1
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Lalonde NR, Bui TV. Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury? CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Caron G, Bilchak JN, Côté MP. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats. J Physiol 2020; 598:4621-4642. [PMID: 32721039 DOI: 10.1113/jp280070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Presynaptic inhibition is modulated by supraspinal centres and primary afferents in order to filter sensory information, adjust spinal reflex excitability, and ensure smooth movement. After spinal cord injury (SCI), the supraspinal control of primary afferent depolarization (PAD) interneurons is disengaged, suggesting an increased role for sensory afferents. While increased H-reflex excitability in spastic individuals indicates a possible decrease in presynaptic inhibition, it remains unclear whether a decrease in sensory-evoked PAD contributes to this effect. We investigated whether the PAD evoked by hindlimb afferents contributes to the change in presynaptic inhibition of the H-reflex in a decerebrated rat preparation. We found that chronic SCI decreases presynaptic inhibition of the plantar H-reflex through a reduction in PAD evoked by posterior biceps-semitendinosus (PBSt) muscle group I afferents. We further found that step-training restored presynaptic inhibition of the plantar H-reflex evoked by PBSt, suggesting the presence of activity-dependent plasticity of PAD pathways activated by flexor muscle group I afferents. ABSTRACT Spinal cord injury (SCI) results in the disruption of supraspinal control of spinal networks and an increase in the relative influence of afferent feedback to sublesional neural networks, both of which contribute to enhancing spinal reflex excitability. Hyperreflexia occurs in ∼75% of individuals with a chronic SCI and critically hinders functional recovery and quality of life. It is suggested that it results from an increase in motoneuronal excitability and a decrease in presynaptic and postsynaptic inhibitory mechanisms. In contrast, locomotor training decreases hyperreflexia by restoring presynaptic inhibition. Primary afferent depolarization (PAD) is a powerful presynaptic inhibitory mechanism that selectively gates primary afferent transmission to spinal neurons to adjust reflex excitability and ensure smooth movement. However, the effect of chronic SCI and step-training on the reorganization of presynaptic inhibition evoked by hindlimb afferents, and the contribution of PAD has never been demonstrated. The objective of this study is to directly measure changes in presynaptic inhibition through dorsal root potentials (DRPs) and its association with plantar H-reflex inhibition. We provide direct evidence that H-reflex hyperexcitability is associated with a decrease in transmission of PAD pathways activated by posterior biceps-semitendinosus (PBSt) afferents after chronic SCI. More precisely, we illustrate that the pattern of inhibition evoked by PBSt group I muscle afferents onto both L4-DRPs and plantar H-reflexes evoked by the distal tibial nerve is impaired after chronic SCI. These changes are not observed in step-trained animals, suggesting a role for activity-dependent plasticity to regulate PAD pathways activated by flexor muscle group I afferents.
Collapse
Affiliation(s)
- Guillaume Caron
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Jadwiga N Bilchak
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| |
Collapse
|
4
|
Milla-Cruz JJ, Mena-Avila E, Calvo JR, Hochman S, Villalón CM, Quevedo JN. The activation of D 2 and D 3 receptor subtypes inhibits pathways mediating primary afferent depolarization (PAD) in the mouse spinal cord. Neurosci Lett 2020; 736:135257. [PMID: 32682848 DOI: 10.1016/j.neulet.2020.135257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Somatosensory information can be modulated at the spinal cord level by primary afferent depolarization (PAD), known to produce presynaptic inhibition (PSI) by decreasing neurotransmitter release through the activation of presynaptic ionotropic receptors. Descending monoaminergic systems also modulate somatosensory processing. We investigated the role of D1-like and D2-like receptors on pathways mediating PAD in the hemisected spinal cord of neonatal mice. We recorded low-threshold evoked dorsal root potentials (DRPs) and population monosynaptic responses as extracellular field potentials (EFPs). We used a paired-pulse conditioning-test protocol to assess homosynaptic and heterosynaptic depression of evoked EFPs to discriminate between dopaminergic effects on afferent synaptic efficacy and/or on pathways mediating PAD, respectively. DA (10 μM) depressed low-threshold evoked DRPs by 43 %, with no effect on EFPs. These depressant effects on DRPs were mimicked by the D2-like receptor agonist quinpirole (35 %). Moreover, by using selective antagonists at D2-like receptors (encompassing the D2, D3, and D4 subtypes), we found that the D2 and D3 receptor subtypes participate in the quinpirole depressant inhibitory effects of pathways mediating PAD.
