1
|
Michalczyk Ł. Fixation offset decreases manual inhibition of return (IOR) in detection and discrimination tasks. Q J Exp Psychol (Hove) 2025; 78:594-603. [PMID: 38459611 DOI: 10.1177/17470218241240978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Attention can be covertly shifted to peripheral stimuli to improve their processing. However, attention is also then inhibited against returning to the previously attended location; thus, both detection and discrimination of a stimulus presented at that location decrease (the inhibition of return [IOR] effect). The after-effect of the covert orienting hypothesis postulates a close link between attention shifting, IOR, and oculomotor control. The fixation offset, which improves the generation of saccades, decreases IOR in detection tasks, suggesting a close link between IOR and oculomotor control. However, according to some alternative views (e.g., the input-based IOR hypothesis and the object files segregation/integration hypothesis), IOR may be related to some sensory rather than motor processes. Some studies support that view and show that IOR may occur differently in detection and discrimination tasks and that oculomotor processes do not affect IOR in tasks where manual responses are required and eye movements are suppressed. Two experiments presented in this article show that removing the fixation point decreases manual IOR in detection and discrimination tasks. The results are discussed in terms of various theoretical approaches.
Collapse
Affiliation(s)
- Łukasz Michalczyk
- Institute of Psychology, Ignatianum University in Cracow, Krakow, Poland
| |
Collapse
|
2
|
Peysakhovich B, Zhu O, Tetrick SM, Shirhatti V, Silva AA, Li S, Ibos G, Rosen MC, Johnston WJ, Freedman DJ. Primate superior colliculus is causally engaged in abstract higher-order cognition. Nat Neurosci 2024; 27:1999-2008. [PMID: 39300307 PMCID: PMC12068555 DOI: 10.1038/s41593-024-01744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
The superior colliculus is an evolutionarily conserved midbrain region that is thought to mediate spatial orienting, including saccadic eye movements and covert spatial attention. Here, we reveal a role for the superior colliculus in higher-order cognition, independent of its role in spatial orienting. We trained rhesus macaques to perform an abstract visual categorization task that involved neither instructed eye movements nor differences in covert attention. We compared neural activity in the superior colliculus and the posterior parietal cortex, a region previously shown to causally contribute to abstract category decisions. The superior colliculus exhibits robust encoding of learned visual categories, which is stronger than in the posterior parietal cortex and arises at a similar latency in the two areas. Moreover, inactivation of the superior colliculus markedly impaired animals' category decisions. These results demonstrate that the primate superior colliculus mediates abstract, higher-order cognitive processes that have traditionally been attributed to the neocortex.
Collapse
Affiliation(s)
| | - Ou Zhu
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Vinay Shirhatti
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Guilhem Ibos
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
- Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS, Marseille, France
| | - Matthew C Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | | | - David J Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Michalczyk Ł. Fixation offset decreases pupillary inhibition of return. Brain Cogn 2023; 170:106058. [PMID: 37390691 DOI: 10.1016/j.bandc.2023.106058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Inhibition of return (IOR) is reflected as a slower manual or saccadic response to a cued rather than an uncued target (manual IOR and saccadic IOR, respectively), and as a pupillary dilation when a bright, relative to a dark side of a display is cued (pupillary IOR). The aim of this study was to investigate the relation between an IOR and oculomotor system. According to the predominant view, only the saccadic IOR is strictly related to the visuomotor process, and the manual and pupillary IORs depend on non-motor factors (e.g., short-term visual depression). Alternatively, the after-effect of the covert-orienting hypothesis postulates that IOR is strictly related to the oculomotor system. As fixation offset affects oculomotor processes, this study investigated whether fixation offset also affects pupillary and manual IORs. The results show that fixation offset decreased IOR in pupillary but not manual responses, and provides support for the hypothesis that at least the pupillary IOR is tightly linked to eye movement preparation.
Collapse
Affiliation(s)
- Łukasz Michalczyk
- Institute of Psychology, Jesuit University Ignatianum in Krakow, Krakow, Poland.
| |
Collapse
|
4
|
Peysakhovich B, Tetrick SM, Silva AA, Li S, Zhu O, Ibos G, Johnston WJ, Freedman DJ. Primate superior colliculus is engaged in abstract higher-order cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524416. [PMID: 36711713 PMCID: PMC9882166 DOI: 10.1101/2023.01.17.524416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Categorization is a fundamental cognitive process by which the brain assigns stimuli to behaviorally meaningful groups. Investigations of visual categorization in primates have identified a hierarchy of cortical areas that are involved in the transformation of sensory information into abstract category representations. However, categorization behaviors are ubiquitous across diverse animal species, even those without a neocortex, motivating the possibility that subcortical regions may contribute to abstract cognition in primates. One candidate structure is the superior colliculus (SC), an evolutionarily conserved midbrain region that, although traditionally thought to mediate only reflexive spatial orienting, is involved in cognitive tasks that require spatial orienting. Here, we reveal a novel role of the primate SC in abstract, higher-order visual cognition. We compared neural activity in the SC and the posterior parietal cortex (PPC), a region previously shown to causally contribute to category decisions, while monkeys performed a visual categorization task in which they report their decisions with a hand movement. The SC exhibits stronger and shorter-latency category encoding than the PPC, and inactivation of the SC markedly impairs monkeys' category decisions. These results extend SC's established role in spatial orienting to abstract, non-spatial cognition.
