1
|
Tian Z, Zhou D, Jiang R, Zhou B. Role of AMIGO2 in cancer progression: Novel insights (Review). Oncol Lett 2024; 28:434. [PMID: 39049987 PMCID: PMC11268087 DOI: 10.3892/ol.2024.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein initially identified in cerebellar granule neurons, and inhibits apoptosis of neurons. It is also widely expressed in various malignant tumors, including gastric cancer, colorectal carcinoma, ovarian cancer, prostate cancer and melanoma. During the past decades, it has been revealed that AMIGO2 can act as an oncogene, participating in tumor occurrence and development, for example by inhibiting apoptosis, accelerating cell proliferation, migration and adhesion, and promoting tumor metastasis and drug resistance. The present review discusses the recent advancements regarding AMIGO2 in the field of cancer, emphasizing its related molecular mechanisms to identify novel therapeutic strategies targeting AMIGO2 for cancer treatment in the future.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Dongsheng Zhou
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Rui Jiang
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Bin Zhou
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| |
Collapse
|
2
|
Chen L, Lin S, Xie Y, Tan X, Xiong B, Zeng X, Zhu C, Cao S, Ye X, Liu H, Wu X. AMIGO2 attenuates innate cisplatin sensitivity by suppression of GSDME-conferred pyroptosis in non-small cell lung cancer. J Cell Mol Med 2023; 27:2412-2423. [PMID: 37438979 PMCID: PMC10424296 DOI: 10.1111/jcmm.17827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. Cisplatin is commonly used in the treatment of many malignant tumours including NSCLC. The innate drug sensitivity greatly affects the clinical efficacy of cisplatin-based chemotherapy. As a plasma membrane adhesion molecule, amphoterin-induced gene and ORF-2 (AMIGO2) initially identified as a neurite outgrowth factor has been recently found to play a crucial role in cancer occurrence and progression. However, it is still unclear whether AMIGO2 is involved in innate cisplatin sensitivity. In the present study, we provided the in vitro and in vivo evidences indicating that the alteration of AMIGO2 expression triggered changes of innate cisplatin sensitivity as well as cisplatin-induced pyroptosis in NSCLC. Further results revealed that AMIGO2 might inhibit cisplatin-induced activation of (caspase-8 and caspase-9)/caspase-3 via stimulating PDK1/Akt (T308) signalling axis, resulting in suppression of GSDME cleavage and the subsequent cell pyroptosis, thereby decreasing the sensitivity of NSCLC cells to cisplatin treatment. The results provided a new insight that AMIGO2 regulated the innate cisplatin sensitivity of NSCLC through GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Lian‐kuai Chen
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Shu‐ping Lin
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yong‐huan Xie
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xiang‐peng Tan
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Ben‐han Xiong
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xiang‐feng Zeng
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Cai‐rong Zhu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Shao‐yi Cao
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xiao‐yan Ye
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Hong‐jiao Liu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiao‐ping Wu
- Institute of Tissue Transplantation and Immunology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
- MOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bioengineering MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
3
|
Maselli D, Garoffolo G, Cassanmagnago GA, Vono R, Ruiter MS, Thomas AC, Madeddu P, Pesce M, Spinetti G. Mechanical Strain Induces Transcriptomic Reprogramming of Saphenous Vein Progenitors. Front Cardiovasc Med 2022; 9:884031. [PMID: 35711359 PMCID: PMC9197233 DOI: 10.3389/fcvm.2022.884031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Intimal hyperplasia is the leading cause of graft failure in aortocoronary bypass grafts performed using human saphenous vein (SV). The long-term consequences of the altered pulsatile stress on the cells that populate the vein wall remains elusive, particularly the effects on saphenous vein progenitors (SVPs), cells resident in the vein adventitia with a relatively wide differentiation capacity. In the present study, we performed global transcriptomic profiling of SVPs undergoing uniaxial cyclic strain in vitro. This type of mechanical stimulation is indeed involved in the pathology of the SV. Results showed a consistent stretch-dependent gene regulation in cyclically strained SVPs vs. controls, especially at 72 h. We also observed a robust mechanically related overexpression of Adhesion Molecule with Ig Like Domain 2 (AMIGO2), a cell surface type I transmembrane protein involved in cell adhesion. The overexpression of AMIGO2 in stretched SVPs was associated with the activation of the transforming growth factor β pathway and modulation of intercellular signaling, cell-cell, and cell-matrix interactions. Moreover, the increased number of cells expressing AMIGO2 detected in porcine SV adventitia using an in vivo arterialization model confirms the upregulation of AMIGO2 protein by the arterial-like environment. These results show that mechanical stress promotes SVPs' molecular phenotypic switching and increases their responsiveness to extracellular environment alterations, thus prompting the targeting of new molecular effectors to improve the outcome of bypass graft procedure.
Collapse
Affiliation(s)
- Davide Maselli
- IRCCS MultiMedica, Milan, Italy
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giada Andrea Cassanmagnago
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | - Matthijs S. Ruiter
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Anita C. Thomas
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gaia Spinetti
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Gaia Spinetti
| |
Collapse
|
4
|
Yi Y, Zhu H, Klausen C, Chang HM, Inkster AM, Terry J, Leung PCK. Dysregulated BMP2 in the Placenta May Contribute to Early-Onset Preeclampsia by Regulating Human Trophoblast Expression of Extracellular Matrix and Adhesion Molecules. Front Cell Dev Biol 2022; 9:768669. [PMID: 34970543 PMCID: PMC8712873 DOI: 10.3389/fcell.2021.768669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Many pregnancy disorders, including early-onset preeclampsia (EOPE), are associated with defects in placental trophoblast cell invasion and differentiation during early placental development. Bone morphogenetic protein 2 (BMP2) belongs to the TGF-β superfamily and controls various physiological and developmental processes. However, the expression of BMP2 in the placenta and underlying molecular mechanisms of how BMP2 regulates trophoblast function remain unclear. In this study, we analyzed several publicly available microarray and RNA-seq datasets and revealed differences in expression of TGF-β superfamily members between gestational age-matched non-preeclamptic control and EOPE placentas. Importantly, BMP2 levels were significantly reduced in EOPE placentas compared with controls, and RNAscope in situ hybridization further demonstrated BMP2 expression was disrupted in EOPE placental villi. To explore the molecular mechanisms of BMP2-regulated early trophoblast differentiation, we examined BMP2 expression in first-trimester human placenta and found it to be localized to all subtypes of trophoblasts and the decidua. RNA-seq analysis on control and BMP2-treated primary human trophoblast cells identified 431 differentially expressed genes, including several canonical TGF-β/BMP signaling targets (BAMBI, ID1, INHBA, IGFBP3). Gene ontology annotations revealed that differentially expressed genes were involved in cell adhesion and extracellular matrix organization. Furthermore, we identified adhesion molecule with IgG-like domain 2 (AMIGO2) as a novel target for BMP2 that contributed to BMP2-induced trophoblast invasion and endothelial-like tube formation. Overall, our findings provide insight into the molecular processes controlled by BMP2 during early placental development that may contribute to the pathogenesis of EOPE.
