in detail how unconscious and conscious processing of sensorimotor and mental information takes place in our brains. Likewise, classic and recent experiments illustrating the neuroscientific foundations regarding the behavioral and cognitive abilities of animals and, in particular, of human beings are described. Special attention is applied to the description of the different neural regulatory systems dealing with behavioral, cognitive, and emotional functions. Finally, the brain process for decision-making, and its relationship with individual free will and responsibility, are also described.
Collapse
|
3
|
Lu A, Fukutomi M, Shidara H, Ogawa H. Persistence of auditory modulation of wind-induced escape behavior in crickets. Front Physiol 2023; 14:1153913. [PMID: 37250114 PMCID: PMC10214467 DOI: 10.3389/fphys.2023.1153913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Animals, including insects, change their innate escape behavior triggered by a specific threat stimulus depending on the environmental context to survive adaptively the predators' attack. This indicates that additional inputs from sensory organs of different modalities indicating surrounding conditions could affect the neuronal circuit responsible for the escape behavior. Field crickets, Gryllus bimaculatus, exhibit an oriented running or jumping escape in response to short air puff detected by the abdominal mechanosensory organ called cerci. Crickets also receive a high-frequency acoustic stimulus by their tympanal organs on their frontal legs, which suggests approaching bats as a predator. We have reported that the crickets modulate their wind-elicited escape running in the moving direction when they are exposed to an acoustic stimulus preceded by the air puff. However, it remains unclear how long the effects of auditory inputs indicating surrounding contexts last after the sound is terminated. In this study, we applied a short pulse (200 ms) of 15-kHz pure tone to the crickets in various intervals before the air-puff stimulus. The sound given 200 or 1000 ms before the air puff biased the wind-elicited escape running backward, like the previous studies using the longer and overlapped sound. But the sounds that started 2000 ms before and simultaneously with the air puff had little effect. In addition, the jumping probability was higher only when the delay of air puff to the sound was 1000 ms. These results suggest that the cricket could retain the auditory memory for at least one second and alter the motion choice and direction of the wind-elicited escape behavior.
Collapse
Affiliation(s)
- Anhua Lu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biochemistry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Parras GG, Leal-Campanario R, López-Ramos JC, Gruart A, Delgado-García JM. Functional properties of eyelid conditioned responses and involved brain centers. Front Behav Neurosci 2022; 16:1057251. [PMID: 36570703 PMCID: PMC9780278 DOI: 10.3389/fnbeh.2022.1057251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
For almost a century the classical conditioning of nictitating membrane/eyelid responses has been used as an excellent and feasible experimental model to study how the brain organizes the acquisition, storage, and retrieval of new motor abilities in alert behaving mammals, including humans. Lesional, pharmacological, and electrophysiological approaches, and more recently, genetically manipulated animals have shown the involvement of numerous brain areas in this apparently simple example of associative learning. In this regard, the cerebellum (both cortex and nuclei) has received particular attention as a putative site for the acquisition and storage of eyelid conditioned responses, a proposal not fully accepted by all researchers. Indeed, the acquisition of this type of learning implies the activation of many neural processes dealing with the sensorimotor integration and the kinematics of the acquired ability, as well as with the attentional and cognitive aspects also involved in this process. Here, we address specifically the functional roles of three brain structures (red nucleus, cerebellar interpositus nucleus, and motor cortex) mainly involved in the acquisition and performance of eyelid conditioned responses and three other brain structures (hippocampus, medial prefrontal cortex, and claustrum) related to non-motor aspects of the acquisition process. The main conclusion is that the acquisition of this motor ability results from the contribution of many cortical and subcortical brain structures each one involved in specific (motor and cognitive) aspects of the learning process.