Collapse
|
5
|
Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-subcortical interactions in goal-directed behavior. Physiol Rev 2023; 103:347-389. [PMID: 35771984 PMCID: PMC9576171 DOI: 10.1152/physrev.00048.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022] Open
Abstract
Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.
Collapse
Affiliation(s)
- K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Ning Leow
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nhat Minh Le
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rafiq Huda
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Sawant Y, Kundu JN, Radhakrishnan VB, Sridharan D. A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection. J Neurosci 2022; 42:8262-8283. [PMID: 36123120 PMCID: PMC9653281 DOI: 10.1523/jneurosci.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a "midbrain attention network." We deployed the st-RNN in a challenging change blindness task, in which changes must be detected in a discontinuous sequence of images. Compared with a conventional RNN, the st-RNN learned 9x faster and achieved state-of-the-art performance with 15x fewer connections. An analysis of low-dimensional dynamics revealed putative circuit mechanisms, including a critical role for a global inhibitory (GI) motif, for successful change detection. The model reproduced key experimental phenomena, including midbrain neurons' sensitivity to dynamic stimuli, neural signatures of stimulus competition, as well as hallmark behavioral effects of midbrain microstimulation. Finally, the model accurately predicted human gaze fixations in a change blindness experiment, surpassing state-of-the-art saliency-based methods. The st-RNN provides a novel deep learning model for linking neural computations underlying change detection with psychophysical mechanisms.SIGNIFICANCE STATEMENT For adaptive survival, our brains must be able to accurately and rapidly detect changing aspects of our visual world. We present a novel deep learning model, a sparse, topographic recurrent neural network (st-RNN), that mimics the neuroanatomy of an evolutionarily conserved "midbrain attention network." The st-RNN achieved robust change detection in challenging change blindness tasks, outperforming conventional RNN architectures. The model also reproduced hallmark experimental phenomena, both neural and behavioral, reported in seminal midbrain studies. Lastly, the st-RNN outperformed state-of-the-art models at predicting human gaze fixations in a laboratory change blindness experiment. Our deep learning model may provide important clues about key mechanisms by which the brain efficiently detects changes.
Collapse
Affiliation(s)
- Yash Sawant
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Jogendra Nath Kundu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | | | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
- Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Spatially Specific Working Memory Activity in the Human Superior Colliculus. J Neurosci 2020; 40:9487-9495. [PMID: 33115927 PMCID: PMC7724141 DOI: 10.1523/jneurosci.2016-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022] Open
Abstract
Theoretically, working memory (WM) representations are encoded by population activity of neurons with distributed tuning across the stored feature. Here, we leverage computational neuroimaging approaches to map the topographic organization of human superior colliculus (SC) and model how population activity in SC encodes WM representations. We first modeled receptive field properties of voxels in SC, deriving a detailed topographic organization resembling that of the primate SC. Neural activity within human (5 male and 1 female) SC persisted throughout a retention interval of several types of modified memory-guided saccade tasks. Assuming an underlying neural architecture of the SC based on its retinotopic organization, we used an encoding model to show that the pattern of activity in human SC represents locations stored in WM. Our tasks and models allowed us to dissociate the locations of visual targets and the motor metrics of memory-guided saccades from the spatial locations stored in WM, thus confirming that human SC represents true WM information. These data have several important implications. They add the SC to a growing number of cortical and subcortical brain areas that form distributed networks supporting WM functions. Moreover, they specify a clear neural mechanism by which topographically organized SC encodes WM representations. SIGNIFICANCE STATEMENT Using computational neuroimaging approaches, we mapped the topographic organization of human superior colliculus (SC) and modeled how population activity in SC encodes working memory (WM) representations, rather than simpler visual or motor properties that have been traditionally associated with the laminar maps in the primate SC. Together, these data both position the human SC into a distributed network of brain areas supporting WM and elucidate the neural mechanisms by which the SC supports WM.
Collapse
|
10
|
Gharaei S, Honnuraiah S, Arabzadeh E, Stuart GJ. Superior colliculus modulates cortical coding of somatosensory information. Nat Commun 2020; 11:1693. [PMID: 32245963 PMCID: PMC7125203 DOI: 10.1038/s41467-020-15443-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/02/2020] [Indexed: 12/05/2022] Open
Abstract
The cortex modulates activity in superior colliculus via a direct projection. What is largely unknown is whether (and if so how) the superior colliculus modulates activity in the cortex. Here, we investigate this issue and show that optogenetic activation of superior colliculus changes the input-output relationship of neurons in somatosensory cortex, enhancing responses to low amplitude whisker deflections. While there is no direct pathway from superior colliculus to somatosensory cortex, we found that activation of superior colliculus drives spiking in the posterior medial (POm) nucleus of the thalamus via a powerful monosynaptic pathway. Furthermore, POm neurons receiving input from superior colliculus provide monosynaptic excitatory input to somatosensory cortex. Silencing POm abolished the capacity of superior colliculus to modulate cortical whisker responses. Our findings indicate that the superior colliculus, which plays a key role in attention, modulates sensory processing in somatosensory cortex via a powerful di-synaptic pathway through the thalamus.