Collapse
Affiliation(s)
- Jonathan J Milla-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Elvia Mena-Avila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge R Calvo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Shawn Hochman
- Physiology Department, Emory University, Atlanta, GA, United States
| | - Carlos M Villalón
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Sede-Sur, Ciudad de México, Mexico
| | - Jorge N Quevedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Mrachacz-Kersting N, Kersting UG, de Brito Silva P, Makihara Y, Arendt-Nielsen L, Sinkjær T, Thompson AK. Acquisition of a simple motor skill: task-dependent adaptation and long-term changes in the human soleus stretch reflex. J Neurophysiol 2019; 122:435-446. [PMID: 31166816 DOI: 10.1152/jn.00211.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.
Collapse
Affiliation(s)
- N Mrachacz-Kersting
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - U G Kersting
- Institute for Biomechanics and Orthopaedics, German Sport University Cologne , Cologne , Germany
| | - P de Brito Silva
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - Y Makihara
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - L Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University , Aalborg , Denmark
| | - T Sinkjær
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare , Narita, Chiba , Japan
| | - A K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
6
|
Duenas-Jimenez SH, Castillo Hernandez L, de la Torre Valdovinos B, Mendizabal Ruiz G, Duenas Jimenez JM, Ramirez Abundis V, Aguilar Garcia IG. Hind limb motoneurons activity during fictive locomotion or scratching induced by pinna stimulation, serotonin, or glutamic acid in brain cortex-ablated cats. Physiol Rep 2017; 5:5/18/e13458. [PMID: 28963128 PMCID: PMC5617936 DOI: 10.14814/phy2.13458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
In brain cortex‐ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections of serotonin or glutamic acid effects were made to study their influence in FL or FS. During FS, HeMR amplitude in extensor and bifunctional motoneurons increased prior to or during the respective electroneurogram (ENG). In soleus (SOL) motoneurons were reduced during the scratch cycle (SC). AA in medial gastrocnemius (MG) Ia afferent individual fibers of L6‐L7 dorsal roots did not occur during FS. Flexor digitorum longus (FDL) and MG motoneurons fired with doublets during the FS bursting activity, motoneuron membrane potential from some posterior biceps (PB) motoneurons exhibits a depolarization in relation to the PB (ENG). It changed to a locomotor drive potential in relation to one of the double ENG, PB bursts. In FDL and semitendinosus (ST) motoneurons, the membrane potential was depolarized during FS, but it did not change during FL. Glutamic acid injected in the L3‐L4 spinal cord segment favored the transition from FS to FL. During FL, glutamic acid produces a duration increase of extensors ENGs. Serotonin increases the ENG amplitude in extensor motoneurons, as well as the duration of scratching episodes. It did not change the SC duration. Segregation and motoneurons excitability could be regulated by the rhythmic generator and the pattern generator of the central pattern generator.
Collapse
Affiliation(s)
| | - Luis Castillo Hernandez
- Basic Center, Department of Physiology and Pharmacology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Gerardo Mendizabal Ruiz
- Department of Computational Sciences CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
7
|
McComas AJ. Hypothesis: Hughlings Jackson and presynaptic inhibition: is there a big picture? J Neurophysiol 2016; 116:41-50. [PMID: 27121579 PMCID: PMC4961749 DOI: 10.1152/jn.00371.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Presynaptic inhibition is a very powerful inhibitory mechanism and, despite many detailed studies, its purpose is still only partially understood. One accepted function is that, by reducing afferent inflow to the spinal cord and brainstem, the tonic level of presynaptic inhibition prevents sensory systems from being overloaded. A corollary of this function is that much of the incoming sensory data from peripheral receptors must be redundant, and this conclusion is reinforced by observations on patients with sensory neuropathies or congenital obstetric palsy in whom normal sensation may be preserved despite loss of sensory fibers. The modulation of incoming signals by presynaptic inhibition has a further function in operating a "gate" in the dorsal horn, thereby determining whether peripheral stimuli are likely to be perceived as painful. On the motor side, the finding that even minimal voluntary movement of a single toe is associated with widespread inhibition in the lumbosacral cord points to another function for presynaptic inhibition: to prevent reflex perturbations from interfering with motor commands. This last function, together with the normal suppression of muscle and cutaneous reflex activity at rest, is consistent with Hughlings Jackson's concept of evolving neural hierarchies, with each level inhibiting the one below it.