Collapse
|
5
|
Li R, Li Q, Chu X, Li L, Li X, Li J, Yang Z, Xu M, Luo C, Zhang K. Role of cerebellar cortex in associative learning and memory in guinea pigs. Open Life Sci 2022; 17:1208-1216. [PMID: 36185409 PMCID: PMC9482424 DOI: 10.1515/biol-2022-0471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Time-related cognitive function refers to the capacity of the brain to store, extract, and process specific information. Previous studies demonstrated that the cerebellar cortex participates in advanced cognitive functions, but the role of the cerebellar cortex in cognitive functions is unclear. We established a behavioral model using classical eyeblink conditioning to study the role of the cerebellar cortex in associative learning and memory and the underlying mechanisms. We performed an investigation to determine whether eyeblink conditioning could be established by placing the stimulating electrode in the middle cerebellar peduncle. Behavior training was performed using a microcurrent pulse as a conditioned stimulus to stimulate the middle cerebellar peduncle and corneal blow as an unconditioned stimulus. After 10 consecutive days of training, a conditioned response was successfully achieved in the Delay, Trace-200-ms, and Trace-300-ms groups of guinea pigs, with acquisition rates of >60%, but the Trace-400-ms and control groups did not achieve a conditioned stimulus-related blink conditioned response. It could be a good model for studying the function of the cerebellum during the establishment of eyeblink conditioning.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Qi Li
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation Medicine, Tianjin Hospital Tianjin University, Jiefang South Road 406, Tianjin 300211, Tianjin, China
| | - Lan Li
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Xiaoyi Li
- Department of Neuroelectrophysiology, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Juan Li
- Department of Using Quality Management, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Mingjing Xu
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Changlu Luo
- Department of Rehabilitation, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Zhongshan East Road 83, Guiyang 550001, Guizhou, China
| |
Collapse
|
6
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
7
|
Reus-García MM, Sánchez-Campusano R, Ledderose J, Dogbevia GK, Treviño M, Hasan MT, Gruart A, Delgado-García JM. The Claustrum is Involved in Cognitive Processes Related to the Classical Conditioning of Eyelid Responses in Behaving Rabbits. Cereb Cortex 2020; 31:281-300. [PMID: 32885230 PMCID: PMC7727357 DOI: 10.1093/cercor/bhaa225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
It is assumed that the claustrum (CL) is involved in sensorimotor integration and cognitive processes. We recorded the firing activity of identified CL neurons during classical eyeblink conditioning in rabbits, using a delay paradigm in which a tone was presented as conditioned stimulus (CS), followed by a corneal air puff as unconditioned stimulus (US). Neurons were identified by their activation from motor (MC), cingulate (CC), and medial prefrontal (mPFC) cortices. CL neurons were rarely activated by single stimuli of any modality. In contrast, their firing was significantly modulated during the first sessions of paired CS/US presentations, but not in well-trained animals. Neuron firing rates did not correlate with the kinematics of conditioned responses (CRs). CL local field potentials (LFPs) changed their spectral power across learning and presented well-differentiated CL–mPFC/CL–MC network dynamics, as shown by crossfrequency spectral measurements. CL electrical stimulation did not evoke eyelid responses, even in trained animals. Silencing of synaptic transmission of CL neurons by the vINSIST method delayed the acquisition of CRs but did not affect their presentation rate. The CL plays an important role in the acquisition of associative learning, mostly in relation to the novelty of CS/US association, but not in the expression of CRs.
Collapse
Affiliation(s)
- M Mar Reus-García
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.,Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Godwin K Dogbevia
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Mario Treviño
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara 44130, México
| | - Mazahir T Hasan
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Leioa 48940, Spain.,Ikerbasque-Basque Foundation for Science, Bilbao 48013, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 4103, Spain
| | | |
Collapse
|
8
|