Collapse
Affiliation(s)
- Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Amy M Inkster
- Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jefferson Terry
- Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Rengasamy Venugopalan S, Farrow E, Sanchez-Lara PA, Yen S, Lypka M, Jiang S, Allareddy V. A novel nonsense substitution identified in the AMIGO2 gene in an Occulo-Auriculo-Vertebral spectrum patient. Orthod Craniofac Res 2019; 22 Suppl 1:163-167. [PMID: 31074142 DOI: 10.1111/ocr.12259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Craniofacial microsmia is the second most common congenital disorder with mostly unilateral defects of ear, temporomandibular joint, mandible, and muscles of facial expression and mastication. The objective of this study was to identify, if there were any, de novo germline or somatic variants in a patient with Occulo-Auriculo-Vertebral Spectrum (OAVS) using whole-exome sequencing. SETTINGS AND SAMPLE POPULATION Trio/Family-based study of an OAVS proband. MATERIALS AND METHODS Children's Mercy Hospital Institutional Review Board approved this study and a request-to-rely was procured from the University of Missouri Kansas City IRB. Informed assent/consent was obtained for all family members prior to any research activities. The peripheral blood/affected side tissues from corrective surgery of the proband and peripheral blood samples from unaffected parents were collected. The isolated genomic DNA were enriched for exomes and sequenced on an Illlumina HiSeq 2500 instrument yielding paired-end 125 nucleotide reads (84X coverage). Gapped alignment to reference sequences (GRCh37.p5) was performed with BWA and the GATK and analysis completed using custom-developed software. RESULTS Analyses revealed that the proband carried a de novo germ line nonsense substitution (c.901C>T) in AMIGO2 gene, and missense substitutions in ZCCHC14 (c.1198C>T), and in SZT2 genes (c.2951C>T). CONCLUSIONS The nonsense substitution in AMIGO2 gene introduces a premature stop codon possibly rendering the gene non-functional via nonsense-mediated pathway decay-therefore considered a stronger candidate. Further functional studies are required to confirm whether loss-of-function variants in AMIGO2 can cause OAVS.
Collapse
Affiliation(s)
| | - Emily Farrow
- Children's Mercy Hospitals, Kansas City, Missouri
| | - Pedro A Sanchez-Lara
- Cedars-Sinai Medical Center, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California
| | - Stephen Yen
- Children's Hospital Los Angeles, Los Angeles, California
| | | | - Shao Jiang
- Children's Mercy Hospitals, Kansas City, Missouri
| | | |
Collapse
|
6
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Fontanals-Cirera B, Hasson D, Vardabasso C, Di Micco R, Agrawal P, Chowdhury A, Gantz M, de Pablos-Aragoneses A, Morgenstern A, Wu P, Filipescu D, Valle-Garcia D, Darvishian F, Roe JS, Davies MA, Vakoc CR, Hernando E, Bernstein E. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene. Mol Cell 2017; 68:731-744.e9. [PMID: 29149598 PMCID: PMC5993436 DOI: 10.1016/j.molcel.2017.11.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/18/2017] [Accepted: 11/01/2017] [Indexed: 01/13/2023]
Abstract
Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma.
Collapse
Affiliation(s)
- Barbara Fontanals-Cirera
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Dan Hasson
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Vardabasso
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raffaella Di Micco
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Praveen Agrawal
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Asif Chowdhury
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madeleine Gantz
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana de Pablos-Aragoneses
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Ari Morgenstern
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Pamela Wu
- Institute of Systems Genetics, New York University Langone Medical Center, New York, NY, USA
| | - Dan Filipescu
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Valle-Garcia
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farbod Darvishian
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eva Hernando
- Department of Pathology and Interdisciplinary Melanoma Cooperative Group, New York University Langone Medical Center, New York, NY, USA.
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, 1470 Madison Avenue, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Li Z, Khan MM, Kuja-Panula J, Wang H, Chen Y, Guo D, Chen ZJ, Lahesmaa R, Rauvala H, Tian L. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain Behav Immun 2017; 62:110-123. [PMID: 28119027 DOI: 10.1016/j.bbi.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Mohd Moin Khan
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Juha Kuja-Panula
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Hongyun Wang
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Yu Chen
- College of Life Sciences, Wuhan University, Wuhan, China.