Collapse
Affiliation(s)
- Alan J McComas
- McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Nakajima T, Mezzarane RA, Komiyama T, Paul Zehr E. Reflex control of human locomotion: Existence, features and functions of common interneuronal system induced by multiple sensory inputs in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine
| | - Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília
| | | | - E. Paul Zehr
- Division of Medical Sciences, University of Victoria
- Centre for Biomedical Research, University of Victoria
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD)
- Rehabilitation Neuroscience Laboratory, University of Victoria
| |
Collapse
|
9
|
Quiroz-González S, Segura-Alegría B, Olmos JCG, Jiménez-Estrada I. The effect of chronic undernourishment on the synaptic depression of cutaneous pathways in the rat spinal cord. Brain Res Bull 2012; 89:97-101. [DOI: 10.1016/j.brainresbull.2012.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 06/06/2012] [Accepted: 07/14/2012] [Indexed: 11/26/2022]
|
10
|
Fedirchuk B, Stecina K, Kristensen KK, Zhang M, Meehan CF, Bennett DJ, Hultborn H. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions. J Neurophysiol 2012; 109:375-88. [PMID: 23100134 DOI: 10.1152/jn.00649.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern generator. The ventral spinocerebellar tract (VSCT) neurons, on the other hand, were found to be active during actual locomotion (on a treadmill) even after deafferentation, as well as during fictive locomotion (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb nerves. Spinocerebellar tract cells with cell bodies located in the lumbar segments were identified by electrophysiological techniques and examined by extra- and intracellular microelectrode recordings. During fictive locomotion, 57/81 DSCT and 30/30 VSCT neurons showed phasic, cycle-related activity. During fictive scratch, 19/29 DSCT neurons showed activity related to the scratch cycle. We provide evidence for the first time that locomotor and scratch drive potentials are present not only in VSCT, but also in the majority of DSCT neurons. These results demonstrate that both spinocerebellar tracts receive input from the central pattern generator circuitry, often sufficient to elicit firing in the absence of sensory input.
Collapse
Affiliation(s)
- Brent Fedirchuk
- University of Manitoba, Department of Physiology, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Quiróz-González S, Escartín-Pérez RE, Paz-Bermudez F, Segura-Alegría B, Reyes-Legorreta C, Guadarrama-Olmos JC, Florán-Garduño B, Jiménez-Estrada I. Endogenous Content and Release of [3H]-GABA and [3H]-Glutamate in the Spinal Cord of Chronically Undernourished Rat. Neurochem Res 2012; 38:23-31. [DOI: 10.1007/s11064-012-0881-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/31/2012] [Accepted: 08/30/2012] [Indexed: 12/22/2022]
|
12
|
Abstract
Neuronal networks within the spinal cord of mammals are responsible for generating various rhythmic movements, such as walking, running, swimming, and scratching. The ability to generate multiple rhythmic movements highlights the complexity and flexibility of the mammalian spinal circuitry. The present review describes features of some rhythmic motor behaviors generated by the mammalian spinal cord and discusses how the spinal circuitry is able to produce different rhythmic movements with their own sets of goals and demands.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
13
|
Chapter 10--a hierarchical perspective on rhythm generation for locomotor control. PROGRESS IN BRAIN RESEARCH 2011; 188:151-66. [PMID: 21333808 DOI: 10.1016/b978-0-444-53825-3.00015-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The control of locomotion is a complex dynamic task solved with apparent ease by our body. How this is accomplished still remains an intriguing mystery. This chapter first describes classical and recent findings relevant to understanding the complexity of the question on the verge of several fields of neurophysiology, biomechanics, and computational neuroscience. Then, control of locomotion is analyzed with numerical simulations to reveal some basic characteristics responsible for modulation of the locomotor rhythm and high-level control of steering in the whole animal. In this study, the concept of a central pattern generator (CPG) for controlling locomotor rhythm first proposed by Brown was implemented in a "simple" model with bilateral half-center oscillators consisting of reciprocally organized integrators. The parameters of the CPG were determined by the process of optimization of its phase-duration characteristic that satisfies biomechanical requirements of the overground locomotion. The general finding of this study is that the modality of the control signal that drives CPGs for each limb corresponds to the desired speed of forward progression. This supports the idea that the descending and sensory feedback inputs to the spinal CPG are combined to produce a high-level control signal that sets forward velocity. The same mechanism may be responsible for the control of steering by generating a differential input of speed commands to different limbs.
