1
|
Kirckof A, Kneller E, Vitale EM, Johnson MA, Smith AS. The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles. Neuropharmacology 2025; 267:110298. [PMID: 39778625 PMCID: PMC11936331 DOI: 10.1016/j.neuropharm.2025.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level. Here, a novel odor preference test was used to assess social vs non-social odor investigation, and a sucrose preference test was used to assess non-social, reward-driven motivation. Females that lost a male partner investigated partner- and food-associated cues significantly more than females that lost a female cagemate or remained intact with a male partner. However, females experiencing the loss of a male partner did not change investigation of stranger-associated cues. Western blotting revealed significant increases of dopamine receptor type 1 (DRD1) and oxytocin receptor protein content in specific brain regions in response to the loss of distinct social relationships. Such effects included an increase in DRD1 in the medial preoptic area of the hypothalamus (mPOA) in females experiencing loss of a male partner compared to all other conditions. Pharmacological antagonism of DRD1 in the mPOA blocked the loss-associated increase of investigation of the partner odor but did not affect investigation of food or stranger odors. This reveals a novel dopamine-mediated mechanism for partner-seeking behavior during periods of partner loss in female prairie voles.
Collapse
Affiliation(s)
- Adrianna Kirckof
- Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Emma Kneller
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Erika M Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Michael A Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Adam S Smith
- Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
2
|
Gossman KR, Andrews E, Dykstra B, Ta K, Ashourvan A, Smith AS. Structural connectivity of the fore- and mid-brain in prairie voles. iScience 2025; 28:112065. [PMID: 40144636 PMCID: PMC11938270 DOI: 10.1016/j.isci.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Mammals live in complex social systems that require higher order cognition to process and display complex social behaviors. It is suggested that brain networks, such as the social decision-making network (SDMN), have evolved to process such information. Recent functional connectivity studies of the SDMN have revealed distinct network dynamics during different social events across several species. However, the structural mapping of this network is incomplete which limits structural-functional modeling. Here, we assess the structural connectivity of an extended SDMN as well as the fore- and mid-brain afferent projections with the use of cholera toxin subunit-B retrograde tracers and the prairie vole (Microtus ochrogaster), a socially monogamous rodent that displays complex social behaviors. This work greatly expands upon the limited structural connectivity of the vole social brain and highlights important regions within the SDMN and other highly innervated regions that may serve as information hubs.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Emalee Andrews
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Ben Dykstra
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kyle Ta
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence KS, USA
| | - Adam S. Smith
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence KS, USA
| |
Collapse
|
3
|
Loth MK, Schmidt JC, Gonzalez CA, Brusman LE, Sadino JM, Winther KE, Protter DSW, Donaldson ZR. Oxytocin and Dopamine Receptor Expression: Cellular Level Implications for Pair Bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.640889. [PMID: 40093070 PMCID: PMC11908164 DOI: 10.1101/2025.03.03.640889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Oxytocin (Oxtr) and dopamine (Drd1, Drd2) receptors provide a canonical example for how differences in neuromodulatory receptors drive individual and species-level behavioral variation. These systems exhibit striking and functionally-relevant differences in nucleus accumbens (NAc) expression across monogamous prairie voles (Microtus ochrogaster) and promiscuous meadow voles (Microtus pennsylvanicus). However, their cellular organization remains largely unknown. Using multiplex in situ hybridization, we mapped Oxtr, Drd1, and Drd2 expression in sexually naïve and mate-paired prairie and meadow voles. Prairie voles have more Oxtr+ cells than meadow voles, but Oxtr distribution across dopamine-receptor cell class was similar, indicating a general upregulation rather than cell class bias. Oxtr was enriched in cells that express both dopamine receptors (Drd1+/Drd2+) in prairie voles, suggesting these cells may be particularly sensitive to oxytocin. We found no species or pairing-induced differences in Drd1+ or Drd2+ cell counts, suggesting prior reports of expression differences may reflect upregulation in cells already expressing these receptors. Finally, we used single-nucleus sequencing to provide the first comprehensive map of Oxtr and Drd1-5 across molecularly-defined NAc cell types in the prairie vole. These results provide a critical framework for understanding how nonapeptide and catecholamine systems may recruit distinct NAc cell types to shape social behavior.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julia C Schmidt
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - Cassandra A Gonzalez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Kelly E Winther
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| | - David S W Protter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder; Boulder, CO 80309 USA
- Department of Psychology and Neuroscience, University of Colorado Boulder; Boulder, CO, 80309 USA
| |
Collapse
|
4
|
Smith MA, Armas SP, Camp JD, Carlson HN. The positive reinforcing effects of cocaine and opposite-sex social contact: roles of biological sex and estrus. Psychopharmacology (Berl) 2025; 242:71-83. [PMID: 38992255 PMCID: PMC11742770 DOI: 10.1007/s00213-024-06648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
RATIONALE Preclinical studies report that drug use and social contact mutually influence the reinforcing effects of one another. Most of these studies have used same-sex dyads exclusively, and the role of factors related to biological sex and hormonal fluctuations are not well understood. OBJECTIVES The purpose of this study was to examine the reinforcing effects of cocaine and social contact with an opposite-sex partner in male and female rats, and how these effects are modulated by ovarian hormones. METHODS Male and female rats were trained in a nonexclusive choice procedure in which cocaine and social contact with an opposite-sex partner were simultaneously available on concurrent progressive ratio schedules of reinforcement. To examine the effects of ovarian hormones related to estrous cycling, Experiment 1 used naturally cycling, gonadally intact females, whereas Experiment 2 used ovariectomized females, and estrus was artificially induced with exogenous hormones. RESULTS In both experiments, cocaine and social contact functioned as robust reinforcers, and there were no significant effects of biological sex or estrus status of the females. The positive reinforcing effects of both cocaine and social contact increased as a function of cocaine dose, indicating that contingent cocaine administration increases the reinforcing effects of social contact. CONCLUSIONS These data suggest that cocaine use among opposite-sex partners may enhance factors that contribute to social bonding.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA.
| | - Samantha P Armas
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| | - Jacob D Camp
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| | - Hannah N Carlson
- Department of Psychology and Program in Neuroscience, Davidson College, 209 Ridge Road, PO Box 5000, Davidson, NC, 28035, USA
| |
Collapse
|
5
|
Vitale EM, Tbaba AH, Tam K, Gossman KR, Smith AS. Opposite-sex pairing alters social interaction-induced GCaMP and dopamine activity in the insular cortex of male prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624717. [PMID: 39605383 PMCID: PMC11601588 DOI: 10.1101/2024.11.21.624717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The prairie vole (Microtus ochrogaster) is a monogamous rodent species which displays selective social behaviors to conspecifics after establishing a pair bonded relationship, specifically partner-directed affiliation and stranger-directed aggression. This social selectivity relies on the ability of an individual to respond appropriately to a social context and requires salience detection and valence assignment. The anterior insular cortex (aIC) has been implicated in stimulus processing and categorization across a variety of contexts and is well-situated to integrate environmental stimuli and internal affective states to modulate complex goal-directed behaviors and social decision-making. Surprisingly, the contribution of the aIC to the expression of pair bond-induced social selectivity in prairie voles has been drastically understudied. Here we examined whether neural activity and gene expression in the aIC change in response to opposite-sex pairing and/or as a function of pairing length in male prairie voles. Opposite-sex pairing was characterized by changes to calcium and dopamine (DA) transients in the aIC that corresponded with the display of social selectivity across pair bond maturation. Furthermore, D1 and D2 receptor mRNA expression was significantly higher in males after 48 hrs of cohabitation with a female partner compared to same-sex housed males, and D2 mRNA remained significantly higher in males with a female partner compared to same-sex housed males after a week of cohabitation. Together, these results implicate a role for DA and its receptors in the aIC across the transition from early- to late-phase pair bonding.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Amina H. Tbaba
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Kaitlyn Tam
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Kyle R. Gossman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
6
|
Sharma R, Berendzen KM, Everitt A, Wang B, Williams G, Wang S, Quine K, Larios RD, Long KLP, Hoglen N, Sulaman BA, Heath MC, Sherman M, Klinkel R, Cai A, Galo D, Caamal LC, Goodwin NL, Beery A, Bales KL, Pollard KS, Willsey AJ, Manoli DS. Oxytocin receptor controls distinct components of pair bonding and development in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.613753. [PMID: 39399774 PMCID: PMC11468833 DOI: 10.1101/2024.09.25.613753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Oxytocin receptor (Oxtr) signaling influences complex social behaviors in diverse species, including social monogamy in prairie voles. How Oxtr regulates specific components of social attachment behaviors and the neural mechanisms mediating them remains unknown. Here, we examine prairie voles lacking Oxtr and demonstrate that pair bonding comprises distinct behavioral modules: the preference for a bonded partner, and the rejection of novel potential mates. Our longitudinal study of social attachment shows that Oxtr sex-specifically influences early interactions between novel partners facilitating the formation of partner preference. Additionally, Oxtr suppresses promiscuity towards novel potential mates following pair bonding, contributing to rejection. Oxtr function regulates coordinated patterns of gene expression in regions implicated in attachment behaviors and regulates the expression of oxytocin in the paraventricular nucleus of the hypothalamus, a principal source of oxytocin. Thus, Oxtr controls genetically separable components of pair bonding behaviors and coordinates development of the neural substrates of attachment.
