1
|
Bauer CK, Kortüm F, Möllring A, Grinstein L, Denecke J, Alawi M, Bähring R, Harms FL. Loss-of-function variant in KCNH3 is associated with global developmental delay, autistic behavior, insomnia, and nocturnal seizures. Seizure 2025; 129:14-21. [PMID: 40157307 DOI: 10.1016/j.seizure.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
INTRODUCTION The KCNH gene family encodes voltage-gated potassium (Kv) channels of the EAG subtype covering three subfamilies (Kv10-12). EAG channels are involved in the control of cardiac and neuronal excitation, and pathogenic variants in KCNH genes encoding Kv10 (eag) and Kv11 (erg) subfamily members cause a broad clinical spectrum ranging from cardiac arrhythmia to neurodevelopmental syndromes. However, no pathogenic variants have been hitherto reported for KCNH genes encoding Kv12 (elk) subfamily members. METHODS Clinical, genomic, and functional studies were performed, including voltage-clamp experiments using heterologous channel expression in Xenopus oocytes. RESULTS We examined an eight-year-old girl presenting with global developmental delay, intellectual disability, autistic and aggressive behavior, hyperactivity, insomnia, and nocturnal seizures. Focal seizures were successfully treated with sulthiame, which reduced the occurrence of temporo-parietal spike-wave paroxysms. Trio exome sequencing revealed a heterozygous de novo missense variant, NM_012284.3:c.1112C>T; p.(Ala371Val), in KCNH3, which encodes the Kv channel α-subunit Kv12.2. The amino acid substitution associated with the KCNH3 variant identified in the patient is located at a site highly conserved in EAG channels. The analogous variant in KCNH2 causes long-QT-syndrome 2, and has also been associated with epilepsy. Electrophysiological characterization of the KCNH3 p.(Ala371Val) variant demonstrated loss-of-function of the mutant Kv12.2 channels and strongly reduced current amplitudes upon co-expression of wildtype and mutant channel subunits in a dominant-negative manner. CONCLUSION Our results propose KCNH3, which is primarily expressed in the nervous system, as a new disease gene associated with a neurodevelopmental phenotype including seizures.
Collapse
Affiliation(s)
- Christiane K Bauer
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Anna Möllring
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Lev Grinstein
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Robert Bähring
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Mitsutake A, Matsukawa T, Naito T, Ishiura H, Mitsui J, Harada H, Fujio K, Fujishiro J, Mori H, Morishita S, Tsuji S, Toda T. A Novel De Novo Variant in KCNH5 in a Patient with Refractory Epileptic Encephalopathy. Intern Med 2025; 64:759-762. [PMID: 39085070 PMCID: PMC11949652 DOI: 10.2169/internalmedicine.3999-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 08/02/2024] Open
Abstract
We herein report a novel de novo KCNH5 variant in a patient with refractory epileptic encephalopathy. The patient exhibited seizures at 1 year and 7 months old, which gradually worsened, leading to a bedridden status. Brain magnetic resonance imaging (MRI) showed cerebral atrophy and cerebellar hypoplasia. A trio whole-exome sequence analysis identified a de novo heterozygous c.640A>C, p.Lys214Gln variant in KCNH5 that was predicted to be deleterious. Recent studies have linked KCNH5 to various epileptic encephalopathies, with many patients showing normal MRI findings. The present case expands the clinical spectrum of the disease, as it is characterized by severe neurological prognosis, cerebral atrophy, and cerebellar hypoplasia.
Collapse
Affiliation(s)
- Akihiko Mitsutake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, International University of Health and Welfare Mita Hospital, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsuhiko Naito
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hiroaki Harada
- Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo, Japan
| | - Keishi Fujio
- Department of Rheumatology and Allergy, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
3
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
4
|
Zheng Y, Chen J. Voltage-gated potassium channels and genetic epilepsy. Front Neurol 2024; 15:1466075. [PMID: 39434833 PMCID: PMC11492950 DOI: 10.3389/fneur.2024.1466075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in exome and targeted sequencing have significantly improved the aetiological diagnosis of epilepsy, revealing an increasing number of epilepsy-related pathogenic genes. As a result, the diagnosis and treatment of epilepsy have become more accessible and more traceable. Voltage-gated potassium channels (Kv) regulate electrical excitability in neuron systems. Mutate Kv channels have been implicated in epilepsy as demonstrated in case reports and researches using gene-knockout mouse models. Both gain and loss-of-function of Kv channels lead to epilepsy with similar phenotypes through different mechanisms, bringing new challenges to the diagnosis and treatment of epilepsy. Research on genetic epilepsy is progressing rapidly, with several drug candidates targeting mutated genes or channels emerging. This article provides a brief overview of the symptoms and pathogenesis of epilepsy associated with voltage-gated potassium ion channels dysfunction and highlights recent progress in treatments. Here, we reviewed case reports of gene mutations related to epilepsy in recent years and summarized the proportion of Kv genes. Our focus is on the progress in precise treatments for specific voltage-gated potassium channel genes linked to epilepsy, including KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNH1, and KCNH5.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Yu L, Liu Y, Xia J, Feng S, Chen F. KCNH5 deletion increases autism susceptibility by regulating neuronal growth through Akt/mTOR signaling pathway. Behav Brain Res 2024; 470:115069. [PMID: 38797494 DOI: 10.1016/j.bbr.2024.115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recent clinical studies have highlighted mutations in the voltage-gated potassium channel Kv10.2 encoded by the KCNH5 gene among individuals with autism spectrum disorder (ASD). Our preliminary study found that Kv10.2 was decreased in the hippocampus of valproic acid (VPA) - induced ASD rats. Nevertheless, it is currently unclear how KCNH5 regulates autism-like features, or becomes a new target for autism treatment. We employed KCNH5 knockout (KCNH5-/-) rats and VPA - induced ASD rats in this study. Then, we used behavioral assessments, combined with electrophysiological recordings and hippocampal brain slice, to elucidate the impact of KCNH5 deletion and environmental factors on neural development and function in rats. We found that KCNH5-/- rats showed early developmental delay, neuronal overdevelopment, and abnormal electroencephalogram (EEG) signals, but did not exhibit autism-like behavior. KCNH5-/- rats exposed to VPA (KCNH5-/--VPA) exhibit even more severe autism-like behaviors and abnormal neuronal development. The absence of KCNH5 excessively enhances the activity of the Protein Kinase B (Akt)/Mechanistic Target of Rapamycin (mTOR) signaling pathway in the hippocampus of rats after exposure to VPA. Overall, our findings underscore the deficiency of KCNH5 increases the susceptibility to autism under environmental exposures, suggesting its potential utility as a target for screening and diagnosis in ASD.