Collapse
|
14
|
Gossard JP, Sirois J, Noué P, Côté MP, Ménard A, Leblond H, Frigon A. The spinal generation of phases and cycle duration. PROGRESS IN BRAIN RESEARCH 2011; 188:15-29. [DOI: 10.1016/b978-0-444-53825-3.00007-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Gonzenbach RR, Gasser P, Zörner B, Hochreutener E, Dietz V, Schwab ME. Nogo-A antibodies and training reduce muscle spasms in spinal cord-injured rats. Ann Neurol 2010; 68:48-57. [DOI: 10.1002/ana.22009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Seki K, Perlmutter SI, Fetz EE. Task-dependent modulation of primary afferent depolarization in cervical spinal cord of monkeys performing an instructed delay task. J Neurophysiol 2009; 102:85-99. [PMID: 19386753 PMCID: PMC2712276 DOI: 10.1152/jn.91113.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 04/14/2009] [Indexed: 11/22/2022] Open
Abstract
Task-dependent modulation of primary afferent depolarization (PAD) was studied in the cervical spinal cord of two monkeys performing a wrist flexion and extension task with an instructed delay period. We implanted two nerve cuff electrodes on proximal and distal parts of the superficial radial nerve (SR) and a recording chamber over a hemi-laminectomy in the lower cervical vertebrae. Antidromic volleys (ADVs) in the SR were evoked by intraspinal microstimuli (ISMS, 3-10 Hz, 3-30 microA) applied through a tungsten microelectrode, and the area of each ADV was measured. In total, 434 ADVs were evoked by ISMS in two monkeys, with onset latency consistently shorter in the proximal than distal cuffs. Estimated conduction velocity suggest that most ADVs were caused by action potentials in cutaneous fibers originating from low-threshold tactile receptors. Modulation of the size of ADVs as a function of the task was examined in 281 ADVs induced by ISMS applied at 78 different intraspinal sites. The ADVs were significantly facilitated during active movement in both flexion and extension (P<0.05), suggesting an epoch-dependent modulation of PAD. This facilitation started 400-900 ms before the onset of EMG activity. Such pre-EMG modulation is hard to explain by movement-induced reafference and probably is associated with descending motor commands.
Collapse
Affiliation(s)
- Kazuhiko Seki
- Department of Developmental Physiology, National Institute for Physiological Sciences, 38 Nishi-gounaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| | | | | |
Collapse
|
17
|
In search of lost presynaptic inhibition. Exp Brain Res 2009; 196:139-51. [PMID: 19322562 DOI: 10.1007/s00221-009-1758-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/24/2009] [Indexed: 01/18/2023]
Abstract
This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the shaping of a higher coherence between the cortically programmed and the executed movements.
Collapse
|
18
|
Rossignol S, Barrière G, Frigon A, Barthélemy D, Bouyer L, Provencher J, Leblond H, Bernard G. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions. ACTA ACUST UNITED AC 2007; 57:228-40. [PMID: 17822774 DOI: 10.1016/j.brainresrev.2007.06.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/25/2022]
Abstract
The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves) to highlight the spinal neuroplasticity necessary for adapting to sensory loss. Recent work on plastic interactions between reflex pathways that could be responsible for such plasticity, in particular changes in proprioceptive and cutaneous pathways that occur during locomotor training of spinal cats, is discussed. Finally, we describe how stimulation of some sensory inputs via various limb manipulations or intraspinal electrical stimulation can affect the expression of spinal locomotion. We conclude that sensory inputs are critical not only for locomotion but also that changes in the efficacy of sensory transmission and in the interactions between sensory pathways could participate in the normalization of locomotion after spinal and/or peripheral lesions.