| | - Deyin Guo
- College of Life Sciences, Wuhan University, Wuhan, China; School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi Jane Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Heikki Rauvala
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
9
|
Benedetti G, Bonaventura P, Lavocat F, Miossec P. IL-17A and TNF-α Increase the Expression of the Antiapoptotic Adhesion Molecule Amigo-2 in Arthritis Synoviocytes. Front Immunol 2016; 7:254. [PMID: 27446084 PMCID: PMC4922130 DOI: 10.3389/fimmu.2016.00254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder, characterized by a persistent immune cell infiltrate in the synovium accompanied by high levels of inflammatory mediators and synovial hyperplasia. Despite significant therapeutic advances, RA remains an important unmet medical need. To discover potential new genes controlling inflammation and apoptosis in synoviocytes, genes induced by the two pro-inflammatory cytokines, tumor necrosis factor α (TNF-α) and interleukin 17A (IL-17A), were systematically searched. We identified Amphoterin-induced gene and ORF 2 (Amigo-2), a novel antiapoptotic adhesion molecule, as synergistically upregulated by the IL-17A/TNF combination specifically in RA synoviocytes. In addition, when RA synoviocytes were cocultured with immune cells, Amigo2 expression was significantly increased in both fibroblasts and immune cells. This induction persisted in RA synoviocytes even after the removal of the immune cells. Amigo2 induction was ERK-dependent and on the contrary, inhibited by JNK. Furthermore, Amigo2 expression levels correlated with apoptosis of the cells when exposed to the proapoptotic agent cadmium (Cd). Interestingly, exposure of the cells to HMGB1 in inflammatory conditions increased synergistically Amigo2 expression and significantly reduced Cd-mediated cellular toxicity. Our findings support a model whereby cell–cell contact with immune cells and exposure to the combination of both inflammatory cytokines and HMGB1 in the joints of RA patients increases Amigo2 expression in synoviocytes in an ERK-dependent manner which, in turn, enhances cellular adhesion and promotes cell survival and cellular proliferation.
Collapse
Affiliation(s)
- Giulia Benedetti
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Paola Bonaventura
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
10
|
Park H, Lee S, Shrestha P, Kim J, Park JA, Ko Y, Ban YH, Park DY, Ha SJ, Koh GY, Hong VS, Mochizuki N, Kim YM, Lee W, Kwon YG. AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation. J Cell Biol 2016; 211:619-37. [PMID: 26553931 PMCID: PMC4639856 DOI: 10.1083/jcb.201503113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
AMIGO2 is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation in endothelial cells, and inhibition of the interaction between PDK1–AMIGO2 results in impaired neovascularization, pathological angiogenesis, and tumor angiogenesis. The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.
Collapse
Affiliation(s)
- Hyojin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Pravesh Shrestha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihye Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong Ae Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeongrim Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Victor Sukbong Hong
- College of Natural Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Young-Myeong Kim
- Vascular System Research Center, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
MiR-183 Regulates ITGB1P Expression and Promotes Invasion of Endometrial Stromal Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:340218. [PMID: 26357653 PMCID: PMC4556833 DOI: 10.1155/2015/340218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
We applied in the previous study miRNA microarray screening analysis to identify several differentially expressed miRNAs, including miR-183 in normal, eutopic, and ectopic endometrium. Knockdown of miR-183 expression induced the invasiveness and inhibition of apoptosis in endometrial stromal cells. The current study aims to identify the miR-183 targets with relevance to cell functions in endometrial stromal cells, to verify the interaction of miR-183 with its target genes, and to confirm the role of miR-183 in the process of endometriosis. Using microarray analysis, we identified 27 differentially expressed genes (19 were upregulated and 8 downregulated), from which we selected 4 downregulated genes (ITGB1, AMIGO2, VAV3, and PSEN2) based on GO databases for functional analysis and significant pathway analysis. Western blotting analyses showed that integrin β1 (ITGB1), but not AMIGO2, was affected by miR-183 overexpression, whereas no protein expression of VAV3 and PSEN2 was detected. Luciferase reporter assay verified that ITGB1 is a target gene of miR-183. Moreover, we found that ITGB1 is overexpressed in the endometrium of endometriosis patients. Furthermore, overexpression of ITGB1 rescued the repressive effects of miR-183 on the invasiveness of endometrial stromal cells. These findings, together with the fact that ITGB1 is a critical factor for cell adhesion and invasiveness, suggest that miR-183 may be involved in the development of endometriosis by regulating ITGB1 in endometrial stromal cells.
Collapse
|
12
|
Evans PR, Dudek SM, Hepler JR. Regulator of G Protein Signaling 14: A Molecular Brake on Synaptic Plasticity Linked to Learning and Memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 133:169-206. [PMID: 26123307 DOI: 10.1016/bs.pmbts.2015.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regulators of G protein signaling (RGS) proteins are a diverse family of proteins that function as central components of G protein and other signaling pathways. In the brain, regulator of G protein signaling 14 (RGS14) is enriched in neurons in the hippocampus where the mRNA and protein are highly expressed. This brain region plays a major role in processing learning and forming new memories. RGS14 is an unusual RGS protein that acts as a multifunctional scaffolding protein to integrate signaling events and pathways essential for synaptic plasticity, including conventional and unconventional G protein signaling, mitogen-activated protein kinase, and, possibly, calcium signaling pathways. Within the hippocampus of primates and rodents, RGS14 is predominantly found in the enigmatic CA2 subfield. Principal neurons within the CA2 subfield differ from neighboring hippocampal regions in that they lack a capacity for long-term potentiation (LTP) of synaptic transmission, which is widely viewed as the cellular substrate of learning and memory formation. RGS14 was recently identified as a natural suppressor of LTP in hippocampal CA2 neurons as well as forms of learning and memory that depend on the hippocampus. Although CA2 has only recently been studied, compelling recent evidence implicates area CA2 as a critical component of hippocampus circuitry with functional roles in mediating certain types of learning and memory. This review will highlight the known functions of RGS14 in cell signaling and hippocampus physiology, and discuss potential roles for RGS14 in human cognition and disease.
Collapse
Affiliation(s)
- Paul R Evans
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Zhao X, Kuja-Panula J, Sundvik M, Chen YC, Aho V, Peltola MA, Porkka-Heiskanen T, Panula P, Rauvala H. Amigo adhesion protein regulates development of neural circuits in zebrafish brain. J Biol Chem 2014; 289:19958-75. [PMID: 24904058 DOI: 10.1074/jbc.m113.545582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion.