Collapse
Affiliation(s)
- Saba Gharaei
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia.
| | - Suraj Honnuraiah
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT, Australia.
| |
Collapse
|
11
|
Herman JP, Katz LN, Krauzlis RJ. Midbrain activity can explain perceptual decisions during an attention task. Nat Neurosci 2018; 21:1651-1655. [PMID: 30482945 PMCID: PMC6324183 DOI: 10.1038/s41593-018-0271-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022]
Abstract
We introduce a decision model that interprets the relative levels of moment-by-moment spiking activity from the right and left superior colliculus to distinguish relevant from irrelevant stimulus events. The model explains detection performance in a covert attention task, both in intact animals and when performance is perturbed by causal manipulations. This provides a specific example of how midbrain activity could support perceptual judgments during attention tasks.
Collapse
Affiliation(s)
- James P Herman
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Leor N Katz
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
12
|
Bogadhi AR, Bollimunta A, Leopold DA, Krauzlis RJ. Brain regions modulated during covert visual attention in the macaque. Sci Rep 2018; 8:15237. [PMID: 30323289 PMCID: PMC6189039 DOI: 10.1038/s41598-018-33567-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022] Open
Abstract
Neurophysiological studies of covert visual attention in monkeys have emphasized the modulation of sensory neural responses in the visual cortex. At the same time, electrophysiological correlates of attention have been reported in other cortical and subcortical structures, and recent fMRI studies have identified regions across the brain modulated by attention. Here we used fMRI in two monkeys performing covert attention tasks to reproduce and extend these findings in order to help establish a more complete list of brain structures involved in the control of attention. As expected from previous studies, we found attention-related modulation in frontal, parietal and visual cortical areas as well as the superior colliculus and pulvinar. We also found significant attention-related modulation in cortical regions not traditionally linked to attention - mid-STS areas (anterior FST and parts of IPa, PGa, TPO), as well as the caudate nucleus. A control experiment using a second-order orientation stimulus showed that the observed modulation in a subset of these mid-STS areas did not depend on visual motion. These results identify the mid-STS areas (anterior FST and parts of IPa, PGa, TPO) and caudate nucleus as potentially important brain regions in the control of covert visual attention in monkeys.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
13
|
Abstract
The superior colliculus is one of the most well-studied structures in the brain, and with each new report, its proposed role in behavior seems to increase in complexity. Forty years of evidence show that the colliculus is critical for reorienting an organism toward objects of interest. In monkeys, this involves saccadic eye movements. Recent work in the monkey colliculus and in the homologous optic tectum of the bird extends our understanding of the role of the colliculus in higher mental functions, such as attention and decision making. In this review, we highlight some of these recent results, as well as those capitalizing on circuit-based methodologies using transgenic mice models, to understand the contribution of the colliculus to attention and decision making. The wealth of information we have about the colliculus, together with new tools, provides a unique opportunity to obtain a detailed accounting of the neurons, circuits, and computations that underlie complex behavior.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095;
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
14
|
Suriya-Arunroj L, Gail A. I Plan Therefore I Choose: Free-Choice Bias Due to Prior Action-Probability but Not Action-Value. Front Behav Neurosci 2015; 9:315. [PMID: 26635565 PMCID: PMC4658425 DOI: 10.3389/fnbeh.2015.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/06/2015] [Indexed: 11/24/2022] Open
Abstract
According to an emerging view, decision-making, and motor planning are tightly entangled at the level of neural processing. Choice is influenced not only by the values associated with different options, but also biased by other factors. Here we test the hypothesis that preliminary action planning can induce choice biases gradually and independently of objective value when planning overlaps with one of the potential action alternatives. Subjects performed center-out reaches obeying either a clockwise or counterclockwise cue-response rule in two tasks. In the probabilistic task, a pre-cue indicated the probability of each of the two potential rules to become valid. When the subsequent rule-cue unambiguously indicated which of the pre-cued rules was actually valid (instructed trials), subjects responded faster to rules pre-cued with higher probability. When subjects were allowed to choose freely between two equally rewarded rules (choice trials) they chose the originally more likely rule more often and faster, despite the lack of an objective advantage in selecting this target. In the amount task, the pre-cue indicated the amount of potential reward associated with each rule. Subjects responded faster to rules pre-cued with higher reward amount in instructed trials of the amount task, equivalent to the more likely rule in the probabilistic task. Yet, in contrast, subjects showed hardly any choice bias and no increase in response speed in favor of the original high-reward target in the choice trials of the amount task. We conclude that free-choice behavior is robustly biased when predictability encourages the planning of one of the potential responses, while prior reward expectations without action planning do not induce such strong bias. Our results provide behavioral evidence for distinct contributions of expected value and action planning in decision-making and a tight interdependence of motor planning and action selection, supporting the idea that the underlying neural mechanisms overlap.
Collapse
Affiliation(s)
| | - Alexander Gail
- Sensorimotor Group, German Primate Center Göttingen, Germany ; Bernstein Center for Computational Neuroscience Göttingen, Germany ; Faculty of Biology and Psychology, Georg-Elias-Müller Institute, Georg August University Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Advances on several fronts have refined our understanding of the neuronal mechanisms of attention. This review focuses on recent progress in understanding visual attention through single-neuron recordings made in behaving subjects. Simultaneous recordings from populations of individual cells have shown that attention is associated with changes in the correlated firing of neurons that can enhance the quality of sensory representations. Other work has shown that sensory normalization mechanisms are important for explaining many aspects of how visual representations change with attention, and these mechanisms must be taken into account when evaluating attention-related neuronal modulations. Studies comparing different brain structures suggest that attention is composed of several cognitive processes, which might be controlled by different brain regions. Collectively, these and other recent findings provide a clearer picture of how representations in the visual system change when attention shifts from one target to another.