Collapse
|
7
|
Lerch BA, Servedio MR. The Evolution of Mate Attachment. Am Nat 2024; 204:E70-E84. [PMID: 39326056 DOI: 10.1086/731671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractWhether natural selection leads to attachment in monogamous pair bonds has seldom been addressed. Operationally defining attachment as a behavioral modifier that decreases divorce probability with pair duration, we develop a model for the evolution of attachment. If divorce (the ending of a pair bond when both individuals survive to the next breeding season) is more likely to occur out of poor-quality reproductive opportunities (i.e., poor territory or low-quality mate), individuals in experienced pairs are more likely to be found in high-quality opportunities. Consequently, when divorce decisions occur using imperfect information from reproductive success, pair duration provides individuals with information about the quality of their reproductive opportunity and attachment can evolve. We show that high survival rates, divorce propensities, and probabilities of nest failure favor the evolution of attachment. Attachment is also more likely to evolve when individuals can directly assess the quality of their reproductive opportunity (as opposed to relying on imperfect information from reproductive success), when the quality of the reproductive opportunity has adult survival ramifications, and when divorce coevolves with attachment. We show that our core conclusions are robust to a variety of assumptions using individual-based simulations. Our results clarify how attachment can be adaptive and suggest that studying pair bonds as dynamic entities is a promising avenue for future work.
Collapse
|
8
|
Sadino JM, Donaldson ZR. Prairie voles as a model for adaptive reward remodeling following loss of a bonded partner. Ann N Y Acad Sci 2024; 1535:20-30. [PMID: 38594916 PMCID: PMC11334365 DOI: 10.1111/nyas.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Loss of a loved one is a painful event that substantially elevates the risk for physical and mental illness and impaired daily function. Socially monogamous prairie voles are laboratory-amenable rodents that form life-long pair bonds and exhibit distress upon partner separation, mirroring phenotypes seen in humans. These attributes make voles an excellent model for studying the biology of loss. In this review, we highlight parallels between humans and prairie voles, focusing on reward system engagement during pair bonding and loss. As yearning is a unique feature that differentiates loss from other negative mental states, we posit a model in which the homeostatic reward mechanisms that help to maintain bonds are disrupted upon loss, resulting in yearning and other negative impacts. Finally, we synthesize studies in humans and voles that delineate the remodeling of reward systems during loss adaptation. The stalling of these processes likely contributes to prolonged grief disorder, a diagnosis recently added to the Diagnostic and Statistical Manual for Psychiatry.
Collapse
Affiliation(s)
- Julie M. Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
9
|
Pierce AF, Protter DSW, Watanabe YL, Chapel GD, Cameron RT, Donaldson ZR. Nucleus accumbens dopamine release reflects the selective nature of pair bonds. Curr Biol 2024; 34:519-530.e5. [PMID: 38218185 PMCID: PMC10978070 DOI: 10.1016/j.cub.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
In monogamous species, prosocial behaviors directed toward partners are dramatically different from those directed toward unknown individuals and potential threats. Dopamine release in the nucleus accumbens has a well-established role in social reward and motivation, but how this mechanism may be engaged to drive the highly divergent social behaviors directed at a partner or unfamiliar conspecific remains unknown. Using monogamous prairie voles, we first employed receptor pharmacology in partner preference and social operant tasks to show that dopamine is critical for the appetitive drive for social interaction but not for low-effort, unconditioned consummatory behaviors. We then leveraged the subsecond temporal resolution of the fluorescent biosensor, GRABDA, to ask whether differential dopamine release might distinguish between partner and novel social access and interaction. We found that partner seeking, anticipation, and interaction resulted in more accumbal dopamine release than the same events directed toward a novel vole. Further, partner-associated dopamine release decreased after prolonged partner separation. Our results are consistent with a model in which dopamine signaling plays a prominent role in the appetitive aspects of social interactions. Within this framework, differences in partner- and novel-associated dopamine release reflect the selective nature of pair bonds and may drive the partner- and novel-directed social behaviors that reinforce and cement bonds over time. This provides a potential mechanism by which highly conserved reward systems can enable selective, species-appropriate social behaviors.
Collapse
Affiliation(s)
- Anne F Pierce
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| | - David S W Protter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Yurika L Watanabe
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Gabriel D Chapel
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Ryan T Cameron
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA
| | - Zoe R Donaldson
- Department of Psychology & Neuroscience, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, 1945 Colorado Ave, Boulder, CO 80309, USA.
| |
Collapse
|
10
|
Vitale EM, Kirckof A, Smith AS. Partner-seeking and limbic dopamine system are enhanced following social loss in male prairie voles (Microtus ochrogaster). GENES, BRAIN, AND BEHAVIOR 2023; 22:e12861. [PMID: 37519035 PMCID: PMC10733564 DOI: 10.1111/gbb.12861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Death of a loved one is recognized as one of life's greatest stresses, and 10%-20% of bereaved individuals will experience a complicated or prolonged grieving period that is characterized by intense yearning for the deceased. The monogamous prairie vole (Microtus ochrogaster) is a rodent species that forms pair bonds between breeding partners and has been used to study the neurobiology of social behaviors and isolation. Male prairie voles do not display distress after isolation from a familiar, same-sex conspecific; however, separation from a bonded female partner increases emotional, stress-related, and proximity-seeking behaviors. Here, we tested the investigatory response of male voles to partner odor during a period of social loss. We found that males who lost their partner spent significantly more time investigating partner odor but not non-partner social odor or food odor. Bachelor males and males in intact pairings did not respond uniquely to any odor. Furthermore, we examined dopamine (DA) receptor mRNA expression in the anterior insula cortex (aIC), nucleus accumbens (NAc), and anterior cingulate (ACC), regions with higher activation in grieving humans. While we found some effects of relationship type on DRD1 and DRD2 expression in some of these regions, loss of a high-quality opposite-sex relationship had a significant effect on DA receptor expression, with pair-bonded/loss males having higher expression in the aIC and ACC compared with pair-bonded/intact and nonbonded/loss males. Together, these data suggest that both relationship type and relationship quality affect reunion-seeking behavior and motivational neurocircuits following social loss of a bonded partner.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of PharmacyUniversity of KansasLawrenceKansasUSA
| | - Adrianna Kirckof
- Program in Neuroscience, School of PharmacyUniversity of KansasLawrenceKansasUSA
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of PharmacyUniversity of KansasLawrenceKansasUSA
- Program in Neuroscience, School of PharmacyUniversity of KansasLawrenceKansasUSA
| |
Collapse
|
11
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
12
|
Savidge LE, Bales KL. Possible effects of pair bonds on general cognition: Evidence from shared roles of dopamine. Neurosci Biobehav Rev 2023; 152:105317. [PMID: 37442497 DOI: 10.1016/j.neubiorev.2023.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Pair bonding builds on preexisting dopamine connectivity to help form and maintain the bond. The involvement of dopaminergic pathways in pair bonding has stimulated research linking pair bonds to other dopamine-dependent processes, like addiction and social cognition (Burkett & Young, 2012; Yetnikoff, Lavezzi, Reichard, & Zahm, 2014). Less studied is the relationship of pair bonding to non-social cognitive processes. The first half of this review will provide an overview of pair bonding and the role of dopamine within social processes. With a thorough review of the literature, the current study will identify the ways the dopaminergic pathways critical for pair bonding also overlap with cognitive processes. Highlighting dopamine as a key player in pair bonds and non-social cognition will provide evidence that pair bonding can alter general cognitive processes like attention, working memory, cognitive flexibility, and impulse control.
Collapse
Affiliation(s)
- Logan E Savidge
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States.
| | - Karen L Bales
- Department of Psychology, University of California, Davis, United States; California National Primate Research Center, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| |
Collapse
|
13
|
Prior NH, Haakenson CM, Clough S, Ball GF, Sandkam BA. Varied impacts of social relationships on neuroendocrine state. Horm Behav 2023; 155:105403. [PMID: 37678093 DOI: 10.1016/j.yhbeh.2023.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/09/2023]
Abstract
Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.
Collapse
Affiliation(s)
- Nora H Prior
- Department of Psychology, Cornell University, Ithaca, NY, United States of America.
| | - Chelsea M Haakenson
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Savannah Clough
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Gregory F Ball
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States of America
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
14
|
Blumenthal SA, Young LJ. The Neurobiology of Love and Pair Bonding from Human and Animal Perspectives. BIOLOGY 2023; 12:844. [PMID: 37372130 PMCID: PMC10295201 DOI: 10.3390/biology12060844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Love is a powerful emotional experience that is rooted in ancient neurobiological processes shared with other species that pair bond. Considerable insights have been gained into the neural mechanisms driving the evolutionary antecedents of love by studies in animal models of pair bonding, particularly in monogamous species such as prairie voles (Microtus ochrogaster). Here, we provide an overview of the roles of oxytocin, dopamine, and vasopressin in regulating neural circuits responsible for generating bonds in animals and humans alike. We begin with the evolutionary origins of bonding in mother-infant relationships and then examine the neurobiological underpinnings of each stage of bonding. Oxytocin and dopamine interact to link the neural representation of partner stimuli with the social reward of courtship and mating to create a nurturing bond between individuals. Vasopressin facilitates mate-guarding behaviors, potentially related to the human experience of jealousy. We further discuss the psychological and physiological stress following partner separation and their adaptive function, as well as evidence of the positive health outcomes associated with being pair-bonded based on both animal and human studies.