Collapse
Affiliation(s)
| | | | - Maria Sundvik
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Yu-Chia Chen
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | - Vilma Aho
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | | | - Tarja Porkka-Heiskanen
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Pertti Panula
- From the Neuroscience Center, Institute of Biomedicine/Anatomy, and
| | | |
Collapse
|
14
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
15
|
Laeremans A, Nys J, Luyten W, D'Hooge R, Paulussen M, Arckens L. AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct Funct 2013; 218:123-30. [PMID: 22314660 DOI: 10.1007/s00429-012-0387-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
AMIGO2, or amphoterin-induced gene and ORF (open reading frame) 2, belongs to the leucine-rich repeats and immunoglobulin superfamilies. The protein is a downstream target of calcium-dependent survival signals and, therefore, promotes neuronal survival. Here, we describe the mRNA distribution pattern of AMIGO2 throughout the mouse brain with special emphasis on the hippocampus. In the Ammon's horn, a detailed comparison between the subregional mRNA expression patterns of AMIGO2 and Pcp4 (Purkinje cell protein 4)--a known molecular marker of hippocampal CA2 (Cornu Ammonis 2)--revealed a prominent AMIGO2 mRNA expression level in both the CA2 and the CA3a (Cornu Ammonis 3a) subregion of the dorsal and ventral hippocampus. Since this CA2/CA3a region is particularly resistant to neuronal injury and neurotoxicity [Stanfield and Cowan (Brain Res 309(2):299–307 1984); Sloviter (J Comp Neurol 280(2):183–196 1989); Leranth and Ribak (Exp Brain Res 85(1):129–136 1991); Young and Dragunow (Exp Neurol 133(2):125–137 1995); Ochiishi et al. (Neurosci 93(3):955–967 1999)], we suggest that the expression pattern of AMIGO2 indeed fits with its involvement in neuroprotection.
Collapse
Affiliation(s)
- Annelies Laeremans
- Laboratory of Neuroplasticity and Neuroproteomics, University of Leuven, Naamsestraat 59, Box 2467, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Benatti C, Valensisi C, Blom JMC, Alboni S, Montanari C, Ferrari F, Tagliafico E, Mendlewicz J, Brunello N, Tascedda F. Transcriptional profiles underlying vulnerability and resilience in rats exposed to an acute unavoidable stress. J Neurosci Res 2012; 90:2103-15. [PMID: 22807198 DOI: 10.1002/jnr.23100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/23/2022]
Abstract
A complex interplay between gene and environment influences the vulnerability or the resilience to stressful events. In the acute escape deficit (AED) paradigm, rats exposed to an acute unavoidable stress (AUS) develop impaired reactivity to noxious stimuli. Here we assessed the behavioral and molecular changes in rats exposed to AUS. A genome-wide microarray experiment generated a comprehensive picture of changes in gene expression in the hippocampus and the frontal cortex of animals exposed or not to AUS. Exposure to AUS resulted in two distinct groups of rats with opposite behavioral profiles: one developing an AED, called "stress vulnerable," and one that did not develop an AED, called "stress resilient." Genome-wide profiling revealed a low percentage of overlapping mechanisms in the two areas, suggesting that, in the presence of stress, resilience or vulnerability to AUS is sustained by specific changes in gene expression that can either buffer or promote the behavioral and molecular adverse consequences of stress. Specifically, we observed in the frontal cortex a downregulation of the transcript coding for interferon-β and leukemia inhibitory factor in resilient rats and an upregulation of neuroendocrine related genes, growth hormone and prolactin, in vulnerable rats. In the hippocampus, the muscarinic M2 receptor was downregulated in vulnerable but upregulated in resilient rats. Our findings demonstrate that opposite behavioral responses did not correspond to opposite regulatory changes of the same genes, but resilience rather than vulnerability to stress was associated with specific changes, with little overlap, in the expression of patterns of genes.
Collapse
Affiliation(s)
- Cristina Benatti
- Department of Biomedical Sciences; University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chen Y, Hor HH, Tang BL. AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival. J Cell Physiol 2012; 227:2217-29. [DOI: 10.1002/jcp.22958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Tsoi LC, Qin T, Slate EH, Zheng WJ. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior. BMC Bioinformatics 2011; 12:438. [PMID: 22078224 PMCID: PMC3251006 DOI: 10.1186/1471-2105-12-438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/11/2011] [Indexed: 01/03/2023] Open
Abstract
Background To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. Results We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. Conclusions CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray experiments. Availability: CDEP is implemented in R and freely available at: http://genomebioinfo.musc.edu/CDEP/ Contact: zhengw@musc.edu
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
19
|
Kajander T, Kuja-Panula J, Rauvala H, Goldman A. Crystal Structure and Role of Glycans and Dimerization in Folding of Neuronal Leucine-Rich Repeat Protein AMIGO-1. J Mol Biol 2011; 413:1001-15. [DOI: 10.1016/j.jmb.2011.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
20
|
Zhao X, Kuja-Panula J, Rouhiainen A, Chen YC, Panula P, Rauvala H. High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 2011; 286:23200-13. [PMID: 21527633 DOI: 10.1074/jbc.m111.223834] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hmgb1 (high mobility group box-1; amphoterin) is highly expressed in brain during early development of vertebrate and nonvertebrate species. However, its role in brain development remains elusive. Here we have cloned the zebrafish Hmgb1 and specifically manipulated Hmgb1 expression using injection of morpholino antisense oligonucleotides or Hmgb1 cRNA. The HMGB1 knockdown morphants produced by injection of three different morpholino oligonucleotides display a characteristic phenotype with smaller size, smaller brain width, and shorter distance between the eyes. Closer examination of the phenotype reveals severe defects in the development of the forebrain that largely lacks catecholaminergic neural networks. The HMGB1 morphant is deficient in survival and proliferation of neural progenitors and displays fewer cell groups expressing the transcription factor Pax6a in the forebrain and aberrant Wnt8 signaling. The mechanism of HMGB1-dependent progenitor survival involves the neuronal transmembrane protein AMIGO (amphoterin-induced gene and orf), the expression of which is regulated by HMGB1 in vivo. Our data demonstrate that HMGB1 is a critical factor for brain development, enabling survival and proliferation of neural progenitors that will form the forebrain structures.