Collapse
Affiliation(s)
- Lele Yu
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Yamei Liu
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Junyu Xia
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Shini Feng
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, No. 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
7
|
Huang S, Hu C, Zhong M, Li Q, Dai Y, Ma J, Qin J, Sun D. Clinical phenotypes of developmental and epileptic encephalopathy-related recurrent KCNH5 missense variant p.R327H in Chinese children. Epilepsy Behav Rep 2024; 26:100671. [PMID: 38708366 PMCID: PMC11068512 DOI: 10.1016/j.ebr.2024.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
KCNH5 gene encodes for the voltage-gated potassium channel protein Kv10.2. Here, we investigated the clinical features of developmental and epileptic encephalopathy (DEE) in five Chinese pediatric patients with a missense mutation (p.R327H) in KCNH5 gene. These patients had undergone video EEG to evaluate background features and epileptiform activity, as well as 3.0 T MRI scans for structural analysis and intelligence assessments using the Gesell Developmental Observation or Wechsler Intelligence Scale for Children. Seizure onset occurs between 4 and 10 months of age, with focal and generalized tonic-clonic seizures being common. Initial EEG findings showed multiple multifocal sharp waves, sharp slow waves or spike slow waves, and spike waves. Brain MRI revealed widened extracerebral space in only one patient. Mechanistically, the KCNH5 mutation disrupts the two hydrogen bonds between Arg327 and Asp304 residues, potentially altering the protein's structural stability and function. Almost 80 % of patients receiving add-on valproic acid (VPA) therapy experienced a reduction in epileptic seizure frequency. Altogether, this study presents the first Chinese cohort of pediatric DEE patients with the KCNH5 p.R327H mutation, highlighting focal seizures as the predominant seizure type and incomplete mutation penetrance. Add-on VPA therapy was likely effective in the early stages of DEE pathogenesis.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chunhui Hu
- Department of Neurology, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Min Zhong
- Department of Rehabilitation Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Laboratory of Translational Medicine Research, Deyang Key Laboratory of Tumor Molecular Research, Deyang, China
| | - Qinrui Li
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Yuanyuan Dai
- Department of Pediatrics, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
| | - Jiehui Ma
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
8
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
9
|
Happ HC, Sadleir LG, Zemel M, de Valles-Ibáñez G, Hildebrand MS, McConkie-Rosell A, McDonald M, May H, Sands T, Aggarwal V, Elder C, Feyma T, Bayat A, Møller RS, Fenger CD, Klint Nielsen JE, Datta AN, Gorman KM, King MD, Linhares ND, Burton BK, Paras A, Ellard S, Rankin J, Shukla A, Majethia P, Olson RJ, Muthusamy K, Schimmenti LA, Starnes K, Sedláčková L, Štěrbová K, Vlčková M, Laššuthová P, Jahodová A, Porter BE, Couque N, Colin E, Prouteau C, Collet C, Smol T, Caumes R, Vansenne F, Bisulli F, Licchetta L, Person R, Torti E, McWalter K, Webster R, Gerard EE, Lesca G, Szepetowski P, Scheffer IE, Mefford HC, Carvill GL. Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5. Neurology 2023; 100:e603-e615. [PMID: 36307226 PMCID: PMC9946193 DOI: 10.1212/wnl.0000000000201492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Heather C. Mefford
- From the Ken and Ruth Davee Department of Neurology (K.C.H., E.E.G., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; University of Otago (L.G.S.), Wellington, New Zealand; University of Washington (M.Z.), Seattle; Department of Medicine (G.d.V.-I., R.W., I.E.S.), Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Duke University Medical Center (A.M.-R., M.M.), Durham, NC; Institute for Genomic Medicine (H.M., T.S.), Columbia University Irving Medical Center, New York, NY; Departments of Pathology and Cell Biology (V.A.), and Neurology (C.E.), Columbia University Irving Medical Center, New York, NY; Gillette Children's Specialty Healthcare (T.F.), St. Paul, MN; Department of Epilepsy Genetics and Personalized Medicine (A.B., R.S.M., C.D.F.), Danish Epilepsy Center, Dianalund, Denmark; Institute of Regional Health Research (A.B., R.S.M.), University of Southern Denmark; Amplexa Genetics (C.D.F.), Odense, Denmark; Department of Clinical Medicine (J.E.K.N.), Zealand University Hospital, Roskilde, Denmark; University of British Columbia (A.N.D.), Vancouver, Canada; The Department of Neurology and Clinical Neurophysiology (K.M.G., M.D.K.), Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science (K.M.G., M.D.K.), University College Dublin, Ireland; Genuity Science (N.L.), Dublin, Ireland; Ann & Robert H. Lurie Children's Hospital of Chicago (B.K.B., A.P.), Chicago, IL; Department of Pediatrics (B.K.B., A.P., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Exeter Genomics Laboratory (S.E.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Institute of Clinical and Biomedical Science (S.E.), University of Exeter, United Kingdom; Department Clinical Genetics (J.R.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Department of Medical Genetics (A.S., P.M.), Kasturba Medical College, Manipal, Manipal Academy of Higher Education, India; Center for Individualized Medicine (R.J.O., K.M., L.A.S.), Mayo Clinic, Rochester, MN; Departments of Clinical Genomics (K.M., L.A.S.), and Neurology (K.S.), Mayo Clinic, Rochester, MN; Neurogenetic Laboratory (L.S., P.J.), Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Epilepsy Research Centre Prague—EpiReC Consortium (L.S., K.S., M.V., P.L., A.J.); Motol University Hospital is a full member of the ERN EpiCARE; Department of Pediatric Neurology (K.S., A.J.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Biology and Medical Genetics (M.V.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Stanford University School of Medicine (B.E.P.), Palo Alto, CA; Laboratoire de Biologie médicale multisites Seqoia-FMG2025 (N.C., C.C.), Laboratoire Génétique Moléculaire Robert-Debré, Paris, France; Service de Génétique (E.C., C.P.), CHU d'Angers, Angers, France; University Lille (T.S.), CHU Lille, ULR7364—RADEME, Institut de Genetique Medicale, France; University Lille (R.C.), CHU Lille, ULR7364—RADEME, Clinique de Genetique, France; Univeristy Medical Center Groningen (F.V.), Groningen, the Netherlands; Department of Biomedical and NeuroMotor Sciences (F.B.), University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.B., L.L.), Full Member of the ERN EpiCARE Bologna, Italy; GeneDx (R.P., E.T., K.M.), Gaithersburg, MD; T.Y. Nelson Department of Neurology and Neurosurgery (R.W.), Children's Hospital at Westmead, Westmead, New South Wales, Australia; Department of Medical Genetics (G.L.), University Hospital of Lyon, Claude Bernard Lyon 1 University, France; INSERM, Aix-Marseille University (P.S.), INMED, France; Department of Neurology (I.E.S.), Royal Children's Hospital, Department of Paediatrics, The University of Melbourne, and Murdoch Children's Research Institute, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Victoria, Australia; Center for Pediatric Neurological Disease Research (H.C.M.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gemma L. Carvill