Collapse
Affiliation(s)
- Sarah A. Blumenthal
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Wu R, Xu Z, Song Z, Tai F. Providing or receiving alloparental care promote partner preference and alter central oxytocin and dopamine systems in adult mandarin voles. Horm Behav 2023; 152:105366. [PMID: 37116234 DOI: 10.1016/j.yhbeh.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Juveniles of cooperative breeding species usually remain in the natal area and provide care to younger siblings, a behavior considered one form of alloparenting in the natural condition. Previous studies have demonstrated the effects of providing or receiving alloparental care on adult behaviors, including anxiety-like behavior, social interaction, and parental behavior, but little is known about the influences on species-typical bonding behaviors, such as pair-bond formation. In this study, we explored this concept using socially monogamous mandarin voles (Lasiopodomys mandarinus). As the oxytocin (OT) and dopamine systems are involved in alloparental and pair-bonding behaviors, we also examined the levels of central OT and tyrosine hydroxylase (TH), as well as OT receptor (OTR) and dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and amygdala to investigate the underlying mechanisms. Our results show that mandarin voles providing alloparental care to younger siblings displayed facilitation of partner preference formation, lower levels of OT expression in the paraventricular nucleus of the hypothalamus (PVN) and lateral hypothalamus (LH), and increased OTR and D2R mRNA expression in the NAcc compared to controls. Individuals receiving alloparental care also demonstrated facilitation of partner preference formation in adult voles. Additionally, alloparental care enhanced OT expression in the PVN, anterior medial preoptic nucleus (MPOAa), medial amygdala (MeA), and TH expression in the ventral tegmental area (VTA) and zona incerta (ZI). Furthermore, males displayed decreased D1R mRNA expression in the NAcc, whereas females showed slightly increased D2R expression in the amygdala. These results demonstrate that providing or received alloparental care can promote partner preference formation in monogamous species and that these changes are associated with altered OT and dopamine levels and their receptors in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zedong Xu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhen Song
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
16
|
Lee NS, Kim CY, Beery AK. Peer Social Environment Impacts Behavior and Dopamine D1 Receptor Density in Prairie Voles (Microtus ochrogaster). Neuroscience 2023; 515:62-70. [PMID: 36796749 PMCID: PMC11670890 DOI: 10.1016/j.neuroscience.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form selective, long-lasting relationships with mates and with same-sex peers. It is unknown to what extent mechanisms supporting 'peer relationships' are similar to those involved in mate relationships. The formation of pair bonds is dependent on dopamine neurotransmission, whereas the formation of peer relationships is not, providing evidence of relationship type-specificity. The current study assessed endogenous structural changes in dopamine D1 receptor density in male and female voles across different social environments, including long-term same-sex partnerships, new same-sex partnerships, social isolation, and group housing. We also related dopamine D1 receptor density and social environment to behavior in social interaction and partner preference tests. Unlike prior findings in mate pairs, voles paired with new same-sex partners did not exhibit upregulated D1 binding in the nucleus accumbens (NAcc) relative to controls paired from weaning. This is consistent with differences in relationship type: D1 upregulation in pair bonds aids in maintaining exclusive relationships through selective aggression, and we found that formation of new peer relationships did not enhance aggression. Isolation led to increases in NAcc D1 binding, and even across socially housed voles, individuals with higher D1 binding exhibited increased social avoidance. These findings suggest that elevated D1 binding may be both a cause and a consequence of reduced prosociality. These results highlight the neural and behavioral consequences of different non-reproductive social environments and contribute to growing evidence that the mechanisms underlying reproductive and non-reproductive relationship formation are distinct. Elucidation of the latter is necessary to understand mechanisms underlying social behavior beyond a mating context.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Claire Y Kim
- Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA; Neuroscience Program, Department of Psychology, Smith College, Northampton, MA 01063, USA; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Kenkel WM, Kingsbury MA, Reinhart JM, Cetinbas M, Sadreyev RI, Carter CS, Perkeybile AM. Lasting consequences on physiology and social behavior following cesarean delivery in prairie voles. Horm Behav 2023; 150:105314. [PMID: 36731301 PMCID: PMC10023354 DOI: 10.1016/j.yhbeh.2023.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Cesarean delivery is associated with diminished plasma levels of several 'birth-signaling' hormones, such as oxytocin and vasopressin. These same hormones have been previously shown to exert organizational effects when acting in early life. For example, our previous work found a broadly gregarious phenotype in prairie voles exposed to oxytocin at birth. Meanwhile, cesarean delivery has been previously associated with changes in social behavior and metabolic processes related to oxytocin and vasopressin. In the present study, we investigated the long-term neurodevelopmental consequences of cesarean delivery in prairie voles. After cross-fostering, vole pups delivered either via cesarean or vaginal delivery were studied throughout development. Cesarean-delivered pups responded to isolation differently in terms of their vocalizations (albeit in opposite directions in the two experiments), huddled in less cohesive groups under warmed conditions, and shed less heat. As young adults, we observed no differences in anxiety-like or alloparental behavior. However, in adulthood, cesarean-delivered voles of both sexes failed to form partner preferences with opposite sex conspecifics. In a follow-up study, we replicated this deficit in partner-preference formation among cesarean-delivered voles and were able to normalize pair-bonding behavior by treating cesarean-delivered vole pups with oxytocin (0.25 mg/kg) at delivery. Finally, we detected minor differences in regional oxytocin receptor expression within the brains of cesarean-delivered voles, as well as microbial composition of the gut. Gene expression changes in the gut epithelium indicated that cesarean-delivered male voles have altered gut development. These results speak to the possibility of unintended developmental consequences of cesarean delivery, which currently accounts for 32.9 % of deliveries in the U.S. and suggest that further research should be directed at whether hormone replacement at delivery influences behavioral outcomes in later life.
Collapse
Affiliation(s)
- William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States of America.
| | - Marcy A Kingsbury
- Department of Pediatrics, Massachusetts General Hospital, Cambridge, MA, United States of America
| | - John M Reinhart
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States of America
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America; Department of Genetics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States of America; Harvard Medical School, Department of Pathology, Massachusetts General Hospital, Boston, MA, United States of America
| | - C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA, United States of America
| | - Allison M Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
18
|
Sadino JM, Bradeen XG, Kelly CJ, Brusman LE, Walker DM, Donaldson ZR. Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. eLife 2023; 12:e80517. [PMID: 36852906 PMCID: PMC10112888 DOI: 10.7554/elife.80517] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The loss of a spouse is often cited as the most traumatic event in a person's life. However, for most people, the severity of grief and its maladaptive effects subside over time via an understudied adaptive process. Like humans, socially monogamous prairie voles (Microtus ochrogaster) form opposite-sex pair bonds, and upon partner separation, show stress phenotypes that diminish over time. We test the hypothesis that extended partner separation diminishes pair bond-associated behaviors and causes pair bond transcriptional signatures to erode. Opposite-sex or same-sex paired males were cohoused for 2 weeks and then either remained paired or were separated for 48 hours or 4 weeks before collecting fresh nucleus accumbens tissue for RNAseq. In a separate cohort, we assessed partner-directed affiliation at these time points. We found that these behaviors persist despite prolonged separation in both same-sex and opposite-sex paired voles. Opposite-sex pair bonding led to changes in accumbal transcription that were stably maintained while animals remained paired but eroded following prolonged partner separation. Eroded genes are associated with gliogenesis and myelination, suggesting a previously undescribed role for glia in pair bonding and loss. Further, we pioneered neuron-specific translating ribosomal affinity purification in voles. Neuronally enriched transcriptional changes revealed dopaminergic-, mitochondrial-, and steroid hormone signaling-associated gene clusters sensitive to acute pair bond disruption and loss adaptation. Our results suggest that partner separation erodes transcriptomic signatures of pair bonding despite core behavioral features of the bond remaining intact, revealing potential molecular processes priming a vole to be able to form a new bond.
Collapse
Affiliation(s)
- Julie M Sadino
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Xander G Bradeen
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Department of Adult Hematology, University of Colorado- Anschutz Medical CampusAuroraUnited States
| | - Conor J Kelly
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Liza E Brusman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science University, School of MedicinePortlandUnited States
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
19
|
Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals (Basel) 2022; 12:ani12243589. [PMID: 36552508 PMCID: PMC9774276 DOI: 10.3390/ani12243589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.