Collapse
Affiliation(s)
- Xiang Zhao
- Neuroscience Center, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Axonal remodeling for motor recovery after traumatic brain injury requires downregulation of γ-aminobutyric acid signaling. Cell Death Dis 2011; 2:e133. [PMID: 21412279 PMCID: PMC3101813 DOI: 10.1038/cddis.2011.16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling.
Collapse
|
22
|
Shi Q, Guo L, Patterson TA, Dial S, Li Q, Sadovova N, Zhang X, Hanig JP, Paule MG, Slikker W, Wang C. Gene expression profiling in the developing rat brain exposed to ketamine. Neuroscience 2010; 166:852-63. [PMID: 20080153 DOI: 10.1016/j.neuroscience.2010.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 12/31/2022]
Abstract
Ketamine, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, is associated with accelerated neuronal apoptosis in the developing rodent brain. In this study, postnatal day (PND) 7 rats were treated with 20 mg/kg ketamine or saline in six successive doses (s.c.) at 2-h intervals. Brain frontal cortical areas were collected 6 h after the last dose and RNA isolated and hybridized to Illumina Rat Ref-12 Expression BeadChips containing 22,226 probes. Many of the differentially expressed genes were associated with cell death or differentiation and receptor activity. Ingenuity Pathway Analysis software identified perturbations in NMDA-type glutamate, GABA and dopamine receptor signaling. Quantitative polymerase chain reaction (Q-PCR) confirmed that NMDA receptor subunits were significantly up-regulated. Up-regulation of NMDA receptor mRNA signaling was further confirmed by in situ hybridization. These observations support our working hypothesis that prolonged ketamine exposure produces up-regulation of NMDA receptors and subsequent over-stimulation of the glutamatergic system by endogenous glutamate, triggering enhanced apoptosis in developing neurons.
Collapse
Affiliation(s)
- Q Shi
- Division of Systems Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Common sequence variants within a gene often generate important differences in expression of corresponding mRNAs. This high level of local (allelic) control-or cis modulation-rivals that produced by gene targeting, but expression is titrated finely over a range of levels. We are interested in exploiting this allelic variation to study gene function and downstream consequences of differences in expression dosage. We have used several bioinformatics and molecular approaches to estimate error rates in the discovery of cis modulation and to analyze some of the biological and technical confounds that contribute to the variation in gene expression profiling. Our analysis of SNPs and alternative transcripts, combined with eQTL maps and selective gene resequencing, revealed that between 17 and 25% of apparent cis modulation is caused by SNPs that overlap probes rather than by genuine quantitative differences in mRNA levels. This estimate climbs to 40-50% when qualitative differences between isoform variants are included. We have developed an analytical approach to filter differences in expression and improve the yield of genuine cis-modulated transcripts to approximately 80%. This improvement is important because the resulting variation can be successfully used to study downstream consequences of altered expression on higher-order phenotypes. Using a systems genetics approach we show that two validated cis-modulated genes, Stk25 and Rasd2, are likely to control expression of downstream targets and affect disease susceptibility.
Collapse
|
24
|
Mandai K, Guo T, Hillaire CS, Meabon JS, Kanning KC, Bothwell M, Ginty DD. LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 2009; 63:614-27. [PMID: 19755105 PMCID: PMC2758028 DOI: 10.1016/j.neuron.2009.07.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 06/04/2009] [Accepted: 07/25/2009] [Indexed: 01/19/2023]
Abstract
Genome-wide screens were performed to identify transmembrane proteins that mediate axonal growth, guidance and target field innervation of somatosensory neurons. One gene, Linx (alias Islr2), encoding a leucine-rich repeat and immunoglobulin (LIG) family protein, is expressed in a subset of developing sensory and motor neurons. Domain and genomic structures of Linx and other LIG family members suggest that they are evolutionarily related to Trk receptor tyrosine kinases (RTKs). Several LIGs, including Linx, are expressed in subsets of somatosensory and motor neurons, and select members interact with TrkA and Ret RTKs. Moreover, axonal projection defects in mice harboring a null mutation in Linx resemble those in mice lacking Ngf, TrkA, and Ret. In addition, Linx modulates NGF-TrkA- and GDNF-GFRalpha1/Ret-mediated axonal extension in cultured sensory and motor neurons, respectively. These findings show that LIGs physically interact with RTKs and modulate their activities to control axonal extension, guidance and branching.
Collapse
Affiliation(s)
- Kenji Mandai
- The Solomon H. Snyder Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 1015, Baltimore, MD 21205, USA
| | - Ting Guo
- The Solomon H. Snyder Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 1015, Baltimore, MD 21205, USA
| | - Coryse St. Hillaire
- The Solomon H. Snyder Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 1015, Baltimore, MD 21205, USA
| | - James S. Meabon
- Department of Physiology and Biophysics, Box 357290, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Kevin C. Kanning
- Department of Physiology and Biophysics, Box 357290, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Mark Bothwell
- Department of Physiology and Biophysics, Box 357290, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - David D. Ginty
- The Solomon H. Snyder Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 1015, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Butz M, Teuchert-Noodt G, Grafen K, van Ooyen A. Inverse relationship between adult hippocampal cell proliferation and synaptic rewiring in the dentate gyrus. Hippocampus 2009; 18:879-98. [PMID: 18481284 DOI: 10.1002/hipo.20445] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adult neurogenesis is a key feature of the hippocampal dentate gyrus (DG). Neurogenesis is accompanied by synaptogenesis as new cells become integrated into the circuitry of the hippocampus. However, little is known to what extent the embedding of new neurons rewires the pre-existing network. Here we investigate synaptic rewiring in the DG of gerbils (Meriones unguiculatus) under different rates of adult cell proliferation caused by different rearing conditions as well as juvenile methamphetamine treatment. Surprisingly, we found that an increased cell proliferation reduced the amount of synaptic rewiring. To help explain this unexpected finding, we developed a novel model of dentate network formation incorporating neurogenesis and activity-dependent synapse formation and remodelling. In the model, we show that homeostasis of neuronal activity can account for the inverse relationship between cell proliferation and synaptic rewiring.