Collapse
Affiliation(s)
- Serge Rossignol
- Group and Centre for Research in Neurological Sciences, Multidisciplinary team in Locomotor Rehabilitation (CIHR), Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada H3C 3J7.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Courtine G, Harkema SJ, Dy CJ, Gerasimenko YP, Dyhre-Poulsen P. Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans. J Physiol 2007; 582:1125-39. [PMID: 17446226 PMCID: PMC2075265 DOI: 10.1113/jphysiol.2007.128447] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor responses evoked by stimulating the spinal cord percutaneously between the T11 and T12 spinous processes were studied in eight human subjects during walking and running. Stimulation elicited responses bilaterally in the biceps femoris, vastus lateralis, rectus femoris, medial gastrocnemius, soleus, tibialis anterior, extensor digitorum brevis and flexor digitorum brevis. The evoked responses were consistent with activation of Ia afferent fibres through monosynaptic neural circuits since they were inhibited when a prior stimulus was given and during tendon vibration. Furthermore, the soleus motor responses were inhibited during the swing phase of walking as observed for the soleus H-reflex elicited by tibial nerve stimulation. Due to the anatomical site and the fibre composition of the peripheral nerves it is difficult to elicit H-reflex in leg muscles other than the soleus, especially during movement. In turn, the multisegmental monosynaptic responses (MMR) technique provides the opportunity to study modulation of monosynaptic reflexes for multiple muscles simultaneously. Phase-dependent modulation of the MMR amplitude throughout the duration of the gait cycle period was observed in all muscles studied. The MMR amplitude was large when the muscle was activated whereas it was generally reduced, or even suppressed, when the muscle was quiescent. However, during running, there was a systematic anticipatory increase in the amplitude of the MMR at the end of swing in all proximal and distal extensor muscles. The present findings therefore suggest that there is a general control scheme by which the transmission in the monosynaptic neural circuits is modulated in all leg muscles during stepping so as to meet the requirement of the motor task.
Collapse
Affiliation(s)
- Grégoire Courtine
- Physiological Science, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
20
|
Lidierth M. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord. J Physiol 2006; 576:309-27. [PMID: 16873417 PMCID: PMC1995647 DOI: 10.1113/jphysiol.2006.110577] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/20/2006] [Indexed: 11/08/2022] Open
Abstract
Two types of dorsal root potential (DRP) were found in the spinal cord of urethane-anaesthetized rats. Local DRPs with short latency-to-onset were evoked on roots close to the point of entry of an afferent volley. Diffuse DRPs with a longer latency-to-onset were seen on more distant roots up to 17 segments from the volley entry zone. The switch to long latency-to-onset occurred abruptly as a function of distance along the cord and could not be explained by conduction delays within the dorsal columns. Long-latency DRPs were also present and superimposed on the short-latency DRPs on nearby roots. Both local and diffuse DRPs were evoked by light mechanical stimuli: von Frey hair thresholds were
Collapse
Affiliation(s)
- Malcolm Lidierth
- King's College London, Hodgkin Building, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
21
|
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philos Trans R Soc Lond B Biol Sci 2006; 361:1647-71. [PMID: 16939980 PMCID: PMC1664667 DOI: 10.1098/rstb.2006.1889] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review discusses some aspects of plasticity of connections after spinal injury in adult animal models as a basis for functional recovery of locomotion. After reviewing some pitfalls that must be avoided when claiming functional recovery and the importance of a conceptual framework for the control of locomotion, locomotor recovery after spinal lesions, mainly in cats, is summarized. It is concluded that recovery is partly due to plastic changes within the existing spinal locomotor networks. Locomotor training appears to change the excitability of simple reflex pathways as well as more complex circuitry. The spinal cord possesses an intrinsic capacity to adapt to lesions of central tracts or peripheral nerves but, as a rule, adaptation to lesions entails changes at both spinal and supraspinal levels. A brief summary of the spinal capacity of the rat, mouse and human to express spinal locomotor patterns is given, indicating that the concepts derived mainly from work in the cat extend to other adult mammals. It is hoped that some of the issues presented will help to evaluate how plasticity of existing connections may combine with and potentiate treatments designed to promote regeneration to optimize remaining motor functions.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
22
|
Gregor RJ, Smith DW, Prilutsky BI. Mechanics of Slope Walking in the Cat: Quantification of Muscle Load, Length Change, and Ankle Extensor EMG Patterns. J Neurophysiol 2006; 95:1397-409. [PMID: 16207777 DOI: 10.1152/jn.01300.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unexpected changes in flexor–extensor muscle activation synergies during slope walking in the cat have been explained previously by 1) a reorganization of circuitry in the central pattern generator or 2) altered muscle and cutaneous afferent inputs to motoneurons that modulate their activity. The aim of this study was to quantify muscle length changes, muscle loads, and ground reaction forces during downslope, level, and upslope walking in the cat. These mechanical variables are related to feedback from muscle length and force, and paw pad cutaneous afferents, and differences in these variables between the slope walking conditions could provide additional insight into possible mechanisms of the muscle control. Kinematics, ground reaction forces, and EMG were recorded while cats walked on a walkway in three conditions: downslope (−26.6 deg), level (0 deg), and upslope (26.6 deg). The resultant joint moments were calculated using inverse dynamics analysis; length and velocity of major hindlimb muscle-tendon units (MTUs) were calculated using a geometric model and calculated joint angles. It was found that during stance in downslope walking, the MTU stretch of ankle and knee extensors and MTU peak stretch velocities of ankle extensors were significantly greater than those in level or upslope conditions, whereas forces applied to the paw pad and peaks of ankle and hip extensor moments were significantly smaller. The opposite was true for upslope walking. It was suggested that these differences between upslope and downslope walking might affect motion-dependent feedback, resulting in muscle activity changes recorded here or reported in the literature.