- From the Ken and Ruth Davee Department of Neurology (K.C.H., E.E.G., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; University of Otago (L.G.S.), Wellington, New Zealand; University of Washington (M.Z.), Seattle; Department of Medicine (G.d.V.-I., R.W., I.E.S.), Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Duke University Medical Center (A.M.-R., M.M.), Durham, NC; Institute for Genomic Medicine (H.M., T.S.), Columbia University Irving Medical Center, New York, NY; Departments of Pathology and Cell Biology (V.A.), and Neurology (C.E.), Columbia University Irving Medical Center, New York, NY; Gillette Children's Specialty Healthcare (T.F.), St. Paul, MN; Department of Epilepsy Genetics and Personalized Medicine (A.B., R.S.M., C.D.F.), Danish Epilepsy Center, Dianalund, Denmark; Institute of Regional Health Research (A.B., R.S.M.), University of Southern Denmark; Amplexa Genetics (C.D.F.), Odense, Denmark; Department of Clinical Medicine (J.E.K.N.), Zealand University Hospital, Roskilde, Denmark; University of British Columbia (A.N.D.), Vancouver, Canada; The Department of Neurology and Clinical Neurophysiology (K.M.G., M.D.K.), Children's Health Ireland at Temple St., Dublin 1, Ireland; School of Medicine and Medical Science (K.M.G., M.D.K.), University College Dublin, Ireland; Genuity Science (N.L.), Dublin, Ireland; Ann & Robert H. Lurie Children's Hospital of Chicago (B.K.B., A.P.), Chicago, IL; Department of Pediatrics (B.K.B., A.P., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL; Exeter Genomics Laboratory (S.E.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Institute of Clinical and Biomedical Science (S.E.), University of Exeter, United Kingdom; Department Clinical Genetics (J.R.), Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom; Department of Medical Genetics (A.S., P.M.), Kasturba Medical College, Manipal, Manipal Academy of Higher Education, India; Center for Individualized Medicine (R.J.O., K.M., L.A.S.), Mayo Clinic, Rochester, MN; Departments of Clinical Genomics (K.M., L.A.S.), and Neurology (K.S.), Mayo Clinic, Rochester, MN; Neurogenetic Laboratory (L.S., P.J.), Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Epilepsy Research Centre Prague—EpiReC Consortium (L.S., K.S., M.V., P.L., A.J.); Motol University Hospital is a full member of the ERN EpiCARE; Department of Pediatric Neurology (K.S., A.J.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Biology and Medical Genetics (M.V.), Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic; Stanford University School of Medicine (B.E.P.), Palo Alto, CA; Laboratoire de Biologie médicale multisites Seqoia-FMG2025 (N.C., C.C.), Laboratoire Génétique Moléculaire Robert-Debré, Paris, France; Service de Génétique (E.C., C.P.), CHU d'Angers, Angers, France; University Lille (T.S.), CHU Lille, ULR7364—RADEME, Institut de Genetique Medicale, France; University Lille (R.C.), CHU Lille, ULR7364—RADEME, Clinique de Genetique, France; Univeristy Medical Center Groningen (F.V.), Groningen, the Netherlands; Department of Biomedical and NeuroMotor Sciences (F.B.), University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (F.B., L.L.), Full Member of the ERN EpiCARE Bologna, Italy; GeneDx (R.P., E.T., K.M.), Gaithersburg, MD; T.Y. Nelson Department of Neurology and Neurosurgery (R.W.), Children's Hospital at Westmead, Westmead, New South Wales, Australia; Department of Medical Genetics (G.L.), University Hospital of Lyon, Claude Bernard Lyon 1 University, France; INSERM, Aix-Marseille University (P.S.), INMED, France; Department of Neurology (I.E.S.), Royal Children's Hospital, Department of Paediatrics, The University of Melbourne, and Murdoch Children's Research Institute, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health (I.E.S.), Victoria, Australia; Center for Pediatric Neurological Disease Research (H.C.M.), St. Jude Children's Research Hospital, Memphis, TN; and Department of Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
10
|
Galán-Vidal J, Socuéllamos PG, Baena-Nuevo M, Contreras L, González T, Pérez-Poyato MS, Valenzuela C, González-Lamuño D, Gandarillas A. A novel loss-of-function mutation of the voltage-gated potassium channel Kv10.2 involved in epilepsy and autism. Orphanet J Rare Dis 2022; 17:345. [PMID: 36068614 PMCID: PMC9446776 DOI: 10.1186/s13023-022-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Novel developmental mutations associated with disease are a continuous challenge in medicine. Clinical consequences caused by these mutations include neuron and cognitive alterations that can lead to epilepsy or autism spectrum disorders. Often, it is difficult to identify the physiological defects and the appropriate treatments. Results We have isolated and cultured primary cells from the skin of a patient with combined epilepsy and autism syndrome. A mutation in the potassium channel protein Kv10.2 was identified. We have characterised the alteration of the mutant channel and found that it causes loss of function (LOF). Primary cells from the skin displayed a very striking growth defect and increased differentiation. In vitro treatment with various carbonic anhydrase inhibitors with various degrees of specificity for potassium channels, (Brinzolamide, Acetazolamide, Retigabine) restored the activation capacity of the mutated channel. Interestingly, the drugs also recovered in vitro the expansion capacity of the mutated skin cells. Furthermore, treatment with Acetazolamide clearly improved the patient regarding epilepsy and cognitive skills. When the treatment was temporarily halted the syndrome worsened again. Conclusions By in vitro studying primary cells from the patient and the activation capacity of the mutated protein, we could first, find a readout for the cellular defects and second, test pharmaceutical treatments that proved to be beneficial. The results show the involvement of a novel LOF mutation of a Potassium channel in autism syndrome with epilepsy and the great potential of in vitro cultures of primary cells in personalised medicine of rare diseases.