Collapse
Affiliation(s)
- John H R Maunsell
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
16
|
Clark K, Squire RF, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 2015; 132:59-80. [PMID: 26159708 DOI: 10.1016/j.pneurobio.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.
Collapse
Affiliation(s)
- Kelsey Clark
- Montana State University, Bozeman, MT, United States
| | - Ryan Fox Squire
- Stanford University, Stanford, CA, United States; Lumos Labs, San Francisco, CA, United States
| | - Yaser Merrikhi
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
17
|
Rangelov D, Müller HJ, Taylor PCJ. Occipital TMS at phosphene detection threshold captures attention automatically. Neuroimage 2015; 109:199-205. [PMID: 25600634 DOI: 10.1016/j.neuroimage.2015.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/06/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022] Open
Abstract
Strong stimuli may capture attention automatically, suggesting that attentional selection is determined primarily by physical stimulus properties. The mechanisms underlying capture remain controversial, in particular, whether feedforward subcortical processes are its main source. Also, it remains unclear whether only physical stimulus properties determine capture strength. Here, we demonstrate strong capture in the absence of feedforward input to subcortical structures such as the superior colliculus, by using transcranial magnetic stimulation (TMS) over occipital visual cortex as an attention cue. This implies that the feedforward sweep through subcortex is not necessary for capture to occur but rather provides an additional source of capture. Furthermore, seen cues captured attention more strongly than (physically identical) unseen cues, suggesting that the momentary state of the nervous system modulates attentional selection. In summary, we demonstrate the existence of several sources of attentional capture, and that both physical stimulus properties and the state of the nervous system influence capture.
Collapse
Affiliation(s)
- Dragan Rangelov
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopolstr. 13, München DE-80802, Germany.
| | - Hermann J Müller
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopolstr. 13, München DE-80802, Germany; Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Paul C J Taylor
- Department of Psychology, Ludwig-Maximilians-Universität München, Leopolstr. 13, München DE-80802, Germany
| |
Collapse
|
18
|
Endogenous attention signals evoked by threshold contrast detection in human superior colliculus. J Neurosci 2014; 34:892-900. [PMID: 24431447 DOI: 10.1523/jneurosci.3026-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human superior colliculus (SC) responds in a retinotopically selective manner when attention is deployed on a high-contrast visual stimulus using a discrimination task. To further elucidate the role of SC in endogenous visual attention, high-resolution fMRI was used to demonstrate that SC also exhibits a retinotopically selective response for covert attention in the absence of significant visual stimulation using a threshold-contrast detection task. SC neurons have a laminar organization according to their function, with visually responsive neurons present in the superficial layers and visuomotor neurons in the intermediate layers. The results show that the response evoked by the threshold-contrast detection task is significantly deeper than the response evoked by the high-contrast speed discrimination task, reflecting a functional dissociation of the attentional enhancement of visuomotor and visual neurons, respectively. Such a functional dissociation of attention within SC laminae provides a subcortical basis for the oculomotor theory of attention.
Collapse
|
19
|
Gattass R, Desimone R. Effect of microstimulation of the superior colliculus on visual space attention. J Cogn Neurosci 2014; 26:1208-19. [PMID: 24456396 DOI: 10.1162/jocn_a_00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We investigated the effect of microstimulation of the superficial layers of the superior colliculus (SC) on the performance of animals in a peripheral detection paradigm while maintaining fixation. In a matching-to-sample paradigm, a sample stimulus was presented at one location followed by a brief test stimulus at that (relevant) location and a distractor at another (irrelevant) location. While maintaining fixation, the monkey indicated whether the sample and the test stimulus matched, ignoring the distractor. The relevant and irrelevant locations were switched from trial to trial. Cells in the superficial layers of SC gave enhanced responses when the attended test stimulus was inside the receptive field compared with when the (physically identical) distractor was inside the field. These effects were found only in an "automatic" attentional cueing paradigm, in which a peripheral stimulus explicitly cued the animal as to the relevant location in the receptive field. No attentional effects were found with block of trials. The transient enhancement to the attended stimulus was observed at the onset and not at the offset of the stimulus. Electrical stimulation at the site corresponding to the irrelevant distractor location in the SC causes it to gain control over attention, causing impaired performance of the task at the relevant location. Stimulation at unattended sites without the presence of a distractor stimulus causes little or no impairment in performance. The effect of stimulation decays with successive stimulations. The animals learn to ignore the stimulation unless the parameters of the task are varied.