Wu GY, Liu SL, Yao J, Li X, Wu B, Ye JN, Sui JF. Optogenetic Inhibition of Medial Prefrontal Cortex-Pontine Nuclei Projections During the Stimulus-free Trace Interval Impairs Temporal Associative Motor Learning. Cereb Cortex 2019; 28:3753-3763. [PMID: 28968654 DOI: 10.1093/cercor/bhx238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 11/13/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is closely involved in many higher-order cognitive functions, including learning to associate temporally discontiguous events (called temporal associative learning). However, direct evidence for the role of mPFC and the neural pathway underlying modulation of temporal associative motor learning is sparse. Here, we show that optogenetic inhibition of the mPFC or its axon terminals at the pontine nuclei (PN) during trace intervals or whole trial period significantly impaired the trace eyeblink conditioning (TEC), but had no significant effects on TEC during the conditioned stimulus or intertrial interval period. Our results suggest that activities associated with the mPFC-PN projection during trace intervals is crucial for trace associative motor learning. This finding is of great importance in understanding the mechanisms and the relevant neural pathways underlying mPFC modulation of temporal associative motor learning.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Shu-Lei Liu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jian-Ning Ye
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Suter EE, Weiss C, Disterhoft JF. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time-bridging learning. Hippocampus 2019; 29:511-526. [PMID: 30311282 PMCID: PMC6615905 DOI: 10.1002/hipo.23041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
Many studies have focused on the function of hippocampal region CA1 as a critical site for associative memory, but much less is known about changes in the afferents to CA1. Here we report the activity of multiple single neurons from perirhinal and entorhinal cortex and from dentate gyrus during trace eyeblink conditioning as well as consolidated recall, and in pseudo-conditioned control rabbits. We also report an analysis of theta activity filtered from the local field potential (LFP). Our results show early associative changes in single-neuron firing rate as well as theta oscillations in lateral entorhinal cortex (EC) and dentate gyrus (DG), and increases in the number of responsive neurons in perirhinal cortex. In both EC and DG, a subset of neurons from conditioned animals exhibited an elevated baseline firing rate and large responses to the conditioned stimulus and trace period. A similar population of cells has been seen in DG and in medial, but not lateral, EC during spatial tasks, suggesting that lateral EC contains cells responsive to a temporal associative task. In contrast to recent studies in our laboratory that found significant CA1 contributions to long-term memory, the activity profiles of neurons within EC and DG were similar for conditioned and pseudoconditioned rabbits during post-consolidation sessions. Collectively these results demonstrate that individual subregions of medial temporal lobe differentially support new and remotely acquired memories. Neuron firing profiles were similar on training trials when conditioned responses were and were not exhibited, demonstrating that these temporal lobe regions represent the CS-US association and do not control the behavioral response. The analysis of theta activity revealed that theta power was modulated by the conditioning stimuli in both the conditioned and pseudoconditioned groups and that although both groups exhibited a resetting of phase to the corneal airpuff, only the conditioned group exhibited a resetting of phase to the whisker conditioned stimulus.
Collapse
Affiliation(s)
- Eugénie E Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Weiss
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Fernández-Lamo I, Delgado-García JM, Gruart A. When and Where Learning is Taking Place: Multisynaptic Changes in Strength During Different Behaviors Related to the Acquisition of an Operant Conditioning Task by Behaving Rats. Cereb Cortex 2019; 28:1011-1023. [PMID: 28199479 DOI: 10.1093/cercor/bhx011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Indexed: 01/02/2023] Open
Abstract
Although it is generally assumed that brain circuits are modified by new experiences, the question of which changes in synaptic efficacy take place in cortical and subcortical circuits across the learning process remains unanswered. Rats were trained in the acquisition of an operant conditioning in a Skinner box provided with light beams to detect animals' approaches to lever and feeder. Behaviors such as pressing the lever, eating, exploring, and grooming were also recorded. Animals were chronically implanted with stimulating and recording electrodes in hippocampal, prefrontal, and subcortical sites relevant to the task. Field synaptic potentials were evoked during the performance of the above-mentioned behaviors and before, during, and after the acquisition process. Afferent pathways to the hippocampus and the intrinsic hippocampal circuit were slightly modified in synaptic strength during the performance of those behaviors. In contrast, afferent and efferent circuits of the medial prefrontal cortex were significantly modified in synaptic strength across training sessions, mostly at the moment of the largest change in the learning curve. Performance of behaviors nondirectly related to the acquisition process (exploring, grooming) also evoked changes in synaptic strength across training. This study helps to understand when and where learning is being engraved in the brain.