Collapse
Affiliation(s)
- Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Baena-Nuevo
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lizbeth Contreras
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Teresa González
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - María S Pérez-Poyato
- Neuropediatric, University Hospital Marqués de Valdecilla, 39008, Santander, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, IIBM, CSIC-UAM, Madrid, Spain. .,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Domingo González-Lamuño
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,Paediatric Department, University of Cantabria University, Marqués de Valdecilla Hospital, 39008, Santander, Spain.
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,INSERM, Occitanie Méditerranée, 34394, Montpellier, France.
| |
Collapse
|
11
|
Hu X, Yang J, Zhang M, Fang T, Gao Q, Liu X. Clinical Feature, Treatment, and KCNH5 Mutations in Epilepsy. Front Pediatr 2022; 10:858008. [PMID: 35874597 PMCID: PMC9301331 DOI: 10.3389/fped.2022.858008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/14/2022] [Indexed: 12/05/2022] Open
Abstract
The voltage-gated Kv10.2 potassium channel, encoded by KCNH5, is broadly expressed in mammalian tissues, including the brain. Its potential mechanism remains unclear. According to previous studies, dysfunction of Kv10.2 may be associated with epileptic encephalopathies and autism spectrum disorder (ASD). To date, only one disease-causing mutation of KCNH5 has been reported, and it involves a case that presented with seizures and autism symptoms. In this study, we discovered and characterized three de novo mutations in KCNH5 that potentially caused severe conditions observed in three Chinese children. All of them experienced seizures, two of them presented with epileptic encephalopathy, one of them presented with ASD, and one did not relapse after drug withdrawal. Notably, treatment with antiepileptic drugs (AEDs) was effective in all patients whose epileptic seizures were controlled. The structures of the proteins resulting from the mutations were predicted in two of the three cases. This provides powerful insight into clinical heterogeneity and genotype-phenotype correlation in KCNH5-related diseases.
Collapse
Affiliation(s)
- Xiufu Hu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Junli Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Man Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tie Fang
- Beijing Children's Hospital, Beijing, China
| | - Qin Gao
- Beijing MyGenostics Co., Ltd, Beijing, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Avazzadeh S, Quinlan LR, Reilly J, McDonagh K, Jalali A, Wang Y, McInerney V, Krawczyk J, Ding Y, Fitzgerald J, O'Sullivan M, Forman EB, Lynch SA, Ennis S, Feerick N, Reilly R, Li W, Shen X, Yang G, Lu Y, Peeters H, Dockery P, O'Brien T, Shen S, Gallagher L. NRXN1α +/- is associated with increased excitability in ASD iPSC-derived neurons. BMC Neurosci 2021; 22:56. [PMID: 34525970 PMCID: PMC8442436 DOI: 10.1186/s12868-021-00661-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background NRXN1 deletions are identified as one of major rare risk factors for autism spectrum disorder (ASD) and other neurodevelopmental disorders. ASD has 30% co-morbidity with epilepsy, and the latter is associated with excessive neuronal firing. NRXN1 encodes hundreds of presynaptic neuro-adhesion proteins categorized as NRXN1α/β/γ. Previous studies on cultured cells show that the short NRXN1β primarily exerts excitation effect, whereas the long NRXN1α which is more commonly deleted in patients involves in both excitation and inhibition. However, patient-derived models are essential for understanding functional consequences of NRXN1α deletions in human neurons. We recently derived induced pluripotent stem cells (iPSCs) from five controls and three ASD patients carrying NRXN1α+/- and showed increased calcium transients in patient neurons. Methods In this study we investigated the electrophysiological properties of iPSC-derived cortical neurons in control and ASD patients carrying NRXN1α+/- using patch clamping. Whole genome RNA sequencing was carried out to further understand the potential underlying molecular mechanism. Results NRXN1α+/- cortical neurons were shown to display larger sodium currents, higher AP amplitude and accelerated depolarization time. RNASeq analyses revealed transcriptomic changes with significant upregulation glutamatergic synapse and ion channels/transporter activity including voltage-gated potassium channels (GRIN1, GRIN3B, SLC17A6, CACNG3, CACNA1A, SHANK1), which are likely to couple with the increased excitability in NRXN1α+/- cortical neurons. Conclusions Together with recent evidence of increased calcium transients, our results showed that human NRXN1α+/- isoform deletions altered neuronal excitability and non-synaptic function, and NRXN1α+/- patient iPSCs may be used as an ASD model for therapeutic development with calcium transients and excitability as readouts. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00661-0.
Collapse
Affiliation(s)
- Sahar Avazzadeh
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Leo R Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, CÚRAM SFI Centre for Research in Medical Devices, National University of Ireland (NUI), Galway, Ireland
| | - Jamie Reilly
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Katya McDonagh
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | | | - Yanqin Wang
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland.,Department of Physiology, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Veronica McInerney
- HRB Clinical Research Facility, National University of Ireland (NUI), Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, Galway University Hospital, Galway, Ireland
| | - Yicheng Ding
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | | | - Matthew O'Sullivan
- Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Eva B Forman
- Children's University Hospital, Temple Street, Dublin, Ireland
| | - Sally A Lynch
- Children's University Hospital, Temple Street, Dublin, Ireland.,Department of Clinical Genetics, OLCHC, Dublin 12, Ireland
| | - Sean Ennis
- School of Medicine and Medical Science, UCD Academic Centre On Rare Diseases, University College Dublin, Dublin, Ireland
| | - Niamh Feerick
- Centre for Bioengineering, Trinity College Institute of Neuroscience, School of Medicine, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Richard Reilly
- Centre for Bioengineering, Trinity College Institute of Neuroscience, School of Medicine, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Shen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hilde Peeters
- Centre for Human Genetics, University Hospital Leuven, KU Leuven, 3000, Leuven, Belgium
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Timothy O'Brien
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland
| | - Sanbing Shen
- School of Medicine, Regenerative Medicine Institute, Biomedical Science Building BMS-1021, National University of Ireland Galway, Dangan, Ireland. .,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, D02, Ireland.