Collapse
|
20
|
Pastukhov A, Vonau V, Stonkute S, Braun J. Spatial and temporal attention revealed by microsaccades. Vision Res 2013; 85:45-57. [DOI: 10.1016/j.visres.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 11/01/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
|
21
|
Abstract
The superior colliculus (SC) has long been known to be part of the network of brain areas involved in spatial attention, but recent findings have dramatically refined our understanding of its functional role. The SC both implements the motor consequences of attention and plays a crucial role in the process of target selection that precedes movement. Moreover, even in the absence of overt orienting movements, SC activity is related to shifts of covert attention and is necessary for the normal control of spatial attention during perceptual judgments. The neuronal circuits that link the SC to spatial attention may include attention-related areas of the cerebral cortex, but recent results show that the SC's contribution involves mechanisms that operate independently of the established signatures of attention in visual cortex. These findings raise new issues and suggest novel possibilities for understanding the brain mechanisms that enable spatial attention.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
Berger T, Song D, Chan R, Shin D, Marmarelis V, Hampson R, Sweatt A, Heck C, Liu C, Wills J, Lacoss J, Granacki J, Gerhardt G, Deadwyler S. Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. IEEE Pulse 2012; 3:17-22. [PMID: 23014702 DOI: 10.1109/mpul.2012.2205775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Remind, which stands for "restorative encoding memory integration neural device," is a Defense Advanced Research Projects Agency (DARPA)-sponsored program to construct the first-ever cognitive prosthesis to replace lost memory function and enhance the existing memory capacity in animals and, ultimately, in humans. Reaching this goal involves understanding something fundamental about the brain that has not been understood previously: how the brain internally codes memories. In developing a hippocampal prosthesis for the rat, we have been able to demonstrate a multiple-input, multiple- output (MIMO) nonlinear model that predicts in real time the spatiotemporal codes for specific memories required for correct performance on a standard learning/memory task, i.e., delayed-nonmatch-to-sample (DNMS) memory. The MIMO model has been tested successfully in a number of contexts; most notably, in animals with a pharmacologically disabled hippocampus, we were able to reinstate long-term memories necessary for correct DNMS behavior by substituting a MIMO model-predicted code, delivered by electrical stimulation to the hippocampus through an array of electrodes, resulting in spatiotemporal hippocampal activity that is normally generated endogenously. We also have shown that delivering the same model-predicted code to electrode-implanted control animals with a normally functioning hippocampus substantially enhances animals memory capacity above control levels. These results in rodents have formed the basis for extending the MIMO model to nonhuman primates; this is now underway as the last step of the REMIND program before developing a MIMO-based cognitive prosthesis for humans.
Collapse
Affiliation(s)
- Theodore Berger
- Department of Biomedical Engineering, Center for Neural Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hampson RE, Song D, Chan RH, Sweatt AJ, Riley MR, Goonawardena AV, Marmarelis VZ, Gerhardt GA, Berger TW, Deadwyler SA. Closing the loop for memory prosthesis: detecting the role of hippocampal neural ensembles using nonlinear models. IEEE Trans Neural Syst Rehabil Eng 2012; 20:510-25. [PMID: 22498704 PMCID: PMC3395725 DOI: 10.1109/tnsre.2012.2190942] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatio-temporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the "strength" of stimulus encoding. The significance of the MIMO model as a neural prosthesis has been demonstrated by substituting trains of electrical stimulation pulses to mimic these same ensemble firing patterns. This feature was used repeatedly to vary "normal" encoding as a means of understanding how neural ensembles can be "tuned" to mimic the inherent process of selecting codes of different strength and functional specificity. The capacity to enhance and tune hippocampal encoding via MIMO model detection and insertion of critical ensemble firing patterns shown here provides the basis for possible extension to other disrupted brain circuitry.
Collapse
Affiliation(s)
- Robert E. Hampson
- Department of Physiology of Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Dong Song
- Department of Biomedical Engineering, Viterbi School of Engineering, and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA USA ( )
| | - Rosa H.M. Chan
- Department of Biomedical Engineering, Viterbi School of Engineering, and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA USA ( )
| | - Andrew J. Sweatt
- Department of Physiology of Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mitchell R. Riley
- Department of Physiology of Wake Forest School of Medicine, Winston-Salem, NC 27157
| | | | - Vasilis Z. Marmarelis
- Department of Biomedical Engineering, Viterbi School of Engineering, and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA USA ( )
| | - Greg A. Gerhardt
- Center for Microelectrode Technology, University of Kentucky, Lexington, KY, USA ( )
| | - Theodore W. Berger
- Department of Biomedical Engineering, Viterbi School of Engineering, and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA USA ( )
| | - Sam A. Deadwyler
- Department of Physiology of Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
24
|
Histed MH, Ni AM, Maunsell JHR. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol 2012; 103:115-30. [PMID: 22307059 DOI: 10.1016/j.pneurobio.2012.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 11/15/2022]
Abstract
Even the simplest behaviors depend on a large number of neurons that are distributed across many brain regions. Because electrical microstimulation can change the activity of localized subsets of neurons, it has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review what has been learned about cortical function from behavioral studies using microstimulation in animals and humans. Experiments that examine how microstimulation affects the perception of stimuli have shown that the effects of microstimulation are usually highly specific and can be related to the stimuli preferred by neurons at the stimulated site. Experiments that ask subjects to detect cortical microstimulation in the absence of other stimuli have provided further insights. Although subjects typically can detect microstimulation of primary sensory or motor cortex, they are generally unable to detect stimulation of most of cortex without extensive practice. With practice, however, stimulation of any part of cortex can become detected. These training effects suggest that some patterns of cortical activity cannot be readily accessed to guide behavior, but that the adult brain retains enough plasticity to learn to process novel patterns of neuronal activity arising anywhere in cortex.