Collapse
Affiliation(s)
- Markus Butz
- Bernstein Center for Computational Neuroscience Göttingen, Max-Planck-Institut for Dynamics and Selforganization, Bunsenstr. 10, Göttingen, Germany.
| | | | | | | |
Collapse
|
26
|
Ono T, Akamatsu N, Shitara H, Ishii R, Taya C, Yamada I, Shibukawa Y, Kushida T, Furuse T, Watabe K, Wakana S, Yonekawa H. Mice deficient in alivin1/amigo2 show enhanced locomotor activity. Neurosci Res 2009. [DOI: 10.1016/j.neures.2009.09.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Homma S, Shimada T, Hikake T, Yaginuma H. Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expr Patterns 2008; 9:1-26. [PMID: 18848646 DOI: 10.1016/j.gep.2008.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 01/10/2023]
Abstract
The combination of leucine-rich repeat (LRR) and immunoglobulin-like (Ig) domains is found in the domain architecture of the Trk neurotrophin receptor protein. Recently dozens of such proteins simultaneously carrying LRR and Ig domains as the Trk receptors have been identified. Given the significant biological roles of Trk and such newly identified proteins, we have searched the public database for human proteins with LRR and Ig domains (collectively termed the leucine-rich repeat and Ig domain-containing protein, LRRIG protein, in this study), and have analyzed the mRNA expression pattern of mouse orthologs of obtained human LRRIG proteins at embryonic day 10. The list of the LRRIG proteins includes 36 human proteins: four LINGO, three NGL, five SALM, three NLRR, three Pal, two ISLR, three LRIG, two GPR, two Adlican, two Peroxidasin-like proteins, three Trk neurotrophin receptors, a yet unnamed protein AAI11068, and three AMIGO. Some molecules (LINGO2, LINGO4, NGL1, SALM1, SALM5, and TrkB) were expressed exclusively in neuronal tissues, whereas others (ISLR1, GPR124, and Adlican2) exhibited non-neuronal expression profiles. However, the majority of LRRIG protein family exhibited broad mRNA tissue-expression profiles.
Collapse
Affiliation(s)
- Shunsaku Homma
- Department of Anatomy, School of Medicine, Fukushima Medical University, Fukushimashi, Fukushima 960-1295, Japan.
| | | | | | | |
Collapse
|
28
|
Seabold GK, Wang PY, Chang K, Wang CY, Wang YX, Petralia RS, Wenthold RJ. The SALM family of adhesion-like molecules forms heteromeric and homomeric complexes. J Biol Chem 2008; 283:8395-405. [PMID: 18227064 DOI: 10.1074/jbc.m709456200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a newly discovered family of adhesion molecules that play roles in synapse formation and neurite outgrowth. The SALM family is comprised of five homologous molecules that are expressed largely in the central nervous system. SALMs 1-3 contain PDZ-binding domains, whereas SALMs 4 and 5 do not. We are interested in characterizing the interactions of the SALMs both among the individual members and with other binding partners. In the present study, we focused on the interactions formed by the five SALM members in rat brain and heterologous cells. In brain, we found that SALMs 1-3 strongly co-immunoprecipitated with each other, whereas SALMs 4 and 5 did not, suggesting that SALMs 4 and 5 mainly form homomeric complexes. In heterologous cells transfected with SALMs, co-immunoprecipitation studies showed that all five SALMs form heteromeric and homomeric complexes. We also determined if SALMs could form trans-cellular associations between transfected heterologous cells. Both SALMs 4 and 5 formed homophilic, but not heterophilic associations, whereas no trans associations were formed by the other SALMs. The ability of SALM4 to form trans interactions is due to its extracellular N terminus because chimeras of SALM4 N terminus and SALM2 C terminus can form trans interactions, whereas chimeras of SALM2 N terminus and SALM4 C terminus cannot. Co-culture experiments using HeLa cells and rat hippocampal neurons expressing the SALMs showed that SALM4 is recruited to points of contact between the cells. In neurons, these points of contact were seen in both axons and dendrites.