| | - Louise Gallagher
- Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Cheng P, Qiu Z, Du Y. Potassium channels and autism spectrum disorder: An overview. Int J Dev Neurosci 2021; 81:479-491. [PMID: 34008235 DOI: 10.1002/jdn.10123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted, repetitive patterns of behaviors, interests, or activities. It had been demonstrated that potassium channels played a key role in regulating neuronal excitability, which was closely associated with neurological diseases including epilepsy, ataxia, myoclonus, and psychiatric disorders. In recent years, a growing body of evidence from whole-genome sequencing and whole-exome sequencing had identified several ASD susceptibility genes of potassium channels in ASD subjects. Genetically dysfunction of potassium channels may be involved in altered neuronal excitability and abnormal brain function in the pathogenesis of ASD. This review summarizes current findings on the features of ASD-risk genes (KCND2, KCNQ2, KCNQ3, KCNH5, KCNJ2, KCNJ10, and KCNMA1) and further expatiate their potential role in the pathogenicity of ASD.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Ichise E, Chiyonobu T, Ishikawa M, Tanaka Y, Shibata M, Tozawa T, Taura Y, Yamashita S, Yoshida M, Morimoto M, Higurashi N, Yamamoto T, Okano H, Hirose S. Impaired neuronal activity and differential gene expression in STXBP1 encephalopathy patient iPSC-derived GABAergic neurons. Hum Mol Genet 2021; 30:1337-1348. [PMID: 33961044 DOI: 10.1093/hmg/ddab113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Syntaxin-binding protein 1 (STXBP1; also called MUNC18-1), encoded by STXBP1, is an essential component of the molecular machinery that controls synaptic vesicle docking and fusion. De novo pathogenic variants of STXBP1 cause a complex set of neurological disturbances, namely STXBP1 encephalopathy (STXBP1-E) that includes epilepsy, neurodevelopmental disorders and neurodegeneration. Several animal studies have suggested the contribution of GABAergic dysfunction in STXBP1-E pathogenesis. However, the pathophysiological changes in GABAergic neurons of these patients are still poorly understood. Here, we exclusively generated GABAergic neurons from STXBP1-E patient-derived induced pluripotent stem cells (iPSCs) by transient expression of the transcription factors ASCL1 and DLX2. We also generated CRISPR/Cas9-edited isogenic iPSC-derived GABAergic (iPSC GABA) neurons as controls. We demonstrated that the reduction in STXBP1 protein levels in patient-derived iPSC GABA neurons was slight (approximately 20%) compared to the control neurons, despite a 50% reduction in STXBP1 mRNA levels. Using a microelectrode array-based assay, we found that patient-derived iPSC GABA neurons exhibited dysfunctional maturation with reduced numbers of spontaneous spikes and bursts. These findings reinforce the idea that GABAergic dysfunction is a crucial contributor to STXBP1-E pathogenesis. Moreover, gene expression analysis revealed specific dysregulation of genes previously implicated in epilepsy, neurodevelopment and neurodegeneration in patient-derived iPSC GABA neurons, namely KCNH1, KCNH5, CNN3, RASGRF1, SEMA3A, SIAH3 and INPP5F. Thus, our study provides new insights for understanding the biological processes underlying the widespread neuropathological features of STXBP1-E.
Collapse
Affiliation(s)
- Eisuke Ichise
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuyoshi Tanaka
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Mami Shibata
- Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takenori Tozawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshihiro Taura
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Medical Science, School of Nursing, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
15
|
Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, Bostick CD, Beaumont MA, Williams D, Khodagholy D, Yang M, Lutz CM, Peng Y, Gelinas JN, Goldstein DB, Boland MJ, Frankel WN, Weston MC. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Cell Rep 2020; 33:108303. [PMID: 33113364 PMCID: PMC7712469 DOI: 10.1016/j.celrep.2020.108303] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - William F Tobin
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin R Cullen
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Soledad Dominguez
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Michael A Beaumont
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Axion BioSystems, Atlanta, GA 30309, USA
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10032, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Matthew C Weston
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
16
|
Liu Y, Tang Y, Yan J, Du D, Yang Y, Chen F. Deletion of Kv10.2 Causes Abnormal Dendritic Arborization and Epilepsy Susceptibility. Neurochem Res 2020; 45:2949-2958. [PMID: 33033860 DOI: 10.1007/s11064-020-03143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
The abnormal function of the voltage-gated potassium channel Kv10.2 can induce epilepsy. However, the physiological function of Kv10.2 in the central nervous system remains unclear. In this study, we found that Kv10.2 knockout (KO) increased the complexity of neurons in the CA3 subarea of hippocampus. Kv10.2 KO led to enlarged somata, elongated dendritic length, and increased the number of dendritic tips in cultured rat hippocampus neurons. Kv10.2 KO also increased Synapsin I and PSD95 protein density in cultured rat hippocampal neurons. Whole cell patch-clamp recordings of brain slices in the CA3 subarea of hippocampus revealed that Kv10.2 KO increased the amplitude of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC), depolarized the resting membrane potential and increased the action potential firing, reduced the rheobase and increased the input resistance, which results in enhanced neuronal excitability. Furthermore, we made electroencephalogram (EEG) recordings of brain activity in freely moving rats before and after inducing seizures by pentylenetetrazole (PTZ) injection. Kv10.2 KO rats dramatically increased the EEG amplitude during epilepsy. Behavioral observation after seizure induction revealed that Kv10.2 KO rats demonstrated shortened onset latency, prolonged duration, and increased seizure severity when compared with wild type rats. Therefore, this study provides a new link between Kv10.2 and neuronal morphology and higher intrinsic excitability.
Collapse
Affiliation(s)
- Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
17
|
von Wittgenstein J, Zheng F, Wittmann MT, Balta EA, Ferrazzi F, Schäffner I, Häberle BM, Valero-Aracama MJ, Koehl M, Miranda CJ, Kaspar BK, Ekici AB, Reis A, Abrous DN, Alzheimer C, Lie DC. Sox11 is an Activity-Regulated Gene with Dentate-Gyrus-Specific Expression Upon General Neural Activation. Cereb Cortex 2020; 30:3731-3743. [PMID: 32080705 DOI: 10.1093/cercor/bhz338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/21/2023] Open
Abstract
Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.