Collapse
|
20
|
Powell JM, Garvin MM, Lee NS, Kelly AM. Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age. PLoS One 2022; 17:e0276897. [PMCID: PMC9665403 DOI: 10.1371/journal.pone.0276897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies using mice have examined the effects of aging on cognitive tasks, as well as sensory and motor functions. However, few studies have examined the influence of aging on social behavior. Prairie voles (Microtus ochrogaster) are a socially monogamous and biparental rodent that live in small family groups and are now among the most popular rodent models for studies examining social behavior. Although the social behavioral trajectories of early-life development in prairie voles have been well-studied, how social behavior may change throughout adulthood remains unknown. Here we examined behavior in virgin male and female prairie voles in four different age groups: postnatal day (PND) 60–80, 140–160, 220–240, and 300–320. All animals underwent testing in a novel object task, a dominance test, a resident-intruder test, and several iterations of social approach and social interaction tests with varying types of social stimuli (i.e., novel same-sex conspecific, novel opposite-sex conspecific, familiar same-sex sibling/cagemate, small group of novel same-sex conspecifics). We found that age influenced neophobia and dominance, but not social approach behavior. Further, we found that young adult, but not older adult, prairie voles adapt prosocial and aggressive behavior relative to social context, and that selective aggression occurs in relation to age even in the absence of a pair bond. Our results suggest that prairie voles calibrate social phenotype in a context-dependent manner in young adulthood and stop adjusting behavior to social context in advanced age, demonstrating that social behavior is plastic not only throughout early development, but also well into adulthood. Together, this study provides insight into age-related changes in social behavior in prairie voles and shows that prairie voles may be a viable model for studying the cognitive and physiological benefits of social relationships and social engagement in advanced age.
Collapse
Affiliation(s)
- Jeanne M. Powell
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Madison M. Garvin
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Lee
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
López-Gutiérrez MF, Mejía-Chávez S, Alcauter S, Portillo W. The neural circuits of monogamous behavior. Front Neural Circuits 2022; 16:978344. [PMID: 36247729 PMCID: PMC9559370 DOI: 10.3389/fncir.2022.978344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The interest in studying the neural circuits related to mating behavior and mate choice in monogamous species lies in the parallels found between human social structure and sexual behavior and that of other mammals that exhibit social monogamy, potentially expanding our understanding of human neurobiology and its underlying mechanisms. Extensive research has suggested that social monogamy, as opposed to non-monogamy in mammals, is a consequence of the neural encoding of sociosensory information from the sexual partner with an increased reward value. Thus, the reinforced value of the mate outweighs the reward value of mating with any other potential sexual partners. This mechanism reinforces the social relationship of a breeding pair, commonly defined as a pair bond. In addition to accentuated prosocial behaviors toward the partner, other characteristic behaviors may appear, such as territorial and partner guarding, selective aggression toward unfamiliar conspecifics, and biparental care. Concomitantly, social buffering and distress upon partner separation are also observed. The following work intends to overview and compare known neural and functional circuits that are related to mating and sexual behavior in monogamous mammals. We will particularly discuss reports on Cricetid rodents of the Microtus and Peromyscus genus, and New World primates (NWP), such as the Callicebinae subfamily of the titi monkey and the marmoset (Callithrix spp.). In addition, we will mention the main factors that modulate the neural circuits related to social monogamy and how that modulation may reflect phenotypic differences, ultimately creating the widely observed diversity in social behavior.
Collapse
Affiliation(s)
| | | | | | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
22
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
23
|
Itskovich E, Bowling DL, Garner JP, Parker KJ. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 2022; 27:2640-2649. [PMID: 35338314 PMCID: PMC9167259 DOI: 10.1038/s41380-022-01515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023]
Abstract
Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this "improvement" reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.
Collapse
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel L. Bowling
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
24
|
Social interactions increase activation of vasopressin-responsive neurons in the dorsal raphe. Neuroscience 2022; 495:25-46. [DOI: 10.1016/j.neuroscience.2022.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
|
25
|
Herschberger MR, Perkeybile AM. Effects of a D2 receptor antagonist on repeated pair bond formation in the male prairie vole. Horm Behav 2022; 141:105149. [PMID: 35248868 PMCID: PMC9081227 DOI: 10.1016/j.yhbeh.2022.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Repeated formation and subsequent dissolution of romantic relationships is common in humans across a lifetime. The socially monogamous prairie vole (Microtus ochrogaster) is used to study mechanisms of these bonds. At least in the laboratory, male prairie voles form bonds with a new female partner after loss of a previous partner. Initial bond formation depends on activation of dopamine D2-like receptors in the nucleus accumbens. Blocking activity of this receptor subtype disrupts formation of an animal's first pair bond. It is not known if these same D2-like receptors facilitate pair bonding with a subsequent partner after previous partner loss. This study examined the effects of D2-like receptor blockade on repeated pair bonding in male prairie voles. Males were paired with an initial female and allowed to mate before being separated. After a 5-day separation, males were then treated with either saline or eticlopride, a selective D2-receptor antagonist, prior to being paired with a second female and being allowed to mate. After a second separation, males were tested to determine if they developed a preference for spending time with their first or second mate. Eticlopride-treated males spent more time in a cage containing one of their previous partners compared to time in an empty cage but did not form a selective preference for either partner. Saline-treated males preferred their second, more recent partner. D2 receptor antagonism, then, disrupts bond formation in a second pairing but does not help to maintain a bond with the initial partner.
Collapse
Affiliation(s)
- Madison R Herschberger
- Department of Biology, Indiana University, Biology Building, 1001 E. 3rd St., Bloomington, IN 47405, USA
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Lindley Hall, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA; Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA.
| |
Collapse
|
26
|
Lee NS, Beery AK. Selectivity and Sociality: Aggression and Affiliation Shape Vole Social Relationships. Front Behav Neurosci 2022; 16:826831. [PMID: 35330842 PMCID: PMC8940285 DOI: 10.3389/fnbeh.2022.826831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
The formation of selective social relationships is not a requirement of group living; sociality can be supported by motivation for social interaction in the absence of preferences for specific individuals, and by tolerance in place of social motivation. For species that form selective social relationships, these can be maintained by preference for familiar partners, as well as by avoidance of or aggression toward individuals outside of the social bond. In this review, we explore the roles that aggression, motivation, and tolerance play in the maintenance of selective affiliation. We focus on prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) as rodent species that both exhibit the unusual tendency to form selective social relationships, but differ with regard to mating system. These species provide an opportunity to investigate the mechanisms that underlie social relationships, and to compare mechanisms supporting pair bonds with mates and same-sex peer relationships. We then relate this to the role of aggression in group composition in a comparative context.
Collapse
Affiliation(s)
- Nicole S. Lee
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, United States
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Annaliese K. Beery,
| |
Collapse
|
27
|
Choe KY, Bethlehem RAI, Safrin M, Dong H, Salman E, Li Y, Grinevich V, Golshani P, DeNardo LA, Peñagarikano O, Harris NG, Geschwind DH. Oxytocin normalizes altered circuit connectivity for social rescue of the Cntnap2 knockout mouse. Neuron 2022; 110:795-808.e6. [PMID: 34932941 PMCID: PMC8944915 DOI: 10.1016/j.neuron.2021.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
The neural basis of abnormal social behavior in autism spectrum disorders (ASDs) remains incompletely understood. Here we used two complementary but independent brain-wide mapping approaches, mouse resting-state fMRI and c-Fos-iDISCO+ imaging, to construct brain-wide activity and connectivity maps of the Cntnap2 knockout (KO) mouse model of ASD. At the macroscale level, we detected reduced functional coupling across social brain regions despite general patterns of hyperconnectivity across major brain structures. Oxytocin administration, which rescues social deficits in KO mice, strongly stimulated many brain areas and normalized connectivity patterns. Notably, chemogenetically triggered release of endogenous oxytocin strongly stimulated the nucleus accumbens (NAc), a forebrain nucleus implicated in social reward. Furthermore, NAc-targeted approaches to activate local oxytocin receptors sufficiently rescued their social deficits. Our findings establish circuit- and systems-level mechanisms of social deficits in Cntnap2 KO mice and reveal the NAc as a region that can be modulated by oxytocin to promote social interactions.
Collapse
Affiliation(s)
- Katrina Y Choe
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Martin Safrin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hongmei Dong
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Elena Salman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Ying Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Valery Grinevich
- Department of Neuropeptide Research for Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim 68159, Germany
| | - Peyman Golshani
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Laura A DeNardo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Vizcaya 48940, Spain
| | - Neil G Harris
- Department of Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Prior NH, Bentz EJ, Ophir AG. Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12781. [PMID: 34905293 PMCID: PMC9744507 DOI: 10.1111/gbb.12781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared "social umwelt" allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social-sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships?