Collapse
Affiliation(s)
- Gail K Seabold
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, MD 20892-8027, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Terragni J, Graham JR, Adams KW, Schaffer ME, Tullai JW, Cooper GM. Phosphatidylinositol 3-kinase signaling in proliferating cells maintains an anti-apoptotic transcriptional program mediated by inhibition of FOXO and non-canonical activation of NFkappaB transcription factors. BMC Cell Biol 2008; 9:6. [PMID: 18226221 PMCID: PMC2268685 DOI: 10.1186/1471-2121-9-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 01/28/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phosphatidylinositol (PI) 3-kinase is activated by a variety of growth factor receptors and the PI 3-kinase/Akt signaling pathway is a key regulator of cell proliferation and survival. The downstream targets of PI 3-kinase/Akt signaling include direct regulators of cell cycle progression and apoptosis as well as a number of transcription factors. Growth factor stimulation of quiescent cells leads to robust activation of PI 3-kinase, induction of immediate-early genes, and re-entry into the cell cycle. A lower level of PI 3-kinase signaling is also required for the proliferation and survival of cells maintained in the presence of growth factors, but the gene expression program controlled by PI 3-kinase signaling in proliferating cells has not been elucidated. RESULTS We used microarray analyses to characterize the changes in gene expression resulting from inhibition of PI 3-kinase in proliferating cells. The genes regulated by inhibition of PI 3-kinase in proliferating cells were distinct from genes induced by growth factor stimulation of quiescent cells and highly enriched in genes that regulate programmed cell death. Computational analyses followed by chromatin immunoprecipitations demonstrated FOXO binding to both previously known and novel sites in promoter regions of approximately one-third of the up-regulated genes, consistent with activation of FOXO1 and FOXO3a in response to inhibition of PI 3-kinase. NFkappaB binding sites were similarly identified in promoter regions of over one-third of the down-regulated genes. RelB was constitutively bound to promoter regions in cells maintained in serum, however binding decreased following PI 3-kinase inhibition, indicating that PI 3-kinase signaling activates NFkappaB via the non-canonical pathway in proliferating cells. Approximately 70% of the genes targeted by FOXO and NFkappaB regulate cell proliferation and apoptosis, including several regulators of apoptosis that were not previously known to be targeted by these transcription factors. CONCLUSION PI 3-kinase signaling in proliferating cells regulates a novel transcriptional program that is highly enriched in genes that regulate apoptosis. At least one-third of these genes are regulated either by FOXO transcription factors, which are activated following PI 3-kinase inhibition, or by RelB, which is activated by PI 3-kinase via the non-canonical pathway in proliferating cells.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Chen Y, Aulia S, Li L, Tang BL. AMIGO and friends: An emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. ACTA ACUST UNITED AC 2006; 51:265-74. [PMID: 16414120 DOI: 10.1016/j.brainresrev.2005.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/23/2005] [Accepted: 11/22/2005] [Indexed: 01/17/2023]
Abstract
Leucine-rich repeats (LRR) are protein-protein interaction domains (20-29 amino acid residues in length) found in proteins with diverse structure and functions. We note here an emerging group of central nervous system-enriched, type I surface proteins with an ectodomain containing LRR repeats and motifs found in cell adhesion molecules. Members of this group include the Amphoterin-induced gene and ORF-1 (AMIGO-1), LRR and Ig domain containing Nogo Receptor interacting protein I (LINGO-1) and the netrin-G1 ligand NGL-1. The above proteins carry, in addition to the LRR repeats, an immunoglobin (Ig)-like segment in their ectodomain. Two other related families of molecules, the NLRRs and the FLRTs, have in addition, a fibronectin type III repeat. The LRR domain distinguishes these molecules from the more extensively studied Ig-like family of cell adhesion molecules, and the transmembrane domain differentiate them from the family of secreted extracellular proteoglycans with LRRs. Functionally, many members of this group of proteins could modulate neurite outgrowth of neurons, at least in vitro. LINGO-1, initially discovered as a component of the Nogo-66 receptor complex which inhibits neurite growth, also regulates oligodendrocyte differentiation and myelination. Current knowledge and recent findings pertaining to the functions of this interesting group of proteins in the nervous system are discussed.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Biochemistry and Programme in Neurobiology and Aging, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
31
|
Abstract
Adaptation is one of physiology's fundamental tenets, operating not only at the level of species, as Darwin proposed, but also at the level of tissues, cells, molecules and, perhaps, genes. During recent years, stroke neurobiologists have advanced a considerable body of evidence supporting the hypothesis that, with experimental coaxing, the mammalian brain can adapt to injurious insults such as cerebral ischaemia to promote cell survival in the face of subsequent injury. Establishing this protective phenotype in response to stress depends on a coordinated response at the genomic, molecular, cellular and tissue levels. Here, I summarize our current understanding of how 'preconditioning' stimuli trigger a cerebroprotective state known as cerebral 'ischaemic tolerance'.
Collapse
Affiliation(s)
- Jeffrey M Gidday
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
32
|
Gejima R, Okafuji T, Tanaka H. The LRR and Ig domain-containing membrane protein SST273 is expressed on motoneurons. Gene Expr Patterns 2006; 6:235-40. [PMID: 16378755 DOI: 10.1016/j.modgep.2005.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 08/22/2005] [Accepted: 08/26/2005] [Indexed: 01/17/2023]
Abstract
We performed signal sequence trap cDNA cloning using a cDNA library of enriched chicken embryonic spinal motoneurons and identified a novel transmembrane molecule, SST273 (Signal Sequence Trap clone 273). SST273 has five leucine-rich repeats (LRRs) and one immunoglobulin (Ig) domain in its extracellular domain. The human (KIAA1465) and mouse (BC059068) homologues of SST273 were already cloned, but had not yet been analyzed. The amino acid homologies between chick SST273 and human or mouse homologue are 52.1 and 51.5%, respectively. SST273 mRNA and its protein product were uniquely expressed in the embryonic spinal and cranial motoneurons at early developmental stages.