Collapse
Affiliation(s)
- Julia von Wittgenstein
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.,Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elli-Anna Balta
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Benjamin M Häberle
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Muriel Koehl
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Carlos J Miranda
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian K Kaspar
- The Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Djoher Nora Abrous
- Neurocentre Magendie U1215, INSERM and Université de Bordeaux, Bordeaux 33000, France
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - D Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
18
|
Wang ZJ, Soohoo SM, Tiwari PB, Piszczek G, Brelidze TI. Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity. J Biol Chem 2020; 295:4114-4123. [PMID: 32047112 PMCID: PMC7105296 DOI: 10.1074/jbc.ra119.012377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known whether the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance, tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG and related ERG and ELK K+ channels and places the PAS domain as a new target for drug discovery in EAG and related channels. Up-regulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises the possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Stephanie M Soohoo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, D. C., 20057
| | - Grzegorz Piszczek
- Biophysics Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., 20057.
| |
Collapse
|
19
|
Allen NM, Weckhuysen S, Gorman K, King MD, Lerche H. Genetic potassium channel-associated epilepsies: Clinical review of the K v family. Eur J Paediatr Neurol 2020; 24:105-116. [PMID: 31932120 DOI: 10.1016/j.ejpn.2019.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing has enhanced discovery of many disease-associated genes in previously unexplained epilepsies, mainly in developmental and epileptic encephalopathies and familial epilepsies. We now classify these disorders according to the underlying molecular pathways, which encompass a diverse array of cellular and sub-cellular compartments/signalling processes including voltage-gated ion-channel defects. With the aim to develop and increase the use of precision medicine therapies, understanding the pathogenic mechanisms and consequences of disease-causing variants has gained major relevance in clinical care. The super-family of voltage-gated potassium channels is the largest and most diverse family among the ion channels, encompassing approximately 80 genes. Key potassium channelopathies include those affecting the KV, KCa and Kir families, a significant proportion of which have been implicated in neurological disease. As for other ion channel disorders, different pathogenic variants within any individual voltage-gated potassium channel gene tend to affect channel protein function differently, causing heterogeneous clinical phenotypes. The focus of this review is to summarise recent clinical developments regarding the key voltage-gated potassium (KV) family-related epilepsies, which now encompasses approximately 12 established disease-associated genes, from the KCNA-, KCNB-, KCNC-, KCND-, KCNV-, KCNQ- and KCNH-subfamilies.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, National University of Ireland, Galway, Ireland; Department of Paediatrics (Neurology), Galway University Hospital, Ireland; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Kathleen Gorman
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Germany
| |
Collapse
|
20
|
Myotonia in a patient with a mutation in an S4 arginine residue associated with hypokalaemic periodic paralysis and a concomitant synonymous CLCN1 mutation. Sci Rep 2019; 9:17560. [PMID: 31772215 PMCID: PMC6879752 DOI: 10.1038/s41598-019-54041-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy.
Collapse
|
21
|
Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased Expression of Kv10.2 in the Hippocampus Attenuates Valproic Acid-Induced Autism-Like Behaviors in Rats. Neurochem Res 2019; 44:2796-2808. [DOI: 10.1007/s11064-019-02903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
|
22
|
Abstract
Ion channels play as a pivotal role in hypertension in the processes of maintenance of vascular tone and sympathetic excitement of hypertension. The Kv10.2 channel (encoded by the Kcnh5 gene) belongs to the EAG voltage-gated superfamily. It is distributed widely in the brain, such as the hippocampus, the cortex, and the olfactory bulb. To date, the expression of Kv10.2 in central nervous system nuclei that regulates cardiovascular function and its inter-relationship with hypertension are still unclear. Here, electric foot-shock stressors with noise were used to establish the stress-induced hypertensive (SIH) rat model. The expression of Kv10.2 in the rostral ventrolateral medulla, the nucleus tractus solitarius, and the paraventricular nucleus (PVN) was examined by immunohistochemical staining and western blots. The following results were obtained: (a) the expression level of Kv10.2 was increased obviously in the paraventricular nucleus of SIH rats, whereas no significant difference was found in the rostral ventrolateral medulla and the nucleus tractus solitarius. (b) Kv10.2 was located in neurons. (c) Vesicular glutamate transporter 1 as a protein mark of glutamate neurons was increased in the paraventricular nucleus of the SIH group. (d) The expression of vesicular glutamate transporter 1 protein in neurons was significantly decreased when the Kcnh5 gene was knocked down by small interfering RNA in vitro. These findings indicate that the changes in Kv10.2 may be related to SIH, which may provide a potential avenue for further investigation of SIH.
Collapse
|
23
|
Malak OA, Gluhov GS, Grizel AV, Kudryashova KS, Sokolova OS, Loussouarn G. Voltage-dependent activation in EAG channels follows a ligand-receptor rather than a mechanical-lever mechanism. J Biol Chem 2019; 294:6506-6521. [PMID: 30808709 DOI: 10.1074/jbc.ra119.007626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Ether-a-go-go family (EAG) channels play a major role in many physiological processes in humans, including cardiac repolarization and cell proliferation. Cryo-EM structures of two of them, KV10.1 and human ether-a-go-go-related gene (hERG or KV11.1), have revealed an original nondomain-swapped structure, suggesting that the mechanism of voltage-dependent gating of these two channels is quite different from the classical mechanical-lever model. Molecular aspects of hERG voltage-gating have been extensively studied, indicating that the S4-S5 linker (S4-S5L) acts as a ligand binding to the S6 gate (S6 C-terminal part, S6T) and stabilizes it in a closed state. Moreover, the N-terminal extremity of the channel, called N-Cap, has been suggested to interact with S4-S5L to modulate channel voltage-dependent gating, as N-Cap deletion drastically accelerates hERG channel deactivation. In this study, using COS-7 cells, site-directed mutagenesis, electrophysiological measurements, and immunofluorescence confocal microscopy, we addressed whether these two major mechanisms of voltage-dependent gating are conserved in KV10.2 channels. Using cysteine bridges and S4-S5L-mimicking peptides, we show that the ligand/receptor model is conserved in KV10.2, suggesting that this model is a hallmark of EAG channels. Truncation of the N-Cap domain, Per-Arnt-Sim (PAS) domain, or both in KV10.2 abolished the current and altered channel trafficking to the membrane, unlike for the hERG channel in which N-Cap and PAS domain truncations mainly affected channel deactivation. Our results suggest that EAG channels function via a conserved ligand/receptor model of voltage gating, but that the N-Cap and PAS domains have different roles in these channels.