Collapse
Affiliation(s)
- Mark H Histed
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Hampson RE, Marmaralis V, Shin DC, Gerhardt GA, Song D, Chan RHM, Sweatt AJ, Granacki J, Berger TW, Deadwyler SA. Restorative encoding memory integrative neural device: "REMIND". ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3338-41. [PMID: 22255054 DOI: 10.1109/iembs.2011.6090905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Construction and application of a neural prosthesis device that enhances existing and replaces lost memory capacity in humans is the focus of research described here in rodents. A unique approach for the analysis and application of neural population firing has been developed to decipher the pattern in which information is successfully encoded by the hippocampus where mnemonic accuracy is critical. A nonlinear dynamic multi-input multi-output (MIMO) model is utilized to extract memory relevant firing patterns in CA3 and CA1 and to predict online what the consequences of the encoded firing patterns reflect for subsequent information retrieval for successful performance of delayed-nonmatch-to-sample (DNMS) memory task in rodents. The MIMO model has been tested successfully in a number of different contexts, each of which produced improved performance by a) utilizing online predicted codes to regulate task difficulty, b) employing electrical stimulation of CA1 output areas in the same pattern as successful cell firing, c) employing electrical stimulation to recover cell firing compromised by pharmacological agents and d) transferring and improving performance in naïve animals using the same stimulation patterns that are effective in fully trained animals. The results in rodents formed the basis for extension of the MIMO model to nonhuman primates in the same type of memory task that is now being tested in the last step prior to its application in humans.
Collapse
Affiliation(s)
- R E Hampson
- Department of Physiology of Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Microsaccades are small eye movements that occur during gaze fixation. Although taking place only when we attempt to stabilize gaze position, microsaccades can be understood by relating them to the larger voluntary saccades, which abruptly shift gaze position. Starting from this approach to microsaccade analysis, I show how it can lead to significant insight about the generation and functional role of these eye movements. Like larger saccades, microsaccades are now known to be generated by brainstem structures involved not only in compiling motor commands for eye movements, but also in identifying and selecting salient target locations in the visual environment. In addition, these small eye movements both influence and are influenced by sensory and cognitive processes in various areas of the brain, and in a manner that is similar to the interactions between larger saccades and sensory or cognitive processes. By approaching the study of microsaccades from the perspective of what has been learned about their larger counterparts, we are now in a position to make greater strides in our understanding of the function of the smallest possible saccadic eye movements.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Paul Ehrlich Str. 17, Tuebingen 72076, Germany.
| |
Collapse
|
27
|
Zirnsak M, Beuth F, Hamker FH. Split of spatial attention as predicted by a systems-level model of visual attention. Eur J Neurosci 2011; 33:2035-45. [PMID: 21645099 DOI: 10.1111/j.1460-9568.2011.07718.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1-11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403-423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade-related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems-level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.
Collapse
Affiliation(s)
- Marc Zirnsak
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
28
|
Cohen MR, Maunsell JHR. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron 2011; 70:1192-204. [PMID: 21689604 DOI: 10.1016/j.neuron.2011.04.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and nonspatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can comodulate local neuronal populations, whereas feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, whereas spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons.
Collapse
Affiliation(s)
- Marlene R Cohen
- Harvard Medical School Department of Neurobiology and Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Mysore SP, Knudsen EI. The role of a midbrain network in competitive stimulus selection. Curr Opin Neurobiol 2011; 21:653-60. [PMID: 21696945 PMCID: PMC3177965 DOI: 10.1016/j.conb.2011.05.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/29/2011] [Accepted: 05/24/2011] [Indexed: 12/11/2022]
Abstract
A midbrain network interacts with the well-known frontoparietal forebrain network to select stimuli for gaze and spatial attention. The midbrain network, containing the superior colliculus (SC; optic tectum, OT, in non-mammalian vertebrates) and the isthmic nuclei, helps evaluate the relative priorities of competing stimuli and encodes them in a topographic map of space. Behavioral experiments in monkeys demonstrate an essential contribution of the SC to stimulus selection when the relative priorities of competing stimuli are similar. Neurophysiological results from the owl OT demonstrate a neural correlate of this essential contribution of the SC/OT. The multi-layered, spatiotopic organization of the midbrain network lends itself to the analysis and modeling of the mechanisms underlying stimulus selection for gaze and spatial attention.
Collapse
Affiliation(s)
- Shreesh P Mysore
- 299 W Campus Drive, Department of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| | | |
Collapse
|
30
|
Abstract
Essential to the selection of the next target for gaze or attention is the ability to compare the strengths of multiple competing stimuli (bottom-up information) and to signal the strongest one. Although the optic tectum (OT) has been causally implicated in stimulus selection, how it computes the strongest stimulus is unknown. Here, we demonstrate that OT neurons in the barn owl systematically encode the relative strengths of simultaneously occurring stimuli independently of sensory modality. Moreover, special "switch-like" responses of a subset of neurons abruptly increase when the stimulus inside their receptive field becomes the strongest one. Such responses are not predicted by responses to single stimuli and, indeed, are eliminated in the absence of competitive interactions. We demonstrate that this sensory transformation substantially boosts the representation of the strongest stimulus by creating a binary discrimination signal, thereby setting the stage for potential winner-take-all target selection for gaze and attention.