Collapse
Affiliation(s)
- Nora H. Prior
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Ehren J. Bentz
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
29
|
Sharp JL, Smith MA. The Effects of Drugs on Behavior Maintained by Social Contact: Role of Monoamines in Social Reinforcement. Front Behav Neurosci 2022; 15:805139. [PMID: 35264935 PMCID: PMC8899311 DOI: 10.3389/fnbeh.2021.805139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Drug use is highly concordant among members of adolescent and young adult peer groups. One potential explanation for this observation is that drugs may increase the reinforcing effects of social contact, leading to greater motivation to establish and maintain contact with other members of the peer group. Several classes of drugs, particularly drugs that increase synaptic dopamine, increase the reinforcing effects of contextual stimuli, but the extent to which these drugs enhance the reinforcing effects of social contact is not known. The purpose of this study was to determine the extent to which drugs that increase synaptic dopamine, norepinephrine, and serotonin enhance the positive reinforcing effects of social contact. To this end, male and female Long-Evans rats were pretreated with acute doses of the selective dopamine reuptake inhibitor, WIN-35,428, the selective norepinephrine reuptake inhibitor, atomoxetine, the selective serotonin reuptake inhibitor, fluoxetine, the non-selective monoamine reuptake inhibitor, cocaine, and the non-selective monoamine releasers d-amphetamine and (±)-MDMA. Ten minutes later, the positive reinforcing effects of 30-s access to a same-sex social partner was examined on a progressive ratio schedule of reinforcement. To determine whether the reinforcement-altering effects of these drugs were specific to the social stimulus, the reinforcing effects of a non-social stimulus (30-s access to an athletic sock of similar size and coloring as another rat) was determined in control subjects. WIN-35,428, d-amphetamine, and cocaine, but not atomoxetine, fluoxetine, or MDMA, dose-dependently increased breakpoints maintained by a social partner under conditions in which responding maintained by a non-social stimulus was not affected. These data indicate that increases in extracellular dopamine, but not extracellular norepinephrine or serotonin, increases the positive reinforcing effects of social contact in both male and female rats. These data also provide support for the hypothesis that some drugs with high abuse liability increase the motivation to establish and maintain contact with social peers.
Collapse
|
30
|
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2022; 133:104494. [PMID: 34906613 PMCID: PMC8792250 DOI: 10.1016/j.neubiorev.2021.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by deficits in social communication and by patterns of restricted interests and/or repetitive behaviors. The Simons Foundation Autism Research Initiative's Human Gene and CNV Modules now list over 1000 genes implicated in ASD and over 2000 copy number variant loci reported in individuals with ASD. Given this ever-growing list of genetic changes associated with ASD, it has become evident that there is likely not a single genetic cause of this disorder nor a single neurobiological basis of this disorder. Instead, it is likely that many different neurobiological perturbations (which may represent subtypes of ASD) can result in the set of behavioral symptoms that we called ASD. One such of possible subtype of ASD may be associated with dopamine dysfunction. Precise regulation of synaptic dopamine (DA) is required for reward processing and behavioral learning, behaviors which are disrupted in ASD. Here we review evidence for DA dysfunction in ASD and in animal models of ASD. Further, we propose that these studies provide a scaffold for scientists and clinicians to consider subcategorizing the ASD diagnosis based on the genetic changes, neurobiological difference, and behavioral features identified in individuals with ASD.
Collapse
Affiliation(s)
- Gabriella E DiCarlo
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States; Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
31
|
Forero SA, Ophir AG. Multi-Level Effects Driving Cognitive and Behavioral Variability among Prairie Voles: Insights into Reproductive Decision-Making from Biological Levels of Organization. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:225-240. [PMID: 35051922 PMCID: PMC9256755 DOI: 10.1159/000522109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 01/22/2023]
Abstract
Behavioral phenotypes play an active role in maximizing fitness and shaping the evolutionary trajectory of species by offsetting the ecological and social environmental factors individuals experience. How these phenotypes evolve and how they are expressed is still a major question in ethology today. In recent years, an increased focus on the mechanisms that regulate the interactions between an individual and its environment has offered novel insights into the expression of alternative phenotypes. In this review, we explore the proximate mechanisms driving the expression of alternative reproductive phenotypes in the male prairie vole (Microtus ochrogaster) as one example of how the interaction of an individual's social context and internal milieu has the potential to alter behavior, cognition, and reproductive decision-making. Ultimately, integrating the physiological and psychological mechanisms of behavior advances understanding into how variation in behavior arises. We take a "levels of biological organization" approach, with prime focus placed on the level of the organism to discuss how cognitive processes emerge as traits, and how they can be studied as important mechanisms driving the expression of behavior.
Collapse
|
32
|
Vahaba DM, Halstead ER, Donaldson ZR, Ahern TH, Beery AK. Sex differences in the reward value of familiar mates in prairie voles. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12790. [PMID: 35044087 PMCID: PMC8917082 DOI: 10.1111/gbb.12790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022]
Abstract
The rewarding properties of social interactions facilitate relationship formation and maintenance. Prairie voles are one of the few laboratory species that form selective relationships, manifested as "partner preferences" for familiar partners versus strangers. While both sexes exhibit strong partner preferences, this similarity in outward behavior likely results from sex-specific neurobiological mechanisms. We recently demonstrated that in operant trials, females worked hardest for access to familiar conspecifics of either sex, while males worked equally hard for access to any female, indicating a sex difference in social motivation. As tests were performed with one social target at a time, males might have experienced a ceiling effect, and familiar females might be more relatively rewarding in a choice scenario. Here we performed an operant social choice task in which voles lever-pressed to gain temporary access to either the chamber containing their mate or one containing a novel opposite-sex vole. Females worked hardest to access their mate, while males pressed at similar rates for either female. Individual male behavior was heterogeneous, congruent with multiple mating strategies in the wild. Voles exhibited preferences for favorable over unfavorable environments in a non-social operant task, indicating that lack of social preference does not reflect lack of discrimination. Natural variation in oxytocin receptor genotype at the intronic single nucleotide polymorphism NT213739 was associated with oxytocin receptor density, and predicted individual variation in stranger-directed aggressive behavior. These findings suggest that convergent preference behavior in male and female voles results from sex-divergent pathways, particularly in the realm of social motivation.
Collapse
Affiliation(s)
- Daniel M. Vahaba
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA
| | - Emily R. Halstead
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA
| | - Zoe R. Donaldson
- Department of Molecular, Cellular, and Developmental Biology, Department of Psychology & NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Todd H. Ahern
- Center for Behavioral NeuroscienceQuinnipiac UniversityHamdenConnecticutUSA
| | - Annaliese K. Beery
- Program in Neuroscience, Department of BiologySmith CollegeNorthamptonMassachusettsUSA,Department of Integrative BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
33
|
Chun EK, Donovan M, Liu Y, Wang Z. Behavioral, neurochemical, and neuroimmune changes associated with social buffering and stress contagion. Neurobiol Stress 2022; 16:100427. [PMID: 35036478 PMCID: PMC8749234 DOI: 10.1016/j.ynstr.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023] Open
Abstract
Social buffering can provide protective effects on stress responses and their subsequent negative health outcomes. Although social buffering is beneficial for the recipient, it can also have anxiogenic effects on the provider of the social buffering - a phenomena referred to as stress contagion. Social buffering and stress contagion usually occur together, but they have traditionally been studied independently, thus limiting our understanding of this dyadic social interaction. In the present study, we examined the effects of preventative social buffering and stress contagion in socially monogamous prairie voles (Microtus ochrogaster). We tested the hypothesis that this dynamic social interaction is associated with coordinated alterations in behaviors, neurochemical activation, and neuroimmune responses. To do so, adult male prairie voles were stressed via an acute immobilization restraint tube (IMO) either alone (Alone) or with their previously pair-bonded female partner (Partner) in the cage for 1 h. In contrast, females were placed in a cage containing either an empty IMO tube (Empty) or one that contained their pair-bonded male (Partner). Anxiety-like behavior was tested on the elevated plus maze (EPM) following the 60-mins test and brain sections were processed for neurochemical/neuroimmune marker labeling for all subjects. Our data indicate that females in the Partner group were in contact with and sniffed the IMO tube more, showed fewer anxiety-like behaviors, and had a higher level of oxytocin expression in the paraventricular nucleus of the hypothalamus (PVN) compared to the Empty group females. Males in the Partner group had lower levels of anxiety-like behavior during the EPM test, greater activation of corticotropin-releasing hormone expressing neurons in the PVN, lower activation of serotonin neurons in the dorsal raphe, and lower levels of microgliosis in the nucleus accumbens. Taken together, these data suggest brain region- and neurochemical-specific alterations as well as neuroinflammatory changes that may be involved in the regulation of social buffering and stress contagion behaviors.