Collapse
Affiliation(s)
- Olfat A Malak
- From the INSERM, CNRS, l'Institut du Thorax, Université de Nantes, 44007 Nantes, France
| | - Grigory S Gluhov
- the Moscow M.V. Lomonosov State University, Moscow 119234, Russia
| | - Anastasia V Grizel
- the Saint Petersburg State University, Saint Petersburg 199034, Russia, and
| | - Kseniya S Kudryashova
- the Moscow M.V. Lomonosov State University, Moscow 119234, Russia.,the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S Sokolova
- the Moscow M.V. Lomonosov State University, Moscow 119234, Russia
| | - Gildas Loussouarn
- From the INSERM, CNRS, l'Institut du Thorax, Université de Nantes, 44007 Nantes, France,
| |
Collapse
|
24
|
Abstract
Exome and targeted sequencing have revolutionized clinical diagnosis. This has been particularly striking in epilepsy and neurodevelopmental disorders, for which new genes or new variants of preexisting candidate genes are being continuously identified at increasing rates every year. A surprising finding of these efforts is the recognition that gain of function potassium channel variants are actually associated with certain types of epilepsy, such as malignant migrating partial seizures of infancy or early-onset epileptic encephalopathy. This development has been difficult to understand as traditionally potassium channel loss-of-function, not gain-of-function, has been associated with hyperexcitability disorders. In this article, we describe the current state of the field regarding the gain-of-function potassium channel variants associated with epilepsy (KCNA2, KCNB1, KCND2, KCNH1, KCNH5, KCNJ10, KCNMA1, KCNQ2, KCNQ3, and KCNT1) and speculate on the possible cellular mechanisms behind the development of seizures and epilepsy in these patients. Understanding how potassium channel gain-of-function leads to epilepsy will provide new insights into the inner working of neural circuits and aid in developing new therapies.
Collapse
Affiliation(s)
- Zachary Niday
- Dept. of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
25
|
Bauer CK, Schwarz JR. Ether-à-go-go K + channels: effective modulators of neuronal excitability. J Physiol 2018; 596:769-783. [PMID: 29333676 DOI: 10.1113/jp275477] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Mammalian ether-à-go-go (EAG) channels are voltage-gated K+ channels. They are encoded by the KCNH gene family and divided into three subfamilies, eag (Kv10), erg (eag-related gene; Kv11) and elk (eag-like; Kv12). All EAG channel subtypes are expressed in the brain where they effectively modulate neuronal excitability. This Topical Review describes the biophysical properties of each of the EAG channel subtypes, their function in neurons and the neurological diseases induced by EAG channel mutations. In contrast to the function of erg currents in the heart, where they contribute to repolarization of the cardiac action potential, erg currents in neurons are involved in the maintenance of the resting potential, setting of action potential threshold and frequency accommodation. They can even support high frequency firing by preventing a depolarization-induced Na+ channel block. EAG channels are modulated differentially, e.g. eag channels by intracellular Ca2+ , erg channels by extracellular K+ and GPCRs, and elk channels by changes in pH. So far, only currents mediated by erg channels have been recorded in neurons with the help of selective blockers. Neuronal eag and elk currents have not been isolated due to the lack of suitable channel blockers. However, findings in KO mice indicate a physiological role of eag1 currents in synaptic transmission and an involvement of elk2 currents in cognitive performance. Human eag1 and eag2 gain-of-function mutations underlie syndromes associated with epileptic seizures.
Collapse
Affiliation(s)
- Christiane K Bauer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Institute of Molecular Neurogenetics, Center of Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Deyawe A, Kasimova MA, Delemotte L, Loussouarn G, Tarek M. Studying Kv Channels Function using Computational Methods. Methods Mol Biol 2018; 1684:321-341. [PMID: 29058202 DOI: 10.1007/978-1-4939-7362-0_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In recent years, molecular modeling techniques, combined with MD simulations, provided significant insights on voltage-gated (Kv) potassium channels intrinsic properties. Among the success stories are the highlight of molecular level details of the effects of mutations, the unraveling of several metastable intermediate states, and the influence of a particular lipid, PIP2, in the stability and the modulation of Kv channel function. These computational studies offered a detailed view that could not have been reached through experimental studies alone. With the increase of cross disciplinary studies, numerous experiments provided validation of these computational results, which endows an increase in the reliability of molecular modeling for the study of Kv channels. This chapter offers a description of the main techniques used to model Kv channels at the atomistic level.
Collapse
Affiliation(s)
- Audrey Deyawe
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Marina A Kasimova
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Lucie Delemotte
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France
| | - Gildas Loussouarn
- L'institut du thorax, Inserm, CNRS, Université de Nantes, Nantes, France
| | - Mounir Tarek
- Structure et Réactivité des Systèmes Moléculaires Complexes, CNRS, Université de Lorraine, Nancy, France.
- CNRS, Unité Mixte de Recherches 7565, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
27
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
28
|
Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli. J Neurosci 2017; 36:7511-22. [PMID: 27413160 DOI: 10.1523/jneurosci.0462-16.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented. Here, using structural modeling, voltage-clamp, current-clamp, and multielectrode array recordings, we have studied a newly identified Nav1.7 mutation, Ala1632Gly, from a multigeneration family with IEM. Structural modeling suggests that Ala1632 is a molecular hinge and that the Ala1632Gly mutation may affect channel gating. Voltage-clamp recordings revealed that the Nav1.7-A1632G mutation hyperpolarizes activation and depolarizes fast-inactivation, both gain-of-function attributes at the channel level. Whole-cell current-clamp recordings demonstrated increased spontaneous firing, lower current threshold, and enhanced evoked firing in rat DRG neurons expressing Nav1.7-A1632G mutant channels. Multielectrode array recordings further revealed that intact rat DRG neurons expressing Nav1.7-A1632G mutant channels are more active than those expressing Nav1.7 WT channels. We also showed that physiologically relevant thermal stimuli markedly increase the mean firing frequencies and the number of active rat DRG neurons expressing Nav1.7-A1632G mutant channels, whereas the same thermal stimuli only increase these parameters slightly in rat DRG neurons expressing Nav1.7 WT channels. The response of DRG neurons expressing Nav1.7-A1632G mutant channels upon increase in temperature suggests a cellular basis for warmth-triggered pain in IEM. SIGNIFICANCE STATEMENT Inherited erythromelalgia (IEM), a severe pain syndrome characterized by episodes of intense burning pain triggered by warmth, is caused by mutations in sodium channel Nav1.7, which are preferentially expressed in sensory and sympathetic neurons. More than 20 gain-of-function Nav1.7 mutations have been identified from IEM patients, but the question of how warmth triggers episodes of pain in IEM has not been well addressed. Combining multielectrode array, voltage-clamp, and current-clamp recordings, we assessed a newly identified IEM mutation (Nav1.7-A1632G) from a multigeneration family. Our data demonstrate gain-of-function attributes at the channel level and differential effects of physiologically relevant thermal stimuli on the excitability of DRG neurons expressing mutant and WT Nav1.7 channels, suggesting a cellular mechanism for warmth-triggered pain episodes in IEM patients.