Collapse
Affiliation(s)
- Ryu Gejima
- Division of Developmental Neurobiology and 21st Century COE, Kumamoto University Graduate School of Medical Sciences, Honjo1-1-1, Kumamoto 860-8556, Japan
| | | | | |
Collapse
|
33
|
Guan Z, Saraswati S, Adolfsen B, Littleton JT. Genome-Wide Transcriptional Changes Associated with Enhanced Activity in the Drosophila Nervous System. Neuron 2005; 48:91-107. [PMID: 16202711 DOI: 10.1016/j.neuron.2005.08.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 04/20/2005] [Accepted: 08/24/2005] [Indexed: 11/24/2022]
Abstract
Neuronal plasticity is an important feature of the developing brain and requires neuronal circuits to reconfigure their functional connectivity depending upon activity patterns. To explore changes in neuronal function that occur downstream of altered activity, we performed an expression analysis in Drosophila mutants with acute or chronic alterations in neuronal activity. We find that seizure induction leads to an overproliferation of synaptic connections, indicating that activity-dependent neuronal rewiring occurs in Drosophila. To analyze transcriptional recoding during altered neuronal activity, we performed genome-wide DNA microarray analysis following multiple seizure induction and recovery paradigms. Approximately 250 genes implicated in cell adhesion, membrane excitability, and cellular signaling are differentially regulated, including the Kek 2 neuronal cell adhesion protein, which, as we demonstrate, functions as a regulator of synaptic growth. These data identify a collection of activity-regulated transcripts that may link changes in neuronal firing patterns to transcription-dependent modulation of brain function, including activity-dependent synaptic rewiring.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
34
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
35
|
O'Leary DDM, McLaughlin T. Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. PROGRESS IN BRAIN RESEARCH 2005; 147:43-65. [PMID: 15581697 DOI: 10.1016/s0079-6123(04)47005-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes mechanisms that control the development of retinotopic maps in the brain, focusing on work from our laboratory using as models the projection of retinal ganglion cells (RGCs) to the chick optic tectum (OT) or rodent superior colliculus (SC). The formation of a retinotopic map involves the establishment of an initial, very coarse map that subsequently undergoes large-scale remodeling to generate a refined map. All arbors are formed by interstitial branches that form in a topographically biased manner along RGC axons that overshoot their correct termination zone (TZ) along the anterior-posterior (A-P) axis of the OT/SC. The interstitial branches exhibit directed growth along the lateral-medial (L-M) axis of the OT/SC to position the branch at the topographically correct location, where it arborizes to form the TZ. EphA receptors and ephrin-A ligands control in part RGC axon mapping along the A-P axis by inhibiting branching and arborization posterior to the correct TZ. Ephrin-B1 acts bifunctionally through EphB forward signaling to direct branches along the L-M axis of the OT/SC to their topographically correct site. Computational modeling indicates that multiple graded activities are required along each axis to generate a retinotopic map, and makes several predictions, including: the progressive addition of ephrin-As within the OT/SC, due to its expression on RGC axon branches and arbors, is required to increase topographic specificity in branching and arborization as well as eliminate the initial axon overshoot, and that interactions amongst RGC axons that resemble correlated neural activity are required to drive retinotopic refinement. Analyses of mutant mice that lack early spontaneous retinal waves that correlate activity amongst neighboring RGCs, confirm this modeling prediction and show that correlated activity during an early brief critical period is required to drive the large-scale remodeling of the initially topographically coarse projection into a refined one. In summary, multiple graded guidance molecules, retinal waves and correlated spontaneous RGC activity cooperate to generate retinotopic maps.
Collapse
Affiliation(s)
- Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
36
|
Tesfaye D, Ponsuksili S, Wimmers K, Gilles M, Schellander K. A Comparative Expression Analysis of Gene Transcripts in Post-fertilization Developmental Stages of Bovine Embryos Produced in Vitro or in Vivo. Reprod Domest Anim 2004; 39:396-404. [PMID: 15598228 DOI: 10.1111/j.1439-0531.2004.00531.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was carried out to examine the temporal variation in the relative abundance of transcripts during the post-fertilization stages of bovine embryos derived from in vitro or in vivo culture. For this purpose, cumulus-oocyte complexes obtained from ovaries from slaughterhouses were matured, fertilized and cultured in vitro. The in vitro culture was carried out using CR1 medium. In vivo embryos were derived from superovulated and artificially inseminated Simmental heifers and cows. Embryos were recovered from both systems approximately at day 1 (two-cell), day 2 (four-cell), day 3 (eight-cell), day 4 (16-cell), day 5 (morula) and day 7 (blastocyst) after insemination. Relative abundance of target transcripts was performed using real-time PCR. The transcripts studied were the nucleosome assembly protein, mRNA for alivin 1, Pleckstrin homology Sec7 coiled domain, polyadenylate binding protein, NADH dehydrogenase subunit 2, high-mobility group transcription factor, cytokine-like nuclear factor, NY-REN-58 antigen mRNA, mRNA for KIAA1764 and one novel transcript. These transcripts were derived from our previous study conducted using mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR) between in vitro-produced bovine eight-, 16-cell, morula and blastocyst-stage embryos. The results of the present study have demonstrated the temporal variation in the relative abundance of these transcripts between in vitro and in vivo culture systems. Such variation in the relative abundance of transcripts during the post-fertilization developmental stages of in vitro and in vivo embryos may reflect the effect of the in vitro culture condition on the transcriptional activity thereby on the developmental competence of the resulting embryos.
Collapse
Affiliation(s)
- D Tesfaye
- Institute of Animal Breeding Science, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
37
|
Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004; 7:221-8. [PMID: 14966521 DOI: 10.1038/nn1188] [Citation(s) in RCA: 622] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 12/24/2003] [Indexed: 02/02/2023]
Abstract
Axon regeneration in the adult CNS is prevented by inhibitors in myelin. These inhibitors seem to modulate RhoA activity by binding to a receptor complex comprising a ligand-binding subunit (the Nogo-66 receptor NgR1) and a signal transducing subunit (the neurotrophin receptor p75). However, in reconstituted non-neuronal systems, NgR1 and p75 together are unable to activate RhoA, suggesting that additional components of the receptor may exist. Here we describe LINGO-1, a nervous system-specific transmembrane protein that binds NgR1 and p75 and that is an additional functional component of the NgR1/p75 signaling complex. In non-neuronal cells, coexpression of human NgR1, p75 and LINGO-1 conferred responsiveness to oligodendrocyte myelin glycoprotein, as measured by RhoA activation. A dominant-negative human LINGO-1 construct attenuated myelin inhibition in transfected primary neuronal cultures. This effect on neurons was mimicked using an exogenously added human LINGO-1-Fc fusion protein. Together these observations suggest that LINGO-1 has an important role in CNS biology.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Animals, Newborn
- Astrocytes/metabolism
- Axons/metabolism
- Base Sequence/genetics
- Cells, Cultured
- DNA, Complementary/analysis
- DNA, Complementary/genetics
- Fetus
- GPI-Linked Proteins
- Humans
- Macromolecular Substances
- Membrane Proteins/genetics
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Myelin Proteins/metabolism
- Myelin Sheath/metabolism
- Myelin-Associated Glycoprotein/genetics
- Myelin-Associated Glycoprotein/isolation & purification
- Myelin-Associated Glycoprotein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Regeneration/physiology
- Nerve Tissue Proteins
- Nogo Receptor 1
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Nerve Growth Factor
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Sha Mi
- Department of Discovery Biology, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|