Collapse
Affiliation(s)
- Eileen K. Chun
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
34
|
Beery AK, Lopez SA, Blandino KL, Lee NS, Bourdon NS. Social selectivity and social motivation in voles. eLife 2021; 10:e72684. [PMID: 34726153 PMCID: PMC8594915 DOI: 10.7554/elife.72684] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Selective relationships are fundamental to humans and many other animals, but relationships between mates, family members, or peers may be mediated differently. We examined connections between social reward and social selectivity, aggression, and oxytocin receptor signaling pathways in rodents that naturally form enduring, selective relationships with mates and peers (monogamous prairie voles) or peers (group-living meadow voles). Female prairie and meadow voles worked harder to access familiar versus unfamiliar individuals, regardless of sex, and huddled extensively with familiar subjects. Male prairie voles displayed strongly selective huddling preferences for familiar animals, but only worked harder to repeatedly access females versus males, with no difference in effort by familiarity. This reveals a striking sex difference in pathways underlying social monogamy and demonstrates a fundamental disconnect between motivation and social selectivity in males-a distinction not detected by the partner preference test. Meadow voles exhibited social preferences but low social motivation, consistent with tolerance rather than reward supporting social groups in this species. Natural variation in oxytocin receptor binding predicted individual variation in prosocial and aggressive behaviors. These results provide a basis for understanding species, sex, and individual differences in the mechanisms underlying the role of social reward in social preference.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Integrative Biology, University of California BerkeleyBerkeleyUnited States
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
- Neuroscience and Behavior Graduate Program, University of MassachusettsAmherst, MAUnited States
| | - Sarah A Lopez
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| | - Katrina L Blandino
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| | - Nicole S Lee
- Neuroscience and Behavior Graduate Program, University of MassachusettsAmherst, MAUnited States
| | - Natalie S Bourdon
- Program in Neuroscience, Departments of Psychology and Biology, Smith CollegeNorthamptonUnited States
| |
Collapse
|
35
|
Ramírez-Rodríguez R, León-Sequeda I, Salomón-Lara L, Perusquia-Cabrera D, Herrera-Covarrubias D, Fernández-Cañedo L, García LI, Manzo J, Pfaus JG, López-Meraz ML, Coria-Avila GA. Enhanced D2 Agonism Induces Conditioned Appetitive Sexual Responses Toward Non-reproductive Conspecifics. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3901-3912. [PMID: 34665381 DOI: 10.1007/s10508-021-02023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Brain mechanisms of sexual attraction toward reproductive partners develop from a systematic interrelationship between biology (nature) and learning (nurture). However, the causes of attraction toward non-reproductive partners are poorly understood. Here, we explored the role of Pavlovian learning under dopaminergic agonism on the development of sexual preference and brain activation for young male rats. During conditioning, adult sexually naïve males received either Saline (Saline-Paired) or the D2-receptor agonist quinpirole (QNP-Paired) and cohabited in contingency, or out of contingency (QNP-Unpaired) during 24 h with an almond-scented prepubertal juvenile male (PD25). Conditioning occurred every 4 days for three trials. Social and sexual responses were assessed four days after the last conditioning trial in a drug-free test, and males chose freely between a scented young male (PD37) and a novel receptive female. Four days later, males were exposed to the conditioned odor only and brain Fos-IR and serum testosterone were analyzed. Saline-Paired and QNP-Unpaired males displayed more non-contact erections (NCEs) and genital investigations for females, whereas QNP-Paired males expressed more NCEs and genital investigations for young males. In the QNP-Paired group, exposure to the young male-paired odor evoked more Fos-IR in limbic, hypothalamic and cortical areas, but no differences in serum testosterone were observed. Cohabitation with juvenile males during enhanced D2 agonism results in atypical appetitive sexual responses and a higher pattern of brain response for the young male-paired odor, with no changes in serum testosterone. We discuss the potential implications for the development of pedophilic disorder and perhaps other paraphilias.
Collapse
Affiliation(s)
- Rodrigo Ramírez-Rodríguez
- Maestría en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Isabel León-Sequeda
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Lázaro Salomón-Lara
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
36
|
Barr HJ, Wall EM, Woolley SC. Dopamine in the songbird auditory cortex shapes auditory preference. Curr Biol 2021; 31:4547-4559.e5. [PMID: 34450091 DOI: 10.1016/j.cub.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Vocal communication signals can provide listeners with information about the signaler and elicit motivated responses. Auditory cortical and mesolimbic reward circuits are often considered to have distinct roles in these processes, with auditory cortical circuits responsible for detecting and discriminating sounds and mesolimbic circuits responsible for ascribing salience and modulating preference for those sounds. Here, we investigated whether dopamine within auditory cortical circuits themselves can shape the incentive salience of a vocal signal. Female zebra finches demonstrate natural preferences for vocal signals produced by males ("songs"), and we found that brief pairing of passive song playback with pharmacological dopamine manipulations in the secondary auditory cortex significantly altered song preferences. In particular, pairing passive song playback with retrodialysis of dopamine agonists into the auditory cortex enhanced preferences for less-preferred songs. Plasticity of song preferences by dopamine persisted for at least 1 week and was mediated by D1 receptors. In contrast, song preferences were not shaped by norepinephrine. In line with this, while we found that the ventral tegmental area, substantia nigra pars compacta, and locus coeruleus all project to the secondary auditory cortex, only dopamine-producing neurons in the ventral tegmental area differentially responded to preferred versus less-preferred songs. In contrast, norepinephrine neurons in the locus coeruleus increased expression of activity-dependent neural markers for both preferred and less-preferred songs. These data suggest that dopamine acting directly in sensory-processing areas can shape the incentive salience of communication signals.
Collapse
Affiliation(s)
- Helena J Barr
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada
| | - Erin M Wall
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
37
|
Lambert CT, Lichter JB, Perry AN, Castillo SA, Keane B, Cushing BS, Solomon NG. Medial amygdala ERα expression influences monogamous behaviour of male prairie voles in the field. Proc Biol Sci 2021; 288:20210318. [PMID: 34344176 PMCID: PMC8334872 DOI: 10.1098/rspb.2021.0318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Formation of long-term pair-bonds is a complex process, involving multiple neural circuits and is context- and experience-dependent. While laboratory studies using prairie voles have identified the involvement of several neural mechanisms, efforts to translate these findings into predictable field outcomes have been inconsistent at best. Here we test the hypothesis that inhibition of oestrogen receptor alpha (ERα) in the medial amygdala of male prairie voles would significantly increase the expression of social monogamy in the field. Prairie vole populations of equal sex ratio were established in outdoor enclosures with males bred for high levels of ERα expression and low levels of prosocial behaviour associated with social monogamy. Medial amygdala ERα expression was knocked down in half the males per population. Knockdown males displayed a greater degree of social monogamy in five of the eight behavioural indices assessed. This study demonstrates the robust nature of ERα in playing a critical role in the expression of male social monogamy in a field setting.
Collapse
Affiliation(s)
| | | | - Adam N. Perry
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Samuel A. Castillo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian Keane
- Department of Biological Sciences, Miami University—Regionals, Hamilton, OH 45011, USA
| | - Bruce S. Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
38
|
Krentzel AA, Kimble LC, Dorris DM, Horman BM, Meitzen J, Patisaul HB. FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Horm Behav 2021; 134:105019. [PMID: 34182292 PMCID: PMC8403633 DOI: 10.1016/j.yhbeh.2021.105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 μg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laney C Kimble
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
Valera-Marín G, Young LJ, Camacho F, Paredes RG, Rodríguez VM, Díaz NF, Portillo W. Raised without a father: monoparental care effects over development, sexual behavior, sexual reward, and pair bonding in prairie voles. Behav Brain Res 2021; 408:113264. [PMID: 33775781 PMCID: PMC8647045 DOI: 10.1016/j.bbr.2021.113264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Around 5 % of mammals are socially monogamous and both parents provide care to the pups (biparental, BP). Prairie voles are socially monogamous rodents extensively used to understand the neurobiological basis of pair bond formation and the consequences that the absence of one parent has in the offspring. Pair bonding, characterized by selective affiliation with a sexual partner, is facilitated in prairie voles by mating for 6 h or cohabitation without mating for 24 h. It was previously shown that prairie voles raised by their mother alone (monoparental, MP) show delayed pair bond formation upon reaching adulthood. In this study we evaluated the effects of BP and MP care provided on the offspring's development, ability to detect olfactory cues, preference for sexually relevant odors, display of sexual behavior, as well as the rewarding effects of mating. We also measured dopamine and serotonin concentration in the nucleus accumbens (ventral striatum) and dorsal striatum after cohabitation and mating (CM) to determine if differences in these neurotransmitters could underlie the delay in pair bond formation in MP voles. Our data showed that MP voles received less licking/grooming than BP voles, but no developmental differences between groups were found. No differences were found in the detection and discrimination of olfactory cues or preference for sexually relevant odors, as all groups innately preferred opposite sex odors. No differences were found in the display of sexual behavior. However, CM induced reinforcing properties only in BP males, followed by a preference for their sexual partner in BP but not MP males. BP males showed an increase in dopamine turnover (DOPAC/DA and HVA/DA) in the nucleus accumbens in comparison to MP voles. No differences in dopamine, serotonin or their metabolites were found in the dorsal striatum. Our results indicate that MP voles that received less licking behavior exhibit a delay in pair bond formation possibly because the sexual interaction is not rewarding enough.
Collapse
Affiliation(s)
- Guillermo Valera-Marín
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd., Atlanta, GA, 30329, United States
| | - Francisco Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Mexico
| | - Verónica M Rodríguez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
| | - Néstor F Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Col. Lomas Virreyes, Del. Miguel Hidalgo, Ciudad de México, 11000, Mexico.