Collapse
|
31
|
Souto D, Kerzel D. Attentional constraints on target selection for smooth pursuit eye movements. Vision Res 2011; 51:13-20. [DOI: 10.1016/j.visres.2010.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/11/2010] [Accepted: 09/15/2010] [Indexed: 11/30/2022]
|
32
|
Noudoost B, Chang MH, Steinmetz NA, Moore T. Top-down control of visual attention. Curr Opin Neurobiol 2010; 20:183-90. [PMID: 20303256 PMCID: PMC2901796 DOI: 10.1016/j.conb.2010.02.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 11/25/2022]
Abstract
Top-down visual attention improves perception of selected stimuli and that improvement is reflected in the neural activity at many stages throughout the visual system. Recent studies of top-down attention have elaborated on the signatures of its effects within visual cortex and have begun identifying its causal basis. Evidence from these studies suggests that the correlates of spatial attention exhibited by neurons within the visual system originate from a distributed network of structures involved in the programming of saccadic eye movements. We summarize this evidence and discuss its relationship to the neural mechanisms of spatial working memory.
Collapse
Affiliation(s)
- Behrad Noudoost
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Mindy H. Chang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas A. Steinmetz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
33
|
Motor output evoked by subsaccadic stimulation of primate frontal eye fields. Proc Natl Acad Sci U S A 2010; 107:6070-5. [PMID: 20231461 DOI: 10.1073/pnas.0911902107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades <or=5 degrees in magnitude, although such small saccades are not associated with head motion. Neck-muscle thresholds compare well with the current levels used in previous studies to influence behavior or neural activity through activation of FEF neurons feeding back to extrastriate cortex. Our results complement this previous work by suggesting that the neurobiologic substrate that covertly orients visuospatial attention shares this command with head premotor circuits in the brainstem, culminating with recruitment in the motor periphery.
Collapse
|
34
|
Rorie AE, Gao J, McClelland JL, Newsome WT. Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One 2010; 5:e9308. [PMID: 20174574 PMCID: PMC2824817 DOI: 10.1371/journal.pone.0009308] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Single neurons in cortical area LIP are known to carry information relevant to both sensory and value-based decisions that are reported by eye movements. It is not known, however, how sensory and value information are combined in LIP when individual decisions must be based on a combination of these variables. To investigate this issue, we conducted behavioral and electrophysiological experiments in rhesus monkeys during performance of a two-alternative, forced-choice discrimination of motion direction (sensory component). Monkeys reported each decision by making an eye movement to one of two visual targets associated with the two possible directions of motion. We introduced choice biases to the monkeys' decision process (value component) by randomly interleaving balanced reward conditions (equal reward value for the two choices) with unbalanced conditions (one alternative worth twice as much as the other). The monkeys' behavior, as well as that of most LIP neurons, reflected the influence of all relevant variables: the strength of the sensory information, the value of the target in the neuron's response field, and the value of the target outside the response field. Overall, detailed analysis and computer simulation reveal that our data are consistent with a two-stage drift diffusion model proposed by Diederich and Bussmeyer [1] for the effect of payoffs in the context of sensory discrimination tasks. Initial processing of payoff information strongly influences the starting point for the accumulation of sensory evidence, while exerting little if any effect on the rate of accumulation of sensory evidence.
Collapse
Affiliation(s)
- Alan E. Rorie
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juan Gao
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - James L. McClelland
- Department of Psychology, Stanford University, Stanford, California, United States of America
| | - William T. Newsome
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|
36
|
Moore T, Chang MH. Presaccadic discrimination of receptive field stimuli by area V4 neurons. Vision Res 2009; 49:1227-32. [PMID: 18501949 PMCID: PMC2724369 DOI: 10.1016/j.visres.2008.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/18/2008] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that the visual responses of neurons in extrastriate area V4 are enhanced prior to saccadic eye movements that target receptive field (RF) stimuli. We used receiver-operator characteristic (ROC) analysis to quantify how well V4 neurons could discriminate stable RF stimuli targeted by visually-guided saccades or ignored during saccades elsewhere. We found that discrimination was transiently enhanced prior to saccades to RF stimuli whereas it was reduced prior to saccades elsewhere. Similar to what is observed during covert attention and after frontal eye field microstimulation, the changes in stimulus discrimination were due in part to changes in response magnitude. In addition, we found evidence of an increased reliability of responses when saccades were made to the RF stimulus. These results highlight the similarity of mechanisms driving covert spatial attention and the preparation of visually-guided saccades.
Collapse
Affiliation(s)
- Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, CA 94305, USA.
| | | |
Collapse
|
37
|
Non-visually evoked activity of isthmo-optic neurons in awake, head-unrestrained quail. Exp Brain Res 2009; 194:339-46. [PMID: 19183972 DOI: 10.1007/s00221-009-1703-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Changes in the internal state of the brain may modulate retinal function. In birds, most neurons in the isthmo-optic (IO) nucleus project their axons topographically into the contralateral retina, and activity in IO neurons enhances visual responses of retinal ganglion cells in the target retinal region. To elucidate the significance of this pathway, we recorded spikes of IO neurons in four awake Japanese quail using an implanted electrode assembly while recording unrestrained head movements. The IO neurons fired passively in response to visual stimuli in receptive fields and non-visually without visual stimuli or eye-head movements. Non-visually evoked activity was observed in the middle of eye-head fixation, as well as at about 200 ms before the onset of head saccades. Intensity of activity before onset of head saccades depended on the direction of motion of subsequent head saccades. Local retinal output may be enhanced by centrifugal signals before gaze shifts.