Collapse
Affiliation(s)
- Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain
| |
Collapse
|
11
|
Wu GY, Liu SL, Yao J, Sun L, Wu B, Yang Y, Li X, Sun QQ, Feng H, Sui JF. Medial Prefrontal Cortex-Pontine Nuclei Projections Modulate Suboptimal Cue-Induced Associative Motor Learning. Cereb Cortex 2019; 28:880-893. [PMID: 28077515 DOI: 10.1093/cercor/bhw410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 11/14/2022] Open
Abstract
Diverse and powerful mechanisms have evolved to enable organisms to modulate learning and memory under a variety of survival conditions. Cumulative evidence has shown that the prefrontal cortex (PFC) is closely involved in many higher-order cognitive functions. However, when and how the medial PFC (mPFC) modulates associative motor learning remains largely unknown. Here, we show that delay eyeblink conditioning (DEC) with the weak conditioned stimulus (wCS) but not the strong CS (sCS) elicited a significant increase in the levels of c-Fos expression in caudal mPFC. Both optogenetic inhibition and activation of the bilateral caudal mPFC, or its axon terminals at the pontine nucleus (PN) contralateral to the training eye, significantly impaired the acquisition, recent and remote retrieval of DEC with the wCS but not the sCS. However, direct optogenetic activation of the contralateral PN had no significant effect on the acquisition, recent and remote retrieval of DEC. These results are of great importance in understanding the elusive role of the mPFC and its projection to PN in subserving the associative motor learning under suboptimal learning cue.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Shu-Lei Liu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Lin Sun
- Institute of Physical Education, Southwest University, Chongqing400715, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jian-Feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.,Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
12
|
Zhang LQ, Yao J, Gao J, Sun L, Wang LT, Sui JF. Modulation of eyeblink conditioning through sensory processing of conditioned stimulus by cortical and subcortical regions. Behav Brain Res 2019; 359:149-155. [PMID: 30385367 DOI: 10.1016/j.bbr.2018.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
Classical eyeblink conditioning (EBC) is one of the simplest forms of associative learning that depends critically on the cerebellum. Using delay EBC (dEBC), a standard paradigm in which the unconditioned stimulus (US) is delayed and co-terminates with the conditioned stimulus (CS), converging lines of evidence has been accumulated and shows that the essential neural circuit mediating EBC resides in the cerebellum and brainstem. In addition to this essential circuit, multiple cerebral cortical and subcortical structures are required to modulate dEBC with suboptimal training parameters, and trace EBC (tEBC) in which a trace-interval separates the CS and US. However, it remains largely unclear why and how so many brain regions are involved for modulation of EBC. Previous research has suggested that the forebrain regions, such as medial prefrontal cortex (mPFC) and hippocampus, may be required to process weak CSs, or to realize temporal overlap between the CS and US signal inputs when the two stimuli were separated in time (i.e. during tEBC). Here, we proposed a multi-level network model for EBC modulation which focuses on sensory processing of CS. The model explains how different neural pathways projecting to pontine nucleus (PN) are involved to amplify or extend CS through heterosynaptic facilitation mechanism or "substitution effect" under different circumstances to achieve EBC. As such, our model can serve as a general framework to explain the modulating mechanism of EBC in a variety of conditions and to help understand the interaction among cerebellum, brainstem, cortical and subcortical regions in EBC modulation.
Collapse
Affiliation(s)
- Lang-Qian Zhang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China; Department of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 University City Road, Shapingba District, Chongqing 401331, PR China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Lin Sun
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China
| | - Li-Ting Wang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, PR China.
| |
Collapse
|
13
|
Long Trace Eyeblink Conditioning Is Largely Preserved in Essential Tremor. THE CEREBELLUM 2019; 18:67-75. [PMID: 29916048 DOI: 10.1007/s12311-018-0956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Caro-Martín CR, Delgado-García JM, Gruart A, Sánchez-Campusano R. Spike sorting based on shape, phase, and distribution features, and K-TOPS clustering with validity and error indices. Sci Rep 2018; 8:17796. [PMID: 30542106 PMCID: PMC6290782 DOI: 10.1038/s41598-018-35491-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
Spike sorting is one of the most important data analysis problems in neurophysiology. The precision in all steps of the spike-sorting procedure critically affects the accuracy of all subsequent analyses. After data preprocessing and spike detection have been carried out properly, both feature extraction and spike clustering are the most critical subsequent steps of the spike-sorting procedure. The proposed spike sorting approach comprised a new feature extraction method based on shape, phase, and distribution features of each spike (hereinafter SS-SPDF method), which reveal significant information of the neural events under study. In addition, we applied an efficient clustering algorithm based on K-means and template optimization in phase space (hereinafter K-TOPS) that included two integrative clustering measures (validity and error indices) to verify the cohesion-dispersion among spike events during classification and the misclassification of clustering, respectively. The proposed method/algorithm was tested on both simulated data and real neural recordings. The results obtained for these datasets suggest that our spike sorting approach provides an efficient way for sorting both single-unit spikes and overlapping waveforms. By analyzing raw extracellular recordings collected from the rostral-medial prefrontal cortex (rmPFC) of behaving rabbits during classical eyeblink conditioning, we have demonstrated that the present method/algorithm performs better at classifying spikes and neurons and at assessing their modulating properties than other methods currently used in neurophysiology.
Collapse
Affiliation(s)
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, 41013, Spain
| | - R Sánchez-Campusano
- Division of Neurosciences, Pablo de Olavide University, Seville, 41013, Spain.
| |
Collapse
|
15
|
Burhans LB, Schreurs BG. Inactivation of the interpositus nucleus blocks the acquisition of conditioned responses and timing changes in conditioning-specific reflex modification of the rabbit eyeblink response. Neurobiol Learn Mem 2018; 155:143-156. [PMID: 30053576 PMCID: PMC6731038 DOI: 10.1016/j.nlm.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Conditioning-specific reflex modification (CRM) of the rabbit eyeblink response is an associative phenomenon characterized by increases in the frequency, size, and peak latency of the reflexive unconditioned eyeblink response (UR) when the periorbital shock unconditioned stimulus (US) is presented alone following conditioning, particularly to lower intensity USs that produced minimal responding prior to conditioning. Previous work has shown that CRM shares many commonalities with the conditioned eyeblink response (CR) including a similar response topography, suggesting the two may share similar neural substrates. The following study examined the hypothesis that the interpositus nucleus (IP) of the cerebellum, an essential part of the neural circuitry of eyeblink conditioning, is also required for the acquisition of CRM. Tests for CRM occurred following delay conditioning under muscimol inactivation of the IP and also after additional conditioning without IP inactivation. Results showed that IP inactivation blocked acquisition of CRs and the timing aspect of CRM but did not prevent increases in UR amplitude and area. Following the cessation of inactivation, CRs and CRM latency changes developed similarly to controls with intact IP functioning, but with some indication that CRs may have been facilitated in muscimol rabbits. In conclusion, CRM timing and CRs both likely require the development of plasticity in the IP, but other associative UR changes may involve non-cerebellar structures interacting with the eyeblink conditioning circuitry, a strong candidate being the amygdala, which is also likely involved in the facilitation of conditioning. Other candidates worth consideration include the cerebellar cortex, prefrontal and motor cortices.
Collapse
Affiliation(s)
- Lauren B Burhans
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA.
| | - Bernard G Schreurs
- Rockefeller Neuroscience Institute and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
The Motor Cortex Is Involved in the Generation of Classically Conditioned Eyelid Responses in Behaving Rabbits. J Neurosci 2017; 36:6988-7001. [PMID: 27358456 DOI: 10.1523/jneurosci.4190-15.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Classical blink conditioning is a well known model for studying neural generation of acquired motor responses. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. We recorded in rabbits the activity of MC neurons during blink conditioning using a delay paradigm. Neurons were identified by their antidromic activation from facial nucleus (FN) or red nucleus (RN). For conditioning, we used a tone as a conditioned stimulus (CS) followed by an air puff as an unconditioned stimulus (US) that coterminated with it. Conditioned responses (CRs) were determined from the electromyographic activity of the orbicularis oculi muscle and/or from eyelid position recorded with the search coil technique. Type A neurons increased their discharge rates across conditioning sessions and reached peak firing during the CS-US interval, while type B cells presented a second peak during US presentation. Both of them project to the FN. Type C cells increased their firing across the CS-US interval, reaching peak values at the time of US presentation, and were activated from the RN. These three types of neurons fired well in advance of the beginning of CRs and changed with them. Reversible inactivation of the MC during conditioning evoked a decrease in learning curves and in the amplitude of CRs, while train stimulation of the MC simulated the profile and kinematics of conditioned blinks. In conclusion, MC neurons are involved in the acquisition and expression of CRs. SIGNIFICANCE STATEMENT Classical blink conditioning is a popular experimental model for studying neural mechanisms underlying the acquisition of motor skills. The acquisition of this type of associative learning has been related to many cortical, subcortical, and cerebellar structures. However, until now, no one has studied the motor cortex (MC) and its possible role in classical eyeblink conditioning. Here, we report that the firing activities of MC neurons, recorded in behaving rabbits, are related to and preceded the initiation of conditioned blinks. MC neurons were identified as projecting to the red or facial nuclei and encoded the kinematics of conditioned eyelid responses. The timed stimulation of recording sites simulated the profile of conditioned blinks. MC neurons play a role in the acquisition and expression of these acquired motor responses.
Collapse
|
17
|
Matias S, Lottem E, Dugué GP, Mainen ZF. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 2017; 6:e20552. [PMID: 28322190 PMCID: PMC5360447 DOI: 10.7554/elife.20552] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/26/2017] [Indexed: 12/18/2022] Open
Abstract
Serotonin is implicated in mood and affective disorders. However, growing evidence suggests that a core endogenous role is to promote flexible adaptation to changes in the causal structure of the environment, through behavioral inhibition and enhanced plasticity. We used long-term photometric recordings in mice to study a population of dorsal raphe serotonin neurons, whose activity we could link to normal reversal learning using pharmacogenetics. We found that these neurons are activated by both positive and negative prediction errors, and thus report signals similar to those proposed to promote learning in conditions of uncertainty. Furthermore, by comparing the cue responses of serotonin and dopamine neurons, we found differences in learning rates that could explain the importance of serotonin in inhibiting perseverative responding. Our findings show how the activity patterns of serotonin neurons support a role in cognitive flexibility, and suggest a revised model of dopamine-serotonin opponency with potential clinical implications.
Collapse
Affiliation(s)
- Sara Matias
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- MIT-Portugal Program, Porto Salvo, Portugal
| | - Eran Lottem
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Guillaume P Dugué
- Institut de Biologie de l’Ecole Normale Supérieure, Centre National de la Recherche Scientifique, UMR8197, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
18
|
Delgado-García JM, Gruart A. Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:75-93. [PMID: 29080022 DOI: 10.1007/978-3-319-62817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Contemporary neuroscientists are paying increasing attention to subcellular, molecular, and electrophysiological mechanisms underlying learning and memory processes. Recent studies have examined the development of transgenic mice affected at different stages of the learning process, or have emulated in animals various human pathological conditions involving cognition and motor learning. However, a parallel effort is needed to develop stimulating and recording techniques suitable for use in behaving mice in order to understand activity-dependent synaptic changes taking place during the very moment of the learning process. The in vivo models should incorporate information collected from different molecular and in vitro approaches. Long-term potentiation (LTP) has been proposed as the neural mechanism underlying synaptic plasticity, and NMDA receptors have been proposed as the molecular substrate of LTP. It now seems necessary to study the relationship of both LTP and NMDA receptors to functional changes in synaptic efficiency taking place during actual learning in selected cerebral cortical structures. Here, we review data collected in our laboratory during the past 10 years on the involvement of different hippocampal synapses in the acquisition of the classically conditioned eyelid responses in behaving mice. Overall the results indicate a specific contribution of each cortical synapse to the acquisition and storage of new motor and cognitive abilities. Available data show that LTP, evoked by high-frequency stimulation of Schaffer collaterals, disturbs both the acquisition of conditioned eyelid responses and the physiological changes that occur at hippocampal synapses during learning. Moreover, the administration of NMDA-receptor antagonists is able not only to prevent LTP induction in vivo, but also to hinder both the formation of conditioned eyelid responses and functional changes in the strength of the CA3-CA1 synapse. Nevertheless, many other neurotransmitter receptors, intracellular mediators, and transcription factors are also involved in learning and memory processes. In summary, it can be proposed that learning and memory in behaving mammals are the result of the activation of complex and distributed functional states involving many different cerebral cortical synapses, with the participation also of various neurotransmitter systems.
Collapse
Affiliation(s)
- José M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, Km. 1, Seville, 41013, Spain.
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Ctra. de Utrera, Km. 1, Seville, 41013, Spain
| |
Collapse
|
19
|
|
20
|
A Variable Oscillator Underlies the Measurement of Time Intervals in the Rostral Medial Prefrontal Cortex during Classical Eyeblink Conditioning in Rabbits. J Neurosci 2016; 35:14809-21. [PMID: 26538651 DOI: 10.1523/jneurosci.2285-15.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. SIGNIFICANCE STATEMENT The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories.
Collapse
|
21
|
Lee KH, Huang YJ, Grau JW. Learning about Time within the Spinal Cord II: Evidence that Temporal Regularity Is Encoded by a Spinal Oscillator. Front Behav Neurosci 2016; 10:14. [PMID: 26903830 PMCID: PMC4749712 DOI: 10.3389/fnbeh.2016.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock) is applied and the interval between shock pulses is varied (unpredictable), it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable) manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail). Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal) process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2) region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.
Collapse
Affiliation(s)
- Kuan H Lee
- Department of Neurobiology, Center for Pain Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Yung-Jen Huang
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| | - James W Grau
- Department of Psychology, Cellular and Behavioral Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|