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
40
|
Lynch KS, Ryan MJ. Understanding the Role of Incentive Salience in Sexual Decision-Making. Integr Comp Biol 2021; 60:712-721. [PMID: 32483613 DOI: 10.1093/icb/icaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the search for understanding female sexual decision-making, progress has been made in uncovering a variety of perceptual biases and most of these concern the animal's sensory biology and cognitive processes. We are now poised to dig deeper into the female's decision-making and ask if incentive salience, which plays a role in all types of appetitive behaviors, also influences a female's "taste for the beautiful." The incentive salience hypothesis suggests that dopamine assigns value or salience to objects or actions. After value is assigned to all potential actions, an action selection system then chooses among potential options to select the most valuable action. In this view, dopamine stimulates reward-seeking behavior by assigning incentive salience to specific behavioral actions, which in turn, increases pursuit and focus on objects or stimuli that represent the valuable action. Here, we apply this framework to understand why females are compelled to respond maximally to some male courtship signals over others and how this process may reveal a female's hidden mate preferences. We examine studies of dopamine and the mesolimbic reward system because these may play a role in expanding the female's perceptual landscape for novelty in male courtship signals and establishing novel hidden preferences. We review three avenues of research that may identify signatures of incentive salience in females during sexual decision-making. This review includes studies of dopamine agonist or antagonist administration in females during mate choice or partner preference tests, measures of neural activity in dopaminergic neural circuits during mate choice or partner preference tests, and social regulation of dopamine in females when entering reproductive contexts and/or exposure to mate signals. By applying the incentive salience hypothesis to female reproductive decision-making, it redefines how we see the female's role in sexual encounters. Females cannot be considered passive during reproductive encounters; rather they are seeking sexual encounters, particularly with males that tap into their perceptual biases and initiate a reward-seeking response. Incentive salience applied to reproductive behavior requires considering females as viewing sexual stimuli as rewarding and initiating action to seek out this reward, all of which indicates females are driving sexual encounters.
Collapse
Affiliation(s)
- Kathleen S Lynch
- Department of Biological Sciences, Hofstra University, 1000 Hempstead Turnpike, Hempstead, NY 11549, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
41
|
Tripp JA, Berrio A, McGraw LA, Matz MV, Davis JK, Inoue K, Thomas JW, Young LJ, Phelps SM. Comparative neurotranscriptomics reveal widespread species differences associated with bonding. BMC Genomics 2021; 22:399. [PMID: 34058981 PMCID: PMC8165761 DOI: 10.1186/s12864-021-07720-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Pair bonding with a reproductive partner is rare among mammals but is an important feature of human social behavior. Decades of research on monogamous prairie voles (Microtus ochrogaster), along with comparative studies using the related non-bonding meadow vole (M. pennsylvanicus), have revealed many of the neural and molecular mechanisms necessary for pair-bond formation in that species. However, these studies have largely focused on just a few neuromodulatory systems. To test the hypothesis that neural gene expression differences underlie differential capacities to bond, we performed RNA-sequencing on tissue from three brain regions important for bonding and other social behaviors across bond-forming prairie voles and non-bonding meadow voles. We examined gene expression in the amygdala, hypothalamus, and combined ventral pallidum/nucleus accumbens in virgins and at three time points after mating to understand species differences in gene expression at baseline, in response to mating, and during bond formation. RESULTS We first identified species and brain region as the factors most strongly associated with gene expression in our samples. Next, we found gene categories related to cell structure, translation, and metabolism that differed in expression across species in virgins, as well as categories associated with cell structure, synaptic and neuroendocrine signaling, and transcription and translation that varied among the focal regions in our study. Additionally, we identified genes that were differentially expressed across species after mating in each of our regions of interest. These include genes involved in regulating transcription, neuron structure, and synaptic plasticity. Finally, we identified modules of co-regulated genes that were strongly correlated with brain region in both species, and modules that were correlated with post-mating time points in prairie voles but not meadow voles. CONCLUSIONS These results reinforce the importance of pre-mating differences that confer the ability to form pair bonds in prairie voles but not promiscuous species such as meadow voles. Gene ontology analysis supports the hypothesis that pair-bond formation involves transcriptional regulation, and changes in neuronal structure. Together, our results expand knowledge of the genes involved in the pair bonding process and open new avenues of research in the molecular mechanisms of bond formation.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alejandro Berrio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Present Address: Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lisa A McGraw
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jamie K Davis
- Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - James W Thomas
- National Institutes of Health Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, MD, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Steven M Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
42
|
Loth MK, Donaldson ZR. Oxytocin, Dopamine, and Opioid Interactions Underlying Pair Bonding: Highlighting a Potential Role for Microglia. Endocrinology 2021; 162:6046188. [PMID: 33367612 PMCID: PMC7787427 DOI: 10.1210/endocr/bqaa223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Pair bonds represent some of the strongest attachments we form as humans. These relationships positively modulate health and well-being. Conversely, the loss of a spouse is an emotionally painful event that leads to numerous deleterious physiological effects, including increased risk for cardiac dysfunction and mental illness. Much of our understanding of the neuroendocrine basis of pair bonding has come from studies of monogamous prairie voles (Microtus ochrogaster), laboratory-amenable rodents that, unlike laboratory mice and rats, form lifelong pair bonds. Specifically, research using prairie voles has delineated a role for multiple neuromodulatory and neuroendocrine systems in the formation and maintenance of pair bonds, including the oxytocinergic, dopaminergic, and opioidergic systems. However, while these studies have contributed to our understanding of selective attachment, few studies have examined how interactions among these 3 systems may be essential for expression of complex social behaviors, such as pair bonding. Therefore, in this review, we focus on how the social neuropeptide, oxytocin, interacts with classical reward system modulators, including dopamine and endogenous opioids, during bond formation and maintenance. We argue that an understanding of these interactions has important clinical implications and is required to understand the evolution and encoding of complex social behaviors more generally. Finally, we provide a brief consideration of future directions, including a discussion of the possible roles that glia, specifically microglia, may have in modulating social behavior by acting as a functional regulator of these 3 neuromodulatory systems.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Correspondence: Zoe R. Donaldson, PhD, University of Colorado Boulder, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
43
|
Lee NS, Beery AK. The role of dopamine signaling in prairie vole peer relationships. Horm Behav 2021; 127:104876. [PMID: 33152338 PMCID: PMC7855828 DOI: 10.1016/j.yhbeh.2020.104876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
Dopamine signaling mediates the formation of some types of social relationships, including reproductive pair bonds in the socially monogamous prairie vole (Microtus ochrogaster). In addition to these pair bonds with mates, prairie voles demonstrate selective preferences for familiar same-sex peers. The dependence of peer relationships on dopamine signaling has not been tested, and the mechanisms supporting these relationships may differ from those underlying pair bonds. We examined the effects of pharmacological manipulations of dopamine signaling on peer partner preference and socially conditioned place preference in female prairie voles. Haloperidol blockade of dopamine receptors at multiple doses did not alter selective preferences for familiar same-sex partners, suggesting that dopamine neurotransmission is not necessary for the formation of prairie vole peer relationships, unlike mate relationships. Dopamine receptor agonist apomorphine facilitated peer partner preferences under conditions normally insufficient for partner preference formation; however, in the absence of effects from blockade, it is difficult to distinguish between a role for dopamine in partner preference formation and the generally rewarding properties of a dopamine agonist. Prairie voles exhibited socially conditioned place preferences for new but not long-term same-sex peers, and these preferences were not blocked by haloperidol. These results suggest that prairie vole peer relationships are less dependent on dopamine signaling than pair bonds, while still being rewarding. The data support distinct roles of dopamine and motivation in prairie vole peer relationships relative to mate relationships, suggesting that reproductive bonds are mediated differently from non-reproductive ones.
Collapse
Affiliation(s)
- Nicole S Lee
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Annaliese K Beery
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, United States of America; Neuroscience Program, Department of Psychology, Department of Biology, Smith College, Northampton, MA 01063, United States of America; Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
44
|
Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, Bizer A, Grinevich V, Wagner S. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun 2020; 11:5908. [PMID: 33219219 PMCID: PMC7679456 DOI: 10.1038/s41467-020-19569-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism. Laboratory rat and mouse strains serve as animal models to explore brain mechanisms underlying social behavior. Here, the authors describe differences in social behavior between commonly used rat and mouse strains, which may reflect distinct dynamics of social motivation.
Collapse
Affiliation(s)
- Shai Netser
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Ana Meyer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Hen Magalnik
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Asaph Zylbertal
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WCE1 6BT, UK
| | - Shani Haskal de la Zerda
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Alexander Bizer
- Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
45
|
Ortiz R, Yee JR, Kulkarni PP, Solomon NG, Keane B, Cai X, Ferris CF, Cushing BS. Differences in Diffusion-Weighted Imaging and Resting-State Functional Connectivity Between Two Culturally Distinct Populations of Prairie Vole. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:588-597. [PMID: 33239258 DOI: 10.1016/j.bpsc.2020.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND We used the highly prosocial prairie vole to test the hypothesis that higher-order brain structure-microarchitecture and functional connectivity (FC)-would differ between males from populations with distinctly different levels of prosocial behavior. Specifically, we studied males from Illinois (IL), which display high levels of prosocial behavior, and first generation males from Kansas dams and IL males (KI), which display the lowest level of prosocial behavior and higher aggression. Behavioral differences between these males are associated with overexpression of estrogen receptor alpha in the medial amygdala and bed nucleus of the stria terminalis and neuropeptide expression in the paraventricular nucleus. METHODS We compared apparent diffusion coefficient, fractional anisotropy, and blood oxygen level-dependent resting-state FC between males. RESULTS IL males displayed higher apparent diffusion coefficient in regions associated with prosocial behavior, including the bed nucleus of the stria terminalis, paraventricular nucleus, and anterior thalamic nuclei, while KI males showed higher apparent diffusion coefficient in the brainstem. KI males showed significantly higher fractional anisotropy than IL males in 26 brain regions, with the majority being in the brainstem reticular activating system. IL males showed more blood oxygen level-dependent resting-state FC between the bed nucleus of the stria terminalis, paraventricular nucleus, and medial amygdala along with other brain regions, including the hippocampus and areas associated with social and reward networks. CONCLUSIONS Our results suggest that gray matter microarchitecture and FC may play a role the expression of prosocial behavior and that differences in other brain regions, especially the brainstem, could be involved. The differences between males suggests that this system represents a potentially valuable model system for studying emotional differences and vulnerability to stress and addiction.
Collapse
Affiliation(s)
- Richard Ortiz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas
| | - Jason R Yee
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Praveen P Kulkarni
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | | | - Brian Keane
- Department of Biological Sciences, Miami University, Hamilton, Ohio
| | - Xuezhu Cai
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Center for Translational NeuroImaging, Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Bruce S Cushing
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
46
|
Tapp DN, Singstock MD, Gottliebson MS, McMurray MS. Central but not peripheral oxytocin administration reduces risk-based decision-making in male rats. Horm Behav 2020; 125:104840. [PMID: 32795469 DOI: 10.1016/j.yhbeh.2020.104840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
The hormone oxytocin has long been associated with social behaviors, but recent evidence suggests that it may also affect reward processing in non-social contexts. Decisions are an integral component of many social and reward-based behavioral paradigms. Thus, a broad role for oxytocin in decision-making may explain the wide variety of effects that have been previously observed and resolve controversies in the literature about its role. To determine if oxytocin can selectively modulate decision-making in male rats, we assessed the dose-dependent effects of central (intracerebroventricular) or peripheral (intraperitoneal) administration of oxytocin on probability and delay discounting, two commonly used decision-making tasks that are free of social contexts. Our results showed that central administration of oxytocin dose-dependently reduced preference for risky outcomes in the probability discounting task, but had no impact on delay discounting or reward sensitivity. This effect was blocked by the co-administration of an oxytocin antagonist. Additionally, we found no effect of peripheral oxytocin administration on any task. To identify potential cognitive mechanisms of central oxytocin's effect on decision-making, we determined if central or peripheral oxytocin affects reward sensitivity using an intracranial self-stimulation task, and motivation using a progressive ratio task. These results showed that at the dosage that affects decision-making, central oxytocin had a mild and short-lasting effect on motivation, but no observable effect on reward sensitivity. This pattern of results suggests that oxytocin may selectively reduce risky decisions in male rats, even at dosages that have no major effects on reward processing and motivation. These findings highlight a potentially novel role for oxytocin in non-social cognitive processes and expand our understanding of the mechanism by which oxytocin may regulate social behavior.
Collapse
Affiliation(s)
- Danielle N Tapp
- Department of Psychology, Miami University, 90 N. Patterson Ave., Oxford, OH 45056, USA
| | - Mitchell D Singstock
- Department of Psychology, Miami University, 90 N. Patterson Ave., Oxford, OH 45056, USA
| | | | - Matthew S McMurray
- Department of Psychology, Miami University, 90 N. Patterson Ave., Oxford, OH 45056, USA.
| |
Collapse
|
47
|
Silva PA, Trigo S, Marques CI, Cardoso GC, Soares MC. Experimental evidence for a role of dopamine in avian personality traits. J Exp Biol 2020; 223:jeb216499. [PMID: 31953366 DOI: 10.1242/jeb.216499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022]
Abstract
There is increasing interest in the genetic and physiological bases of behavioural differences among individuals, namely animal personality. One particular dopamine (DA) receptor gene (the dopamine receptor D4 gene) has been used as candidate gene to explain personality differences, but with mixed results. Here, we used an alternative approach, exogenously manipulating the dopaminergic system and testing for effects on personality assays in a social bird species, the common waxbill (Estrilda astrild). We treated birds with agonists and antagonists for DA receptors of both D1 and D2 receptor pathways (the latter includes the D4 receptor) and found that short-term manipulation of DA signalling had an immediate effect on personality-related behaviours. In an assay of social responses (mirror test), manipulation of D2 receptor pathways reduced time spent looking at the social stimulus (mirror image). Blocking D2 receptors reduced motor activity in this social assay, while treatment with a D2 receptor agonist augmented activity in this social assay but reduced activity in a non-social behavioural assay. Also, in the non-social assay, treatment with the D1 receptor antagonist markedly increased time spent at the feeder. These results show distinct and context-specific effects of the dopaminergic pathways on waxbill personality traits. Our results also suggest that experimental manipulation of DA signalling can disrupt a behavioural correlation (more active individuals being less attentive to mirror image) that is habitually observed as part of a behavioural syndrome in waxbills. We discuss our results in the context of animal personality, and the role of the DA system in reward and social behaviour.
Collapse
Affiliation(s)
- Paulo A Silva
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Cristiana I Marques
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| | - Gonçalo C Cardoso
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
- Behavioural Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Marta C Soares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão 4485-661, Portugal
| |
Collapse
|
48
|
Yu P, Zhang M, Nan X, Zhao H, Gong D. Differences in the number of oxytocin, vasopressin, and tyrosine hydroxylase cells in brain regions associated with mating among great, midday, and Mongolian gerbils. Brain Res 2020; 1733:146677. [PMID: 32001244 DOI: 10.1016/j.brainres.2020.146677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Neurotransmitters, such as oxytocin (OT), vasopressin (AVP), and dopamine (DA), within the mesolimbic system have deeply conserved roles in regulating mating-related behaviors. However, comparative studies among monogamous and polygamous animals focus mainly on Microtus; very little research has been done in gerbils. Here, we measured body weight, body length, tail length, serum hormone concentrations, and the immunoreactive (ir)-cells of OT, AVP, and tyrosine hydroxylase (TH) in the brain of the polygamous great gerbil (Rhombomys opimus), midday gerbil (Meriones meridianus), and monogamous Mongolian gerbil (Meriones unguiculatus). Body weight, body length, tail length, and serum AVP concentrations were greater in the great gerbil than in the midday gerbil and Mongolian gerbil. The number of OT and AVP cells in the para ventricular nucleus (PVN) and supra optic nucleus (SON) of the hypothalamus were greater in the Mongolian gerbil than in the great gerbil and midday gerbil. Similarly, the number of TH cells in the PVN, medial preoptic area (MPOA), and ventral tegmental area (VTA) was greater in the Mongolian gerbil than in the great gerbil and midday gerbil. To summarize, the number of OT and AVP cells in the PVN and SON and TH cells in the PVN, MPOA, and VTA in the monogamous Mongolian gerbil are greater than those in the great gerbil and midday gerbil.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Mingyu Zhang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Xumei Nan
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Haochi Zhao
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Dajie Gong
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
49
|
Yuan W, Li L, Hou W, He Z, Wang L, Zhang J, Yang Y, Cai W, Guo Q, Zhang X, Jia R, Lian Z, Tai F. Preweaning Paternal Deprivation Impacts Parental Responses to Pups and Alters the Serum Oxytocin and Corticosterone Levels and Oxytocin Receptor, Vasopressin 1A Receptor, Oestrogen Receptor, Dopamine Type I Receptor, Dopamine Type II Receptor Levels in Relevant Brain Regions in Adult Mandarin Voles. Neuroendocrinology 2020; 110:292-306. [PMID: 31256151 DOI: 10.1159/000501798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022]
Abstract
Although maternal separation and neonatal paternal deprivation (PD) have been found to exert a profound and persistent effects on the physiological and behavioural development of offspring, whether preweaning PD (PPD; from PND 10 to 21) affects maternal and parental responses to pups and the underlying neuroendocrine mechanism are under-investigated. Using monogamous mandarin voles (Microtus mandarinus), the present study found that PPD increased the latency to approach a pup-containing ball, decreased the total durations of sniffing and contacting a pup-containing ball and walking and increased the total duration of inactivity in both sexes. Moreover, PPD decreased serum oxytocin levels and increased corticosterone levels, but only in females. Furthermore, in both males and females, PPD decreased the expression of oxytocin receptor mRNA and protein in the medial preoptic area (MPOA), nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC), but increased it in the medial amygdala (MeA) and decreased the expression of oestrogen receptor mRNA and protein in the MPOA. PPD increased the expression of dopamine type I receptor in the NAcc, but decreased it in the mPFC. PPD decreased dopamine type II receptor (D2R) in the NAcc both in males and females, but increased D2R in the mPFC in females and decreased D2R protein expression in males. Moreover, PPD decreased vasopressin 1A receptor (V1AR) in the MPOA, MeA and mPFC, but only in males. Our results suggest that the reduction of parental responses to pups induced by PPD may be associated with the sex-specific alteration of several neuroendocrine parameters in relevant brain regions.
Collapse
Affiliation(s)
- Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Provincial Key Laboratory of Acupuncture and Medications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China,
- Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China,
| |
Collapse
|
50
|
Ménard S, Gelez H, Girard-Bériault F, Coria-Avila G, Pfaus JG. Differential role of oxytocin and vasopressin in the conditioned ejaculatory preference of the male rat. Physiol Behav 2019; 208:112577. [DOI: 10.1016/j.physbeh.2019.112577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
|