Collapse
|
38
|
Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proc Natl Acad Sci U S A 2008; 105:7315-20. [PMID: 18477698 DOI: 10.1073/pnas.0710820105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The frontal eye field (FEF) is involved in the transformation of visual signals into saccadic eye movements. Although it is often considered an oculomotor structure, several lines of evidence suggest that the FEF also contributes to visual perception and attention. To better understand the range of behaviors to which the FEF can contribute, we tested whether monkeys could detect activation of their FEF by electrical microstimulation with currents below those that cause eye movements. We found that stimulation of FEF neurons could almost always be detected at levels below those needed to generate saccades and that the electrical current needed for detection was highly correlated with that needed to generate a saccade. This relationship between detection and saccade thresholds can be explained if FEF neurons represent preparation to make particular saccades and subjects can be aware of such preparations without acting on them when the representation is not strong.
Collapse
|
39
|
Schafer RJ, Moore T. Attention governs action in the primate frontal eye field. Neuron 2007; 56:541-51. [PMID: 17988636 PMCID: PMC2129094 DOI: 10.1016/j.neuron.2007.09.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/07/2007] [Accepted: 09/17/2007] [Indexed: 12/31/2022]
Abstract
While the motor and attentional roles of the frontal eye field (FEF) are well documented, the relationship between them is unknown. We exploited the known influence of visual motion on the apparent positions of targets, and measured how this illusion affects saccadic eye movements during FEF microstimulation. Without microstimulation, saccades to a moving grating are biased in the direction of motion, consistent with the apparent position illusion. Here we show that microstimulation of spatially aligned FEF representations increases the influence of this illusion on saccades. Rather than simply impose a fixed-vector signal, subthreshold stimulation directed saccades away from the FEF movement field, and instead more strongly in the direction of visual motion. These results demonstrate that the attentional effects of FEF stimulation govern visually guided saccades, and suggest that the two roles of the FEF work together to select both the features of a target and the appropriate movement to foveate it.
Collapse
Affiliation(s)
- Robert J Schafer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Abstract
A recent study demonstrates that artificially generated patterns of brain activity are surprisingly easy to sense. Brain areas that differ substantially in their functional specialization are remarkably similar in their ability to support this awareness.
Collapse
Affiliation(s)
- John B Reppas
- Howard Hughes Medical Institute and Department of Neurobiology, 299 West Campus Drive D200, Stanford, California 94305, USA
| | | |
Collapse
|
41
|
Armstrong KM, Moore T. Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field. Proc Natl Acad Sci U S A 2007; 104:9499-504. [PMID: 17517599 PMCID: PMC1890523 DOI: 10.1073/pnas.0701104104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visual attention provides a means of selecting among the barrage of information reaching the retina and of enhancing the perceptual discriminability of relevant stimuli. Neurophysiological studies in monkeys and functional imaging studies in humans have demonstrated neural correlates of these perceptual improvements in visual cortex during attention. Importantly, voluntary attention improves the discriminability of visual cortical responses to relevant stimuli. Recent work aimed at identifying sources of attentional modulation has implicated the frontal eye field (FEF) in driving spatial attention. Subthreshold microstimulation of the FEF enhances the responses of area V4 neurons to spatially corresponding stimuli. However, it is not known whether these enhancements include improved visual-response discriminability, a hallmark of voluntary attention. We used receiver-operator characteristic analysis to quantify how well V4 responses discriminated visual stimuli and examined how discriminability was affected by FEF microstimulation. Discriminability of responses to stable visual stimuli decayed over time but was transiently restored after microstimulation of the FEF. As observed during voluntary attention, the enhancement resulted only from changes in the magnitude of V4 responses and not in the relationship between response magnitude and variance. Enhanced response discriminability was apparent immediately after microstimulation and was reliable within 40 ms of microstimulation onset, indicating a direct influence of FEF stimulation on visual representations. These results contribute to the mounting evidence that saccade-related signals are a source of spatial attentive selection.
Collapse
Affiliation(s)
- Katherine M Armstrong
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
42
|
Hemelt ME, Keller A. Superior sensation: superior colliculus participation in rat vibrissa system. BMC Neurosci 2007; 8:12. [PMID: 17266753 PMCID: PMC1796887 DOI: 10.1186/1471-2202-8-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The superior colliculus, usually considered a visuomotor structure, is anatomically positioned to perform sensorimotor transformations in other modalities. While there is evidence for its potential participation in sensorimotor loops of the rodent vibrissa system, little is known about its functional role in vibrissa sensation or movement. In anesthetized rats, we characterized extracellularly recorded responses of collicular neurons to different types of vibrissa stimuli. RESULTS Collicular neurons had large receptive fields (median = 14.5 vibrissae). Single units displayed responses with short latencies (5.6 +/- 0.2 msec, median = 5.5) and relatively large magnitudes (1.2 +/- 0.1 spikes/stimulus, median = 1.2). Individual neurons could entrain to repetitive vibrissa stimuli delivered at < or = 20 Hz, with little reduction in phase locking, even when response magnitude was decreased. Neurons responded preferentially to vibrissa deflections at particular angles, with 43% of the cells having high (> or = 5) angular selectivity indices. CONCLUSION Results are consistent with a proposed role of the colliculus in somatosensory-mediated orienting. These properties, together with the connections of the superior colliculus in sensorimotor loops, are consistent with its involvement in orienting, alerting and attentive functions related to the vibrissa system.
Collapse
Affiliation(s)
- Marie E Hemelt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Asaf Keller
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|