Collapse
|
29
|
Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology 2017; 132:20-30. [PMID: 28669899 DOI: 10.1016/j.neuropharm.2017.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/06/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Teresa Paramo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Laura Domicevica
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Ole Juul Andersen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
30
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
31
|
Han C, Yang Y, Te Morsche RH, Drenth JPH, Politei JM, Waxman SG, Dib-Hajj SD. Familial gain-of-function Na v1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry 2017; 88:233-240. [PMID: 27503742 DOI: 10.1136/jnnp-2016-313804] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Gain-of-function mutations in Nav1.9 have been identified in three families with rare heritable pain disorders, and in patients with painful small-fibre neuropathy. Identification and functional assessment of new Nav1.9 mutations will help to elucidate the phenotypic spectrum of Nav1.9 channelopathies. METHODS Patients from a large family with early-onset pain symptoms were evaluated by clinical examination and genomic screening for mutations in SCN9A and SCN11A. Electrophysiological recordings and multistate modelling analysis were implemented for functional analyses. RESULTS A novel Nav1.9 mutation, p.Arg222His, was identified in patients with early-onset pain in distal extremities including joints and gastrointestinal disturbances, but was absent from an asymptomatic blood relative. This mutation alters channel structure by substituting the highly conserved first arginine residue in transmembrane segment 4 (domain 1), the voltage sensor, with histidine. Voltage-clamp recordings demonstrate a hyperpolarising shift and acceleration of activation of the p.Arg222His mutant channel, which make it easier to open the channel. When expressed in dorsal root ganglion neurons, mutant p.Arg222His channels increase excitability via a depolarisation of resting potential and increased evoked firing. CONCLUSIONS This study expands the spectrum of heritable pain disorders linked to gain-of-function mutations in Nav1.9, strengthening human validation of this channel as a potential therapeutic target for pain.
Collapse
Affiliation(s)
- Chongyang Han
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Rene H Te Morsche
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Juan M Politei
- Department of Neurology, Fundación para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
32
|
Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, He N, Liao WP. Epilepsy-associated genes. Seizure 2016; 44:11-20. [PMID: 28007376 DOI: 10.1016/j.seizure.2016.11.030] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022] Open
Abstract
Development in genetic technology has led to the identification of an increasing number of genes associated with epilepsy. These discoveries will both provide the basis for including genetic tests in clinical practice and improve diagnosis and treatment of epilepsy. By searching through several databases (OMIM, HGMD, and EpilepsyGene) and recent publications on PubMed, we found 977 genes that are associated with epilepsy. We classified these genes into 4 categories according to the manifestation of epilepsy in phenotypes. We found 84 genes that are considered as epilepsy genes: genes that cause epilepsies or syndromes with epilepsy as the core symptom. 73 genes were listed as neurodevelopment-associated genes: genes associated with both brain-development malformations and epilepsy. Several genes (536) were epilepsy-related: genes associated with both physical or other systemic abnormalities and epilepsy or seizures. We found 284 additional genes putatively associated with epilepsy; this requires further verification. These integrated data will provide new insights useful for both including genetic tests in the clinical practice and evaluating the results of genetic tests. We also summarized the epilepsy-associated genes according to their function, with the goal to better characterize the association between genes and epilepsies and to further understand the mechanisms underlying epilepsy.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhi-Jian Lin
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Liu Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hai-Qing Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China; Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi-Wu Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Na He
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
33
|
Fukai R, Saitsu H, Tsurusaki Y, Sakai Y, Haginoya K, Takahashi K, Hubshman MW, Okamoto N, Nakashima M, Tanaka F, Miyake N, Matsumoto N. De novo KCNH1 mutations in four patients with syndromic developmental delay, hypotonia and seizures. J Hum Genet 2016; 61:381-7. [DOI: 10.1038/jhg.2016.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/26/2015] [Accepted: 01/03/2016] [Indexed: 01/05/2023]
|
34
|
Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. Mol Cell Neurosci 2016; 72:54-63. [PMID: 26784557 DOI: 10.1016/j.mcn.2016.01.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/06/2015] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
The KCNT1 gene encodes for subunits contributing to the Na(+)-activated K(+) current (KNa), expressed in many cell types. Mutations in KCNT1 have been found in patients affected with a wide spectrum of early-onset epilepsies, including Malignant Migrating Partial Seizures in Infancy (MMPSI), a severe early-onset epileptic encephalopathy characterized by pharmacoresistant focal seizures migrating from one brain region or hemisphere to another and neurodevelopment arrest or regression, resulting in profound disability. In the present study we report identification by whole exome sequencing (WES) of two de novo, heterozygous KCNT1 mutations (G288S and, not previously reported, M516V) in two unrelated MMPSI probands. Functional studies in a heterologous expression system revealed that channels formed by mutant KCNT1 subunits carried larger currents when compared to wild-type KCNT1 channels, both as homo- and heteromers with these last. Both mutations induced a marked leftward shift in homomeric channel activation gating. Interestingly, the KCNT1 blockers quinidine (3-1000μM) and bepridil (0.03-10μM) inhibited both wild-type and mutant KCNT1 currents in a concentration-dependent manner, with mutant channels showing higher sensitivity to blockade. This latter result suggests two genotype-tailored pharmacological strategies to specifically counteract the dysfunction of KCNT1 activating mutations in MMPSI patients.
Collapse
|
35
|
Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. ACTA ACUST UNITED AC 2015; 218:526-36. [PMID: 25696816 DOI: 10.1242/jeb.110080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexandra S Martinson
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Layden
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Fortunay H Diatta
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Anna P Sberna
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - David K Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32136, USA
| | - Timothy J Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
37
|
Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 2015; 35:3782-93. [PMID: 25740509 DOI: 10.1523/jneurosci.4423-14.2015] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms.
Collapse
|
38
|
Kortüm F, Caputo V, Bauer CK, Stella L, Ciolfi A, Alawi M, Bocchinfuso G, Flex E, Paolacci S, Dentici ML, Grammatico P, Korenke GC, Leuzzi V, Mowat D, Nair LDV, Nguyen TTM, Thierry P, White SM, Dallapiccola B, Pizzuti A, Campeau PM, Tartaglia M, Kutsche K. Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat Genet 2015; 47:661-7. [DOI: 10.1038/ng.3282] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022]
|
39
|
Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain. J Neurosci 2015; 34:12328-40. [PMID: 25209274 DOI: 10.1523/jneurosci.2773-14.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain.
Collapse
|