Collapse
Affiliation(s)
- Robert J Gregor
- Center for Human Movement Studies, School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia 30332-0356, USA.
| | | | | |
Collapse
|
23
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
24
|
Le Ray D, Combes D, Déjean C, Cattaert D. In Vivo Analysis of Proprioceptive Coding and Its Antidromic Modulation in the Freely Behaving Crayfish. J Neurophysiol 2005; 94:1013-27. [PMID: 15829591 DOI: 10.1152/jn.01255.2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although sensory nerves in vitro are known to convey both orthodromic (sensory) and antidromic (putatively modulating) action potentials, in most cases very little is known about their bidirectional characteristics in intact animals. Here, we have investigated both the sensory coding properties and antidromic discharges that occur during real walking in the freely behaving crayfish. The activity of the sensory nerve innervating the proprioceptor CBCO, a chordotonal organ that monitors both angular movement and position of the coxo-basipodite (CB) joint, which is implicated in vertical leg movements, was recorded chronically along with the electromyographic activity of the muscles that control CB joint movements. Two wire electrodes placed on the sensory nerve were used to discriminate orthodromic from antidromic action potentials and thus allowed for analysis of both sensory coding and antidromic discharges. A distinction is proposed between 3 main classes of sensory neuron, according to their firing in relation to levator muscle activity during free walking. In parallel, we describe 2 types of antidromic activity: one produced exclusively during motor activity and a second produced both during and in the absence of motor activity. A negative correlation was found between the activity of sensory neurons in each of the 3 classes and identified antidromic discharges during walking. Finally, a state-dependent plasticity of CBCO nerve activity has been found by which the distribution of sensory orthodromic and antidromic activity changes with the physiological state of the biomechanical apparatus.
Collapse
Affiliation(s)
- Didier Le Ray
- Laboratoire de Neurobiologie des Réseaux, Centre National de la Recherche Scientifique-Unité Mixte de Recherche, Université Bordeaux 1, Talence, France
| | | | | | | |
Collapse
|
25
|
Chen JH, Weng HR, Dougherty PM. Sensitization of dorsal root reflexes in vitro and hyperalgesia in neonatal rats produced by capsaicin. Neuroscience 2004; 126:743-51. [PMID: 15183522 DOI: 10.1016/j.neuroscience.2004.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/17/2022]
Abstract
The maturation of dorsal root reflexes (DRRs) in lumbar roots was characterized in neonatal rats at 1, 2 and 3 weeks after birth using an in vitro isolated spinal cord preparation with attached dorsal roots and dorsal root ganglia (DRG). Changes of DRRs in rats of increasing age were also tested by administration of capsaicin to the DRG and related to spinal mechanisms of hyperalgesia by defining the behavioral responses of neonatal rats to intradermal capsaicin. DRRs evoked by stimulating the adjacent root in 1 week old rats are characterized by highly desynchronized waveforms with power spectra concentrated at frequencies greater than 200 Hz. DRRs in 1 week old rats show very little change in amplitude or area with increasing afferent stimulation strength. In contrast DRRs in 2 and 3 weeks old rats are highly synchronized with power concentrated at frequencies less than 100 Hz and show a graded increase in amplitude and area with increasing stimulus strength. The recovery of DRR amplitude in a paired pulse stimulus protocol is faster in 1 week rats than in 2 or 3 weeks old rats. Finally, DRRs in 2 and 3 week old rats show increased amplitude and area following application of capsaicin to the DRG of the stimulating root whereas those in 1 week old rats do not. These changes parallel the behavioral responses of neonatal rats as 2 and 3 weeks old rats show secondary mechanical hyperalgesia following intradermal capsaicin, but 1 week old rats do not. Our data indicate that the spinal circuitry for DRRs in the neonatal period undergoes rapidly dynamic development in the rat. This development is sufficiently rapid that mechanisms of spinal sensitization induced by capsaicin can be studied in rats 2 weeks old and older.
Collapse
Affiliation(s)
- J H Chen
- The Division of Anesthesiology and Critical Care Medicine, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard #42, Houston, TX 77030, USA
| | | | | |
Collapse
|
26
|
Rudomin P, Lomelí J, Quevedo J. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord. Exp Brain Res 2004; 159:239-50. [PMID: 15232667 DOI: 10.1007/s00221-004-1953-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/20/2004] [Indexed: 11/29/2022]
Abstract
We compared in the anesthetized cat the effects of reversible spinalization by cold block on primary afferent depolarization (PAD) and primary afferent hyperpolarization (PAH) elicited in pairs of intraspinal collaterals of single group I afferents from the gastrocnemius nerve, one of the pairs ending in the L3 segment, around the Clarke's column nuclei, and the other in the L6 segment within the intermediate zone. PAD in each collateral was estimated by independent computer-controlled measurement of the intraspinal current required to maintain a constant probability of antidromic firing. The results indicate that the segmental and ascending collaterals of individual afferents are subjected to a tonic PAD of descending origin affecting in a differential manner the excitatory and inhibitory actions of cutaneous and joint afferents on the pathways mediating the PAD of group I fibers. The PAD-mediating networks appear to function as distributed systems whose output will be determined by the balance of the segmental and supraspinal influences received at that moment. It is suggested that the descending differential modulation of PAD enables the intraspinal arborizations of the muscle afferents to function as dynamic systems, in which information transmitted to segmental reflex pathways and to Clarke's column neurons by common sources can be decoupled by sensory and descending inputs, and funneled to specific targets according to the motor tasks to be performed.
Collapse
Affiliation(s)
- P Rudomin
- Department of Physiology, Biophysics and Neurosciences del IPN, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, DF 07300, Mexico.
| | | | | |
Collapse
|
27
|
Beloozerova IN, Rossignol S. Antidromic discharges in dorsal roots of decerebrate cats. II: studies during treadmill locomotion. Brain Res 2004; 996:227-36. [PMID: 14697500 DOI: 10.1016/j.brainres.2003.08.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In a previous companion paper [Brain Res. 846 (1999) 87-105] we have shown that the dorsal root activity of a decerebrate cat is composed of both orthodromic and antidromic discharges as determined by spike triggered averaging (STA). Furthermore we have shown that, during fictive locomotion in decerebrate and paralyzed cats, antidromic discharges peak in different parts of locomotion cycle but mainly in the flexion phase. In the present study, we have recorded unit potentials from dorsal rootlets during treadmill locomotion in order to understand better the role of movement-related feedback in the generation of antidromic potentials. The unitary activity of 92 antidromically discharging units was recorded in proximal stumps of cut dorsal roots, and that of 20 such units was recorded in uncut roots using two bipolar Ag/AgCl electrodes in both cases. The activity of 80% (74/92) units in cut filaments and of 70% (14/20) units in uncut ones was phasewise related to stepping movements. The peaks of activity of different units occurred during different phases of the step cycle both in cut and uncut filaments. In most cases, the peak of activity was superimposed upon a background of sustained discharge. After blocking the orthodromic flow in a filament (local anesthesia or distal section), the antidromic discharges continued to peak during the same phase but the rate of the discharges increased. We conclude that movement-related afferent feedback significantly modulates the antidromic discharges in dorsal roots during treadmill locomotion. We suggest that these antidromic discharges have a role in controlling afferent feedback during movement.
Collapse
Affiliation(s)
- Irina N Beloozerova
- Faculté de Médecine, Centre de recherche en sciences Neurologiques, Université de Montréal, Pavillon Desmarais, Montreal, Quebec, Canada H3T 1J4
| | | |
Collapse
|