1
|
Shin H, Kim K, Lee J, Nam J, Baeg E, You C, Choi H, Kim M, Chung CK, Kim JG, Ahn JH, Han M, Kim J, Yang S, Lee SQ, Yang S. A Wireless Cortical Surface Implant for Diagnosing and Alleviating Parkinson's Disease Symptoms in Freely Moving Animals. Adv Healthc Mater 2025:e2405179. [PMID: 40195900 DOI: 10.1002/adhm.202405179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Parkinson's disease (PD), one of the most common neurodegenerative diseases, is involved in motor abnormality, primarily arising from the degeneration of dopaminergic neurons. Previous studies have examined the electrotherapeutic effects of PD using various methodological contexts, including live conditions, wireless control, diagnostic/therapeutic aspects, removable interfaces, or biocompatible materials, each of which is separately utilized for testing the diagnosis or alleviation of various brain diseases. Here, a cortical surface implant designed to improve motor function in freely moving PD animals is presented. This implant, a minimally invasive system equipped with a graphene electrode array, is the first integrated system to exhibit biocompatibility, wearability, removability, target specificity, and wireless control. The implant positioned at the motor cortical surface activates the motor cortex to maximize therapeutic effects and minimize off-target effects while monitoring motor activities. In PD animals, cortical motor surface stimulation restores motor function and brain waves, which corresponds to potentiated synaptic responses. Furthermore, these changes are associated with the upregulation of metabotropic glutamate receptor 5 (mGluR5, Grm5) and D5 dopamine receptor (D5R, Drd5) genes in the glutamatergic synapse. The newly designed wireless neural implant demonstrates capabilities in both real-time diagnostics and targeted therapeutics, suggesting its potential as a wireless system for biomedical devices for patients with PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongseong Shin
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
| | | | - Jaeseung Lee
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Johyeon Nam
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eunha Baeg
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chaeyeon You
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hanseul Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Minji Kim
- gBrain Inc., Incheon, 21984, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Kowloon, Hong Kong
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jong Hyun Ahn
- School of Electrical & Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Miryung Han
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jibum Kim
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- Department of Computer Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 00000, Hong Kong
| | - Sung Q Lee
- Brainlinks Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, 34129, South Korea
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA
| | - Sunggu Yang
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Center for Brain-Machine Interface, Incheon National University, Incheon, 22012, Republic of Korea
- gBrain Inc., Incheon, 21984, Republic of Korea
| |
Collapse
|
2
|
Rivas M, Martinez-Garcia M. A Physical Framework to Study the Effect of Magnetic Fields on the Spike-Time Coding. Biomed Eng Comput Biol 2024; 15:11795972241272380. [PMID: 39502401 PMCID: PMC11536361 DOI: 10.1177/11795972241272380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/08/2024] [Indexed: 11/08/2024] Open
Abstract
A temporal neural code reliant on the pattern of spike times rather than spike rates offers a feasible mechanism for encoding information from weak periodic external stimuli, such as static or extremely low-frequency electromagnetic fields. Our model focuses on the influence of magnetic fields on neurotransmitter dynamics near the neuron membrane. Neurotransmitter binding to specific receptor sites on membrane proteins can regulate biochemical reactions. The duration a neurotransmitter spends in the bonded state serves as a metric for the magnetic field's capacity as a chemical regulator. By initiating a physical analysis of ligand-receptor binding, utilizing the alpha function for synaptic conductance, and employing a modified version of Bell's law, we quantified the impact of magnetic fields on the bond half-life time and, consequently, on postsynaptic spike timing.
Collapse
Affiliation(s)
- Manuel Rivas
- Universitat Politècnica de Catalunya, Dept d’Enginyeria Química, EEBE, Sant Adriá del Besòs, Spain
| | | |
Collapse
|
3
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. J Neural Eng 2024; 21:046041. [PMID: 38986461 PMCID: PMC11299538 DOI: 10.1088/1741-2552/ad6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ('RP', the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established 'shuffling' procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection.Approach. In a novel 'residuals' method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the precedingnrmilliseconds. Finally, we compute the PSD of the model's residuals.Main results. We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey-in which alpha-beta oscillations (8-30 Hz) were anticipated-the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection.Significance. These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Robert S Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
4
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556120. [PMID: 38586036 PMCID: PMC10996479 DOI: 10.1101/2023.09.08.556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ("RP", the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established "shuffling" procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection. Approach In a novel "residuals" method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the preceding nr milliseconds. Finally, we compute the PSD of the model's residuals. Main results We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey -- in which alpha-beta oscillations (8-30 Hz) were anticipated -- the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection. Significance These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M. Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Robert S. Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| |
Collapse
|
5
|
Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, Imbach L. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy. Brain 2023; 146:4717-4735. [PMID: 37343140 DOI: 10.1093/brain/awad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Giovanna Aiello
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Tena Dubcek
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Rafael Polanìa
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Formaggio E, Tonellato M, Antonini A, Castiglia L, Gallo L, Manganotti P, Masiero S, Del Felice A. Oscillatory EEG-TMS Reactivity in Parkinson Disease. J Clin Neurophysiol 2023; 40:263-268. [PMID: 34280941 DOI: 10.1097/wnp.0000000000000881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE A dysfunction of beta oscillatory activity is the neurophysiological hallmark of Parkinson disease (PD). How cortical activity reacts to external perturbations may provide insight into pathophysiological mechanisms. This study aims at identifying modifications in EEG rhythms after transcranial magnetic stimulation (TMS) in PD. We hypothesize that single-pulse TMS can modulate brain intrinsic oscillatory properties (e.g., beta excess). METHODS EEG data were coregistered during single-pulse TMS (100 stimuli over the primary motor cortex [M1, hotspot for Abductor Pollicis Brevis], random intertrial interval from 8 to 13 seconds). We used a time-frequency analysis based on wavelet method to characterize modification of oscillatory rhythms (delta [1-4 Hz], theta [4-7 Hz], alpha [8-12 Hz], and beta [13-30 Hz] in 15 participants with PD compared with 10 healthy controls. RESULTS An increase in beta power over the sensorimotor areas was recorded at rest in the PD group ( P < 0.05). Brain oscillations in PD transiently reset after TMS: beta power over M1 becomes comparable to that recorded in aged-matched healthy subjects in the 2 seconds following TMS. CONCLUSIONS Transcranial magnetic stimulation over the dominant motor cortex transiently normalizes cortical oscillations. More user-friendly noninvasive brain stimulation needs to be trialed, based on this proof of concept, to provide practical, portable techniques to treat motor symptoms in PD.
Collapse
Affiliation(s)
- Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Michele Tonellato
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy; and
| | - Leonora Castiglia
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Laura Gallo
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Paolo Manganotti
- Neurology Section, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Stefano Masiero
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy; and
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy; and
| |
Collapse
|
7
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
8
|
Attar ET. Review of electroencephalography signals approaches for mental stress assessment. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2022; 27:209-215. [PMID: 36252972 PMCID: PMC9749579 DOI: 10.17712/nsj.2022.4.20220025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 12/27/2022]
Abstract
The innovation of electroencephalography (EEG) more than a century ago supports the technique to assess brain structure and function in clinical health and research applications. The EEG signals were identified on their frequency ranges as delta (from 0.5 to 4 Hz), theta (from 4 to 7 Hz), alpha (from 8 to 12 Hz), beta (from 16 to 31 Hz), and gamma (from 36 to 90 Hz). Stress is a sense of emotional tension caused by several life events. For example, worrying about something, being under pressure, and facing significant challenges are causes of stress. The human body is affected by stress in various ways. It promotes inflammation, which affects cardiac health. The autonomic nervous system is activated during mental stress. Posttraumatic stress disorder and Alzheimer's disease are common brain stress disorders. Several methods have been used previously to identify stress, for instance, magnetic resonance imaging, single-photon emission computed tomography and EEG. The EEG identifies the electrical activity in the human brain by applying small electrodes positioned on the scalp of the brain. It is a useful non-invasive method and collects feedback from stress hormones. In addition, it can serve as a reliable tool for measuring stress. Furthermore, evaluating human stress in real-time is complicated and challenging. This review demonstrates the power of frequency bands for mental stress and the behaviors of frequency bands based on medical and research experiencebands based on medical and research experience.
Collapse
Affiliation(s)
- Eyad T. Attar
- From the Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, kingdom of Saudi Arabia,Address correspondence and reprint request to: Dr. Eyad T. Attar, Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, kingdom of Saudi Arabia. E-mail: ORCID ID: https://orcid.org/0000-0003-1898-854X
| |
Collapse
|
9
|
Griffiths BJ, Zaehle T, Repplinger S, Schmitt FC, Voges J, Hanslmayr S, Staudigl T. Rhythmic interactions between the mediodorsal thalamus and prefrontal cortex precede human visual perception. Nat Commun 2022; 13:3736. [PMID: 35768419 PMCID: PMC9243108 DOI: 10.1038/s41467-022-31407-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as the mediodorsal thalamus, exert a profound influence over animal cognition. However, given the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about thalamic and thalamocortical contributions to human cognition. To address this, we analysed simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (plus MEG recordings from twelve healthy controls) as they completed a visual detection task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-frequency activity was predictive of perceptual performance. Critically however, mediodorsal thalamic activity mediated prefrontal contributions to perceptual performance. These results suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive of upcoming perceptual performance and, more generally, highlights the importance of accounting for the thalamus when theorising about cortical contributions to human cognition.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
10
|
Yang CY, Huang YZ. Parkinson’s Disease Classification Using Machine Learning Approaches and Resting-State EEG. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Frohlich J, Crone JS, Johnson MA, Lutkenhoff ES, Spivak NM, Dell'Italia J, Hipp JF, Shrestha V, Ruiz Tejeda JE, Real C, Vespa PM, Monti MM. Neural oscillations track recovery of consciousness in acute traumatic brain injury patients. Hum Brain Mapp 2022; 43:1804-1820. [PMID: 35076993 PMCID: PMC8933330 DOI: 10.1002/hbm.25725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022] Open
Abstract
Electroencephalography (EEG), easily deployed at the bedside, is an attractive modality for deriving quantitative biomarkers of prognosis and differential diagnosis in severe brain injury and disorders of consciousness (DOC). Prior work by Schiff has identified four dynamic regimes of progressive recovery of consciousness defined by the presence or absence of thalamically‐driven EEG oscillations. These four predefined categories (ABCD model) relate, on a theoretical level, to thalamocortical integrity and, on an empirical level, to behavioral outcome in patients with cardiac arrest coma etiologies. However, whether this theory‐based stratification of patients might be useful as a diagnostic biomarker in DOC and measurably linked to thalamocortical dysfunction remains unknown. In this work, we relate the reemergence of thalamically‐driven EEG oscillations to behavioral recovery from traumatic brain injury (TBI) in a cohort of N = 38 acute patients with moderate‐to‐severe TBI and an average of 1 week of EEG recorded per patient. We analyzed an average of 3.4 hr of EEG per patient, sampled to coincide with 30‐min periods of maximal behavioral arousal. Our work tests and supports the ABCD model, showing that it outperforms a data‐driven clustering approach and may perform equally well compared to a more parsimonious categorization. Additionally, in a subset of patients (N = 11), we correlated EEG findings with functional magnetic resonance imaging (fMRI) connectivity between nodes in the mesocircuit—which has been theoretically implicated by Schiff in DOC—and report a trend‐level relationship that warrants further investigation in larger studies.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Julia S. Crone
- Department of Psychology University of California Los Angeles Los Angeles California USA
- Vienna Cognitive Science Hub University of Vienna Vienna Austria
| | - Micah A. Johnson
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Evan S. Lutkenhoff
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Norman M. Spivak
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - John Dell'Italia
- Department of Psychology University of California Los Angeles Los Angeles California USA
| | - Joerg F. Hipp
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Vikesh Shrestha
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Jesús E. Ruiz Tejeda
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Courtney Real
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Paul M. Vespa
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| | - Martin M. Monti
- Department of Psychology University of California Los Angeles Los Angeles California USA
- Department of Neurosurgery UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles Los Angeles California USA
| |
Collapse
|
12
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Shobe JL, Donzis EJ, Lee K, Chopra S, Masmanidis SC, Cepeda C, Levine MS. Early impairment of thalamocortical circuit activity and coherence in a mouse model of Huntington's disease. Neurobiol Dis 2021; 157:105447. [PMID: 34274461 PMCID: PMC8591983 DOI: 10.1016/j.nbd.2021.105447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disorder characterized by motor, cognitive, and psychiatric disturbances. There is no known cure for HD, but its progressive nature allows for early therapeutic intervention. Currently, much of the research has focused on the striatum, however, there is evidence suggesting that disruption of thalamocortical circuits could underlie some of the early symptoms of HD. Loss of both cortical pyramidal neurons (CPNs) and thalamic neurons occurs in HD patients, and cognitive, somatosensory, and attention deficits precede motor abnormalities. However, the role of thalamocortical pathways in HD progression has been understudied. Here, we measured single unit activity and local field potentials (LFPs) from electrode arrays implanted in the thalamus and primary motor cortex of 4-5 month-old male and female Q175 mice. We assessed neuronal activity under baseline conditions as well as during presentation of rewards delivered via actuation of an audible solenoid valve. HD mice showed a significantly delayed licking response to the reward stimulus. At the same time, neuronal activation to the reward was delayed in thalamic neurons, CPNs and fast-spiking cortical interneurons (FSIs) of HD mice. In addition, thalamocortical coherence increased at lower frequencies in HD relative to wildtype mice. Together, these data provide evidence that impaired cortical and thalamic responses to reward stimuli, and impaired thalamocortical coherence, may play an important early role in motor, cognitive, and learning deficits in HD patients.
Collapse
Affiliation(s)
- Justin L Shobe
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Elissa J Donzis
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Kwang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, South Korea
| | - Samiksha Chopra
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Cakir Y. Computational neuronal correlation with enhanced synchronized activity in the basal ganglia and the slowing of thalamic theta and alpha rhythms in Parkinson's disease. Eur J Neurosci 2021; 54:5203-5223. [PMID: 34192822 DOI: 10.1111/ejn.15374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Abstract
The aim of this work is computationally to correlate the synchronized neuronal activity of basal ganglia and slowing in theta and alpha rhythms in electroencephalogram (EEG) signal in thalamic region in case of dopamine depletion and decrease of synaptic connections. The used network topology is a scale-free network with constant node degree. The dopamine-modulated type Izikhevich neuron model is used for modeling the striatal region, consisting of fast-spiking interneurons, D1 and D2 type dopamine expressing medium spiny neurons. On the other hand, the ordinary Izikhevich neuron model is used in the modeling of extrastriatal basal ganglia (BG) regions where globus pallidus (GP) subregion neurons have also dopamine-dependent parameters. The thalamic region of the network is mass modeled including inhibitory input from basal ganglia. Depending on the decrease of synaptic connections and dopamine level, the synchronization among basal ganglia neuron populations is investigated. The effect of synaptic delay on synchronization is also considered. It is observed that the decrease of dopamine neurotransmitter and decrease in the number of synaptic connections cause an increased synchronous activity in BG. Also, slowing in theta and alpha bands in thalamus EEG signals is observed. This shows the causal relation between synchronization and power shifting to lower frequency components in the case of neurodegenerative diseases such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- Yuksel Cakir
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
15
|
Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat Biomed Eng 2021; 5:324-345. [PMID: 33526909 DOI: 10.1038/s41551-020-00666-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
Direct electrical stimulation can modulate the activity of brain networks for the treatment of several neurological and neuropsychiatric disorders and for restoring lost function. However, precise neuromodulation in an individual requires the accurate modelling and prediction of the effects of stimulation on the activity of their large-scale brain networks. Here, we report the development of dynamic input-output models that predict multiregional dynamics of brain networks in response to temporally varying patterns of ongoing microstimulation. In experiments with two awake rhesus macaques, we show that the activities of brain networks are modulated by changes in both stimulation amplitude and frequency, that they exhibit damping and oscillatory response dynamics, and that variabilities in prediction accuracy and in estimated response strength across brain regions can be explained by an at-rest functional connectivity measure computed without stimulation. Input-output models of brain dynamics may enable precise neuromodulation for the treatment of disease and facilitate the investigation of the functional organization of large-scale brain networks.
Collapse
|
16
|
Vissani M, Isaias IU, Mazzoni A. Deep brain stimulation: a review of the open neural engineering challenges. J Neural Eng 2020; 17:051002. [PMID: 33052884 DOI: 10.1088/1741-2552/abb581] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established and valid therapy for a variety of pathological conditions ranging from motor to cognitive disorders. Still, much of the DBS-related mechanism of action is far from being understood, and there are several side effects of DBS whose origin is unclear. In the last years DBS limitations have been tackled by a variety of approaches, including adaptive deep brain stimulation (aDBS), a technique that relies on using chronically implanted electrodes on 'sensing mode' to detect the neural markers of specific motor symptoms and to deliver on-demand or modulate the stimulation parameters accordingly. Here we will review the state of the art of the several approaches to improve DBS and summarize the main challenges toward the development of an effective aDBS therapy. APPROACH We discuss models of basal ganglia disorders pathogenesis, hardware and software improvements for conventional DBS, and candidate neural and non-neural features and related control strategies for aDBS. MAIN RESULTS We identify then the main operative challenges toward optimal DBS such as (i) accurate target localization, (ii) increased spatial resolution of stimulation, (iii) development of in silico tests for DBS, (iv) identification of specific motor symptoms biomarkers, in particular (v) assessing how LFP oscillations relate to behavioral disfunctions, and (vi) clarify how stimulation affects the cortico-basal-ganglia-thalamic network to (vii) design optimal stimulation patterns. SIGNIFICANCE This roadmap will lead neural engineers novel to the field toward the most relevant open issues of DBS, while the in-depth readers might find a careful comparison of advantages and drawbacks of the most recent attempts to improve DBS-related neuromodulatory strategies.
Collapse
Affiliation(s)
- Matteo Vissani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pisa, Italy. Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pisa, Italy
| | | | | |
Collapse
|
17
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
18
|
The Effects of Long-Term 40-Hz Physioacoustic Vibrations on Motor Impairments in Parkinson's Disease: A Double-Blinded Randomized Control Trial. Healthcare (Basel) 2020; 8:healthcare8020113. [PMID: 32353963 PMCID: PMC7349639 DOI: 10.3390/healthcare8020113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have suggested that vibration therapy may have a positive influence in treating motor symptoms of Parkinson’s disease (PD). However, quantitative evidence of the benefits of vibration utilized inconsistent methods of vibration delivery, and to date there have been no studies showing a long-term benefit of 40 Hz vibration in the PD population. The objective of this study was to demonstrate the efficacy of vibration administered via a physioacoustic therapy method (PAT) on motor symptoms of PD over a longer term, completed as a randomized placebo-controlled trial. Overall motor symptom severity measured by the Unified Parkinson’s Disease Rating Scale III showed significant improvements in the treatment group over 12 weeks. Specifically, all aspects of PD, including tremor, rigidity, bradykinesia, and posture and gait measures improved. To our knowledge, this is the first study to quantitatively assess 40-Hz vibration applied using the PAT method for potential long-term therapeutic effects on motor symptoms of PD.
Collapse
|
19
|
Waninger S, Berka C, Stevanovic Karic M, Korszen S, Mozley PD, Henchcliffe C, Kang Y, Hesterman J, Mangoubi T, Verma A. Neurophysiological Biomarkers of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2020; 10:471-480. [PMID: 32116262 PMCID: PMC7242849 DOI: 10.3233/jpd-191844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is a need for reliable and robust Parkinson's disease biomarkers that reflect severity and are sensitive to disease modifying investigational therapeutics. OBJECTIVE To demonstrate the utility of EEG as a reliable, quantitative biomarker with potential as a pharmacodynamic endpoint for use in clinical assessments of neuroprotective therapeutics for Parkison's disease. METHODS A multi modal study was performed including aquisition of resting state EEG data and dopamine transporter PET imaging from Parkinson's disease patients off medication and compared against age-matched controls. RESULTS Qualitative and test/retest analysis of the EEG data demonstrated the reliability of the methods. Source localization using low resolution brain electromagnetic tomography identified significant differences in Parkinson's patients versus control subjects in the anterior cingulate and temporal lobe, areas with established association to Parkinson's disease pathology. Changes in cortico-cortical and cortico-thalamic coupling were observed as excessive EEG beta coherence in Parkinson's disease patients, and correlated with UPDRS scores and dopamine transporter activity, supporting the potential for cortical EEG coherence to serve as a reliable measure of disease severity. Using machine learning approaches, an EEG discriminant function analysis classifier was identified that parallels the loss of dopamine synapses as measured by dopamine transporter PET. CONCLUSION Our results support the utility of EEG in characterizing alterations in neurophysiological oscillatory activity associated with Parkinson's disease and highlight potential as a reliable method for monitoring disease progression and as a pharmacodynamic endpoint for Parkinson's disease modification therapy.
Collapse
Affiliation(s)
- Shani Waninger
- Advanced Brain Monitoring Inc., Carlsbad, CA, USA,Correspondence to: Shani Waninger, Advanced Brain Monitoring, Inc., 2237 Faraday Avenue, Suite 100,
Carlsbad, CA 92008, USA. E-mail:
| | - Chris Berka
- Advanced Brain Monitoring Inc., Carlsbad, CA, USA
| | | | | | | | | | - Yeona Kang
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Belardinelli P, Azodi-Avval R, Ortiz E, Naros G, Grimm F, Weiss D, Gharabaghi A. Intraoperative localization of spatially and spectrally distinct resting-state networks in Parkinson's disease. J Neurosurg 2020; 132:1234-1242. [PMID: 30835693 DOI: 10.3171/2018.11.jns181684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/21/2018] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for symptomatic Parkinson's disease (PD); the clinical benefit may not only mirror modulation of local STN activity but also reflect consecutive network effects on cortical oscillatory activity. Moreover, STN-DBS selectively suppresses spatially and spectrally distinct patterns of synchronous oscillatory activity within cortical-subcortical loops. These STN-cortical circuits have been described in PD patients using magnetoencephalography after surgery. This network information, however, is currently not available during surgery to inform the implantation strategy.The authors recorded spontaneous brain activity in 3 awake patients with PD (mean age 67 ± 14 years; mean disease duration 13 ± 7 years) during implantation of DBS electrodes into the STN after overnight withdrawal of dopaminergic medication. Intraoperative propofol was discontinued at least 30 minutes prior to the electrophysiological recordings. The authors used a novel approach for performing simultaneous recordings of STN local field potentials (LFPs) and multichannel electroencephalography (EEG) at rest. Coherent oscillations between LFP and EEG sensors were computed, and subsequent dynamic imaging of coherent sources was performed.The authors identified coherent activity in the upper beta range (21-35 Hz) between the STN and the ipsilateral mesial (pre)motor area. Coherence in the theta range (4-6 Hz) was detected in the ipsilateral prefrontal area.These findings demonstrate the feasibility of detecting frequency-specific and spatially distinct synchronization between the STN and cortex during DBS surgery. Mapping the STN with this technique may disentangle different functional loops relevant for refined targeting during DBS implantation.
Collapse
Affiliation(s)
- Paolo Belardinelli
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
- 2Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research; and
| | - Ramin Azodi-Avval
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Erick Ortiz
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Georgios Naros
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Florian Grimm
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| | - Daniel Weiss
- 3Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, and German Centre of Neurodegenerative Diseases (DZNE), Eberhard Karls University Tübingen, Germany
| | - Alireza Gharabaghi
- 1Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience
| |
Collapse
|
21
|
Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull 2020; 155:37-47. [DOI: 10.1016/j.brainresbull.2019.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
22
|
Gallay MN, Moser D, Rossi F, Magara AE, Strasser M, Bühler R, Kowalski M, Pourtehrani P, Dragalina C, Federau C, Jeanmonod D. MRgFUS Pallidothalamic Tractotomy for Chronic Therapy-Resistant Parkinson's Disease in 51 Consecutive Patients: Single Center Experience. Front Surg 2020; 6:76. [PMID: 31993437 PMCID: PMC6971056 DOI: 10.3389/fsurg.2019.00076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Background: There is a long history, beginning in the 1940s, of ablative neurosurgery on the pallidal efferent fibers to treat patients suffering from Parkinson's disease (PD). Since the early 1990s, we undertook a re-actualization of the approach to the subthalamic region, and proposed, on a histological basis, to target specifically the pallidothalamic tract at the level of Forel's field H1. This intervention, the pallidothalamic tractotomy (PTT), has been performed since 2011 using the MR-guided focused ultrasound (MRgFUS) technique. A reappraisal of the histology of the pallidothalamic tract was combined recently with an optimization of our lesioning strategy using thermal dose control. Objective: This study was aimed at demonstrating the efficacy and risk profile of MRgFUS PTT against chronic therapy-resistant PD. Methods: This consecutive case series reflects our current treatment routine and was collected between 2017 and 2018. Fifty-two interventions in 47 patients were included. Fifteen patients received bilateral PTT. The median follow-up was 12 months. Results: The Unified Parkinson's Disease Rating Scale (UPDRS) off-medication postoperative score was compared to the baseline on-medication score and revealed percentage reductions of the mean of 84% for tremor, 70% for rigidity, and 73% for distal hypobradykinesia, all values given for the treated side. Axial items (for voice, trunk and gait) were not significantly improved. PTT achieved 100% suppression of on-medication dyskinesias as well as reduction in pain (p < 0.001), dystonia (p < 0.001) and REM sleep disorders (p < 0.01). Reduction of the mean L-Dopa intake was 55%. Patients reported an 88% mean tremor relief and 82% mean global symptom relief on the operated side and 69% mean global symptom improvement for the whole body. There was no significant change of cognitive functions. The small group of bilateral PTTs at 1 year follow-up shows similar results as compared to unilateral PTTs but does not allow to draw firm conclusions at this point. Conclusion: MRgFUS PTT was shown to be a safe and effective intervention for PD patients, addressing all symptoms, with varying effectiveness. We discuss the need to integrate the preoperative state of the thalamocortical network as well as the psycho-emotional dimension.
Collapse
Affiliation(s)
- Marc N Gallay
- SoniModul, Center for Ultrasound Functional Neurosurgery, Solothurn, Switzerland
| | - David Moser
- SoniModul, Center for Ultrasound Functional Neurosurgery, Solothurn, Switzerland
| | - Franziska Rossi
- SoniModul, Center for Ultrasound Functional Neurosurgery, Solothurn, Switzerland
| | | | - Maja Strasser
- Neurologische Praxis Solothurn, Solothurn, Switzerland
| | - Robert Bühler
- Neurological Division, Bürgerspital Solothurn, Solothurn, Switzerland
| | | | | | | | - Christian Federau
- Department of Radiology, University Hospital Basel, Basel, Switzerland.,Institute for Biomedical Engineering, ETH Zürich, University Zürich, Zurich, Switzerland
| | - Daniel Jeanmonod
- SoniModul, Center for Ultrasound Functional Neurosurgery, Solothurn, Switzerland
| |
Collapse
|
23
|
Swain AJ, Galvan A, Wichmann T, Smith Y. Structural plasticity of GABAergic and glutamatergic networks in the motor thalamus of parkinsonian monkeys. J Comp Neurol 2019; 528:1436-1456. [PMID: 31808567 DOI: 10.1002/cne.24834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In the primate thalamus, the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM) receive GABAergic projections from the internal globus pallidus (GPi) and glutamatergic inputs from motor cortices. In this study, we used electron microscopy to assess potential structural changes in GABAergic and glutamatergic microcircuits in the VApc and CM of MPTP-treated parkinsonian monkeys. The intensity of immunostaining for GABAergic markers in VApc and CM did not differ between control and parkinsonian monkeys. In the electron microscope, three major types of terminals were identified in both nuclei: (a) vesicular glutamate transporter 1 (vGluT1)-positive terminals forming asymmetric synapses (type As), which originate from the cerebral cortex, (b) GABAergic terminals forming single symmetric synapses (type S1), which likely arise from the reticular nucleus and GABAergic interneurons, and (c) GABAergic terminals forming multiple symmetric synapses (type S2), which originate from GPi. The density of As terminals outnumbered that of S1 and S2 terminals in VApc and CM of control and parkinsonian animals. No significant change was found in the abundance and synaptic connectivity of S1 and S2 terminals in VApc or CM of MPTP-treated monkeys, while the prevalence of "As" terminals in VApc of parkinsonian monkeys was 51.4% lower than in controls. The cross-sectional area of vGluT1-positive boutons in both VApc and CM of parkinsonian monkeys was significantly larger than in controls, but their pattern of innervation of thalamic cells was not altered. Our findings suggest that the corticothalamic system undergoes significant synaptic remodeling in the parkinsonian state.
Collapse
Affiliation(s)
- Ashley J Swain
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia
| | - Adriana Galvan
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Udall Center of Excellence for Parkinson's Disease Research, Atlanta, Georgia.,Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
25
|
Pop-Jordanova N, Markovska-Simoska S, Milovanovic M, Lecic-Tosevski D. Analysis of EEG Characteristics and Coherence in Patients Diagnosed as Borderline Personality. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2019; 40:57-68. [PMID: 32109211 DOI: 10.2478/prilozi-2020-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Borderline personality disorder is a clinically important psychiatric diagnosis that is distinct from major depressive, bipolar and posttraumatic stress disorders, despite the overlapping symptoms. The diagnosis is mainly clinical and must follow the DMS 5 (or ICD 10) characteristics. The most common age at first presentation is in late adolescence, but the disorder frequently can be stay as misdiagnosed. Our study is concerned to QEEG characteristics, as well as coherence in borderline patients compared with healthy group, matched by number, gender and age and selected randomly. Our obtained results showed that electrophysiological characteristics for borderlines are fairly without statistical differences, except in low bands (delta and theta), which showed significantly lower frequencies and coherence compared to a healthy group. Future research in this filed with more patients is highly recommended.
Collapse
|
26
|
Odgerel Z, Sonti S, Hernandez N, Park J, Ottman R, Louis ED, Clark LN. Whole genome sequencing and rare variant analysis in essential tremor families. PLoS One 2019; 14:e0220512. [PMID: 31404076 PMCID: PMC6690583 DOI: 10.1371/journal.pone.0220512] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022] Open
Abstract
Essential tremor (ET) is one of the most common movement disorders. The etiology of ET remains largely unexplained. Whole genome sequencing (WGS) is likely to be of value in understanding a large proportion of ET with Mendelian and complex disease inheritance patterns. In ET families with Mendelian inheritance patterns, WGS may lead to gene identification where WES analysis failed to identify the causative single nucleotide variant (SNV) or indel due to incomplete coverage of the entire coding region of the genome, in addition to accurate detection of larger structural variants (SVs) and copy number variants (CNVs). Alternatively, in ET families with complex disease inheritance patterns with gene x gene and gene x environment interactions enrichment of functional rare coding and non-coding variants may explain the heritability of ET. We performed WGS in eight ET families (n = 40 individuals) enrolled in the Family Study of Essential Tremor. The analysis included filtering WGS data based on allele frequency in population databases, rare SNV and indel classification and association testing using the Mixed-Model Kernel Based Adaptive Cluster (MM-KBAC) test. A separate analysis of rare SV and CNVs segregating within ET families was also performed. Prioritization of candidate genes identified within families was performed using phenolyzer. WGS analysis identified candidate genes for ET in 5/8 (62.5%) of the families analyzed. WES analysis in a subset of these families in our previously published study failed to identify candidate genes. In one family, we identified a deleterious and damaging variant (c.1367G>A, p.(Arg456Gln)) in the candidate gene, CACNA1G, which encodes the pore forming subunit of T-type Ca(2+) channels, CaV3.1, and is expressed in various motor pathways and has been previously implicated in neuronal autorhythmicity and ET. Other candidate genes identified include SLIT3 which encodes an axon guidance molecule and in three families, phenolyzer prioritized genes that are associated with hereditary neuropathies (family A, KARS, family B, KIF5A and family F, NTRK1). Functional studies of CACNA1G and SLIT3 suggest a role for these genes in ET disease pathogenesis.
Collapse
Affiliation(s)
- Zagaa Odgerel
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Shilpa Sonti
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| | - Nora Hernandez
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Jemin Park
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Ruth Ottman
- G.H Sergievsky Center, Columbia University, New York, NY, United States of America
- Department of Neurology, College of Physicians and Surgeons, Columbia University New York, NY, United States of America
- Department of Epidemiology, Mailman School of Public Health, Columbia University, NY, United States of America
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, United States of America
| | - Elan D. Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, United States of America
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States of America
| | - Lorraine N. Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| |
Collapse
|
27
|
Lee S, Liu A, Wang ZJ, McKeown MJ. Abnormal Phase Coupling in Parkinson's Disease and Normalization Effects of Subthreshold Vestibular Stimulation. Front Hum Neurosci 2019; 13:118. [PMID: 31001099 PMCID: PMC6456700 DOI: 10.3389/fnhum.2019.00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The human brain is a highly dynamic structure requiring dynamic coordination between different neural systems to perform numerous cognitive and behavioral tasks. Emerging perspectives on basal ganglia (BG) and thalamic functions have highlighted their role in facilitating and mediating information transmission among cortical regions. Thus, changes in BG and thalamic structures can induce aberrant modulation of cortico-cortical interactions. Recent work in deep brain stimulation (DBS) has demonstrated that externally applied electrical current to BG structures can have multiple downstream effects in large-scale brain networks. In this work, we identified EEG-based altered resting-state cortical functional connectivity in Parkinson's disease (PD) and examined effects of dopaminergic medication and electrical vestibular stimulation (EVS), a non-invasive brain stimulation (NIBS) technique capable of stimulating the BG and thalamus through vestibular pathways. Resting EEG was collected from 16 PD subjects and 18 age-matched, healthy controls (HC) in four conditions: sham (no stimulation), EVS1 (4-8 Hz multisine), EVS2 (50-100 Hz multisine) and EVS3 (100-150 Hz multisine). The mean, variability, and entropy were extracted from time-varying phase locking value (PLV), a non-linear measure of pairwise functional connectivity, to probe abnormal cortical couplings in the PD subjects. We found the mean PLV of Cz and C3 electrodes were important for discrimination between PD and HC subjects. In addition, the PD subjects exhibited lower variability and entropy of PLV (mostly in theta and alpha bands) compared to the controls, which were correlated with their clinical characteristics. While levodopa medication was effective in normalizing the mean PLV only, all EVS stimuli normalized the mean, variability and entropy of PLV in the PD subject, with the exact extent and duration of improvement a function of stimulus type. These findings provide evidence demonstrating both low- and high-frequency EVS exert widespread influences on cortico-cortical connectivity, likely via subcortical activation. The improvement observed in PD in a stimulus-dependent manner suggests that EVS with optimized parameters may provide a new non-invasive means for neuromodulation of functional brain networks.
Collapse
Affiliation(s)
- Soojin Lee
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Pacific Parkinson's Research Centre, Vancouver, BC, Canada
| | - Aiping Liu
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| | - Z Jane Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Martin J McKeown
- Pacific Parkinson's Research Centre, Vancouver, BC, Canada.,Department of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a Mechanistic-Driven Precision Medicine Approach for Tinnitus. J Assoc Res Otolaryngol 2019; 20:115-131. [PMID: 30825037 PMCID: PMC6453992 DOI: 10.1007/s10162-018-00709-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022] Open
Abstract
In this position review, we propose to establish a path for replacing the empirical classification of tinnitus with a taxonomy from precision medicine. The goal of a classification system is to understand the inherent heterogeneity of individuals experiencing and suffering from tinnitus and to identify what differentiates potential subgroups. Identification of different patient subgroups with distinct audiological, psychophysical, and neurophysiological characteristics will facilitate the management of patients with tinnitus as well as the design and execution of drug development and clinical trials, which, for the most part, have not yielded conclusive results. An alternative outcome of a precision medicine approach in tinnitus would be that additional mechanistic phenotyping might not lead to the identification of distinct drivers in each individual, but instead, it might reveal that each individual may display a quantitative blend of causal factors. Therefore, a precision medicine approach towards identifying these causal factors might not lead to subtyping these patients but may instead highlight causal pathways that can be manipulated for therapeutic gain. These two outcomes are not mutually exclusive, and no matter what the final outcome is, a mechanistic-driven precision medicine approach is a win-win approach for advancing tinnitus research and treatment. Although there are several controversies and inconsistencies in the tinnitus field, which will not be discussed here, we will give a few examples, as to how the field can move forward by exploring the major neurophysiological tinnitus models, mostly by taking advantage of the common features supported by all of the models. Our position stems from the central concept that, as a field, we can and must do more to bring studies of mechanisms into the realm of neuroscience.
Collapse
Affiliation(s)
- Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Carey Balaban
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lori Zitelli
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Catherine Palmer
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
29
|
Grandi LC, Kaelin-Lang A, Orban G, Song W, Salvadè A, Stefani A, Di Giovanni G, Galati S. Oscillatory Activity in the Cortex, Motor Thalamus and Nucleus Reticularis Thalami in Acute TTX and Chronic 6-OHDA Dopamine-Depleted Animals. Front Neurol 2018; 9:663. [PMID: 30210425 PMCID: PMC6122290 DOI: 10.3389/fneur.2018.00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
The motor thalamus (MTh) and the nucleus reticularis thalami (NRT) have been largely neglected in Parkinson's disease (PD) research, despite their key role as interface between basal ganglia (BG) and cortex (Cx). In the present study, we investigated the oscillatory activity within the Cx, MTh, and NRT, in normal and different dopamine (DA)-deficient states. We performed our experiments in both acute and chronic DA-denervated rats by injecting into the medial forebrain bundle (MFB) tetrodotoxin (TTX) or 6-hydroxydopamine (6-OHDA), respectively. Interestingly, almost all the electroencephalogram (EEG) frequency bands changed in acute and/or chronic DA depletion, suggesting alteration of all oscillatory activities and not of a specific band. Overall, δ (2-4 Hz) and θ (4-8 Hz) band decreased in NRT and Cx in acute and chronic state, whilst, α (8-13 Hz) band decreased in acute and chronic states in the MTh and NRT but not in the Cx. The β (13-40 Hz) and γ (60-90 Hz) bands were enhanced in the Cx. In the NRT the β bands decreased, except for high-β (Hβ, 25-30 Hz) that increased in acute state. In the MTh, Lβ and Hβ decreased in acute DA depletion state and γ decreased in both TTX and 6-OHDA-treated animals. These results confirm that abnormal cortical β band are present in the established DA deficiency and it might be considered a hallmark of PD. The abnormal oscillatory activity in frequency interval of other bands, in particular the dampening of low frequencies in thalamic stations, in both states of DA depletion might also underlie PD motor and non-motor symptoms. Our data highlighted the effects of acute depletion of DA and the strict interplay in the oscillatory activity between the MTh and NRT in both acute and chronic stage of DA depletion. Moreover, our findings emphasize early alterations in the NRT, a crucial station for thalamic information processing.
Collapse
Affiliation(s)
- Laura C. Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Gergely Orban
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Wei Song
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| | - Alessandro Stefani
- Department System Medicine, UOSD Parkinson, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Taverne, Switzerland
| |
Collapse
|
30
|
Affan RO, Huang S, Cruz SM, Holcomb LA, Nguyen E, Marinkovic K. High-intensity binge drinking is associated with alterations in spontaneous neural oscillations in young adults. Alcohol 2018; 70:51-60. [PMID: 29778070 DOI: 10.1016/j.alcohol.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/07/2023]
Abstract
Heavy episodic alcohol consumption (also termed binge drinking) contributes to a wide range of health and cognitive deficits, but the associated brain-based indices are poorly understood. The current study used electroencephalography (EEG) to examine spontaneous neural oscillations in young adults as a function of quantity, frequency, and the pattern of their alcohol consumption. Sixty-one young adults (23.4 ± 3.4 years of age) were assigned to binge drinking (BD) and light drinking (LD) groups that were equated on gender, race/ethnic identity, age, educational background, and family history of alcoholism. EEG activity was recorded during eyes-open and eyes-closed resting conditions. Each participant's alpha peak frequency (APF) was used to calculate absolute power in individualized theta and alpha frequency bands, with a canonical frequency range used for beta. APF was slower by 0.7 Hz in BD, especially in individuals engaging in high-intensity drinking, but there were no changes in alpha power. BD also exhibited higher frontal theta and beta power than LD. Alpha slowing and increased theta power in BD remained after accounting for depression, anxiety, and personality characteristics, while elevated beta power covaried with sensation seeking. Furthermore, APF slowing and theta power correlated with various measures of alcohol consumption, including binge episodes and blackouts, but not with measures of working and episodic memory, cognitive flexibility, processing speed, or personality variables, suggesting that these physiological changes may be modulated by high-intensity alcohol intake. These results are consistent with studies of alcohol-use disorder (AUD) and support the hypothesis that binge drinking is a transitional stage toward alcohol dependence. The observed thalamocortical dysrhythmia may be indicative of an excitatory-inhibitory imbalance in BD and may potentially serve as an index of the progressive development of AUD, with a goal of informing possible interventions to minimize alcohol's deleterious effects on the brain.
Collapse
|
31
|
Abstract
Essential Tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the US; the pathophysiology of the disorder is poorly understood. Recently, we identified a mutation (KCNS2 (Kv9.2), c.1137 T > A, p.(D379E) in an electrically silent voltage-gated K+ channel α-subunit, Kv9.2, in a family with ET, that modulates the activity of Kv2 channels. We have produced transgenic Drosophila lines that express either the human wild type Kv9.2 (hKv9.2) or the ET causing mutant Kv9.2 (hKv9.2-D379E) subunit in all neurons. We show that the hKv9.2 subunit modulates activity of endogenous Drosophila K+ channel Shab. The mutant hKv9.2-D379E subunit showed significantly higher levels of Shab inactivation and a higher frequency of spontaneous firing rate consistent with neuronal hyperexcitibility. We also observed behavioral manifestations of nervous system dysfunction including effects on night time activity and sleep. This functional data further supports the pathogenicity of the KCNS2 (p.D379E) mutation, consistent with our prior observations including co-segregation with ET in a family, a likely pathogenic change in the channel pore domain and absence from population databases. The Drosophila hKv9.2 transgenic model recapitulates several features of ET and may be employed to advance our understanding of ET disease pathogenesis.
Collapse
|
32
|
Hu B, Shi Q, Guo Y, Diao X, Guo H, Zhang J, Yu L, Dai H, Chen L. The oscillatory boundary conditions of different frequency bands in Parkinson's disease. J Theor Biol 2018; 451:67-79. [PMID: 29727632 DOI: 10.1016/j.jtbi.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13-30 Hz), the alpha band (8-12 Hz), the theta band (4-7 Hz) and the delta band (1-3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson's disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson's disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson's disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qianqian Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyezi Diao
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Yu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Dai
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
33
|
Ibrahim GM, Wong S, Morgan BR, Lipsman N, Fallah A, Weil AG, Krishna V, Wennberg RA, Lozano AA. Phase-amplitude coupling within the anterior thalamic nuclei during seizures. J Neurophysiol 2018; 119:1497-1505. [DOI: 10.1152/jn.00832.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross-frequency phase-amplitude coupling (cfPAC) subserves an integral role in the hierarchical organization of interregional neuronal communication and is also expressed by epileptogenic cortex during seizures. Here, we sought to characterize patterns of cfPAC expression in the anterior thalamic nuclei during seizures by studying extra-operative recordings in patients implanted with deep brain stimulation electrodes for intractable epilepsy. Nine seizures from two patients were analyzed in the peri-ictal period. CfPAC was calculated using the modulation index and interregional functional connectivity was indexed using the phase-locking value. Statistical analysis was performed within subjects on the basis of nonparametric permutation and corrected with Gaussian field theory. Five of the nine analyzed seizures demonstrated significant cfPAC. Significant cfPAC occurred during the pre-ictal and ictal periods in three seizures, as well as the postictal windows in four seizures. The preferred phase at which cfPAC occurred differed 1) in space, between the thalami of the epileptogenic and nonepileptogenic hemispheres; and 2) in time, at seizure termination. The anterior thalamic nucleus of the epileptogenic hemisphere also exhibited altered interregional phase-locking synchrony concurrent with the expression of cfPAC. By analyzing extraoperative recordings from the anterior thalamic nuclei, we show that cfPAC associated with altered interregional phase synchrony is lateralized to the thalamus of the epileptogenic hemisphere during seizures. Electrophysiological differences in cfPAC, including preferred phase of oscillatory interactions may be further investigated as putative targets for individualized neuromodulation paradigms in patients with drug-resistant epilepsy. NEW & NOTEWORTHY The association between fast brain activity and slower oscillations is an integral mechanism for hierarchical neuronal communication, which is also manifested in epileptogenic cortex. Our data suggest that the same phenomenon occurs in the anterior thalamic nuclei during seizures. Further, the preferred phase of modulation shows differences in space, between the epileptogenic and nonepileptogenic hemispheres and time, as seizures terminate. Our data encourage the study of cross-frequency coupling for targeted, individualized closed-loop stimulation paradigms.
Collapse
Affiliation(s)
- George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Simeon Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benjamin R. Morgan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aria Fallah
- Department of Neurosurgery, Mattel Children’s Hospital, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Alexander G. Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Vibhor Krishna
- The Ohio State University, Center for Neuromodulation, Department of Neurosurgery, Columbus, Ohio
- The Ohio State University, Department of Neuroscience, Columbus, Ohio
| | - Richard A. Wennberg
- Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres A. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Stark AJ, Smith CT, Petersen KJ, Trujillo P, van Wouwe NC, Donahue MJ, Kessler RM, Deutch AY, Zald DH, Claassen DO. [ 18F]fallypride characterization of striatal and extrastriatal D 2/3 receptors in Parkinson's disease. Neuroimage Clin 2018; 18:433-442. [PMID: 29541577 PMCID: PMC5849871 DOI: 10.1016/j.nicl.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [18F]fallypride, a high affinity D2/3 receptor ligand, to measure striatal and extrastriatal D2/3 nondisplaceable binding potential (BPND). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BPND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D2/3 receptors, where reduced BPND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Collapse
Affiliation(s)
- Adam J Stark
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kalen J Petersen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula Trujillo
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nelleke C van Wouwe
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert M Kessler
- Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ariel Y Deutch
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Psychology, Vanderbilt University, Nashville, TN, United States; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel O Claassen
- Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
35
|
Singh A. Oscillatory activity in the cortico-basal ganglia-thalamic neural circuits in Parkinson's disease. Eur J Neurosci 2018; 48:2869-2878. [DOI: 10.1111/ejn.13853] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Arun Singh
- Department of Neurology; University of Minnesota; Minneapolis MN 55455 USA
- Department of Neurology; University of Iowa; Iowa City IA USA
| |
Collapse
|
36
|
Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. NEUROIMAGE-CLINICAL 2017; 16:634-642. [PMID: 28971013 PMCID: PMC5619991 DOI: 10.1016/j.nicl.2017.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022]
Abstract
Although chronic vagus nerve stimulation (VNS) is an established treatment for medically-intractable childhood epilepsy, there is considerable heterogeneity in seizure response and little data are available to pre-operatively identify patients who may benefit from treatment. Since the therapeutic effect of VNS may be mediated by afferent projections to the thalamus, we tested the hypothesis that intrinsic thalamocortical connectivity is associated with seizure response following chronic VNS in children with epilepsy. Twenty-one children (ages 5-21 years) with medically-intractable epilepsy underwent resting-state fMRI prior to implantation of VNS. Ten received sedation, while 11 did not. Whole brain connectivity to thalamic regions of interest was performed. Multivariate generalized linear models were used to correlate resting-state data with seizure outcomes, while adjusting for age and sedation status. A supervised support vector machine (SVM) algorithm was used to classify response to chronic VNS on the basis of intrinsic connectivity. Of the 21 subjects, 11 (52%) had 50% or greater improvement in seizure control after VNS. Enhanced connectivity of the thalami to the anterior cingulate cortex (ACC) and left insula was associated with greater VNS efficacy. Within our test cohort, SVM correctly classified response to chronic VNS with 86% accuracy. In an external cohort of 8 children, the predictive model correctly classified the seizure response with 88% accuracy. We find that enhanced intrinsic connectivity within thalamocortical circuitry is associated with seizure response following VNS. These results encourage the study of intrinsic connectivity to inform neural network-based, personalized treatment decisions for children with intractable epilepsy.
Collapse
|
37
|
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14:79. [PMID: 28800738 PMCID: PMC5553781 DOI: 10.1186/s12984-017-0295-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized.
Collapse
Affiliation(s)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
38
|
Ratti E, Waninger S, Berka C, Ruffini G, Verma A. Comparison of Medical and Consumer Wireless EEG Systems for Use in Clinical Trials. Front Hum Neurosci 2017; 11:398. [PMID: 28824402 PMCID: PMC5540902 DOI: 10.3389/fnhum.2017.00398] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/18/2017] [Indexed: 02/03/2023] Open
Abstract
Objectives: To compare quantitative EEG signal and test-retest reliability of medical grade and consumer EEG systems. Methods: Resting state EEG was acquired by two medical grade (B-Alert, Enobio) and two consumer (Muse, Mindwave) EEG systems in five healthy subjects during two study visits. EEG patterns, power spectral densities (PSDs) and test/retest reliability in eyes closed and eyes open conditions were compared across the four systems, focusing on Fp1, the only common electrode. Fp1 PSDs were obtained using Welch's modified periodogram method and averaged for the five subjects for each visit. The test/retest results were calculated as a ratio of Visit 1/Visit 2 Fp1 channel PSD at each 1 s epoch. Results: B-Alert, Enobio, and Mindwave Fp1 power spectra were similar. Muse showed a broadband increase in power spectra and the highest relative variation across test-retest acquisitions. Consumer systems were more prone to artifact due to eye blinks and muscle movement in the frontal region. Conclusions: EEG data can be successfully collected from all four systems tested. Although there was slightly more time required for application, medical systems offer clear advantages in data quality, reliability, and depth of analysis over the consumer systems. Significance: This evaluation provides evidence for informed selection of EEG systemsappropriate for clinical trials.
Collapse
Affiliation(s)
- Elena Ratti
- BiogenCambridge, MA, United States,*Correspondence: Elena Ratti
| | - Shani Waninger
- Advanced Brain Monitoring, Inc.Carlsbad, CA, United States
| | - Chris Berka
- Advanced Brain Monitoring, Inc.Carlsbad, CA, United States
| | | | | |
Collapse
|
39
|
Pallidostriatal Projections Promote β Oscillations in a Dopamine-Depleted Biophysical Network Model. J Neurosci 2017; 36:5556-71. [PMID: 27194335 DOI: 10.1523/jneurosci.0339-16.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the basal ganglia, focused rhythmicity is an important feature of network activity at certain stages of motor processing. In disease, however, the basal ganglia develop amplified rhythmicity. Here, we demonstrate how the cellular architecture and network dynamics of an inhibitory loop in the basal ganglia yield exaggerated synchrony and locking to β oscillations, specifically in the dopamine-depleted state. A key component of this loop is the pallidostriatal pathway, a well-characterized anatomical projection whose function has long remained obscure. We present a synaptic characterization of this pathway in mice and incorporate these data into a computational model that we use to investigate its influence over striatal activity under simulated healthy and dopamine-depleted conditions. Our model predicts that the pallidostriatal pathway influences striatal output preferentially during periods of synchronized activity within GPe. We show that, under dopamine-depleted conditions, this effect becomes a key component of a positive feedback loop between the GPe and striatum that promotes synchronization and rhythmicity. Our results generate novel predictions about the role of the pallidostriatal pathway in shaping basal ganglia activity in health and disease. SIGNIFICANCE STATEMENT This work demonstrates that functional connections from the globus pallidus externa (GPe) to striatum are substantially stronger onto fast-spiking interneurons (FSIs) than onto medium spiny neurons. Our circuit model suggests that when GPe spikes are synchronous, this pallidostriatal pathway causes synchronous FSI activity pauses, which allow a transient window of disinhibition for medium spiny neurons. In simulated dopamine-depletion, this GPe-FSI activity is necessary for the emergence of strong synchronization and the amplification and propagation of β oscillations, which are a hallmark of parkinsonian circuit dysfunction. These results suggest that GPe may play a central role in propagating abnormal circuit activity to striatum, which in turn projects to downstream basal ganglia structures. These findings warrant further exploration of GPe as a target for interventions for Parkinson's disease.
Collapse
|
40
|
Kolb R, Abosch A, Felsen G, Thompson JA. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients. Physiol Rep 2017; 5:e13322. [PMID: 28642341 PMCID: PMC5492209 DOI: 10.14814/phy2.13322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023] Open
Abstract
Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures.
Collapse
Affiliation(s)
- Rachel Kolb
- Department of Bioengineering, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
41
|
Ribary U, Doesburg SM, Ward LM. Unified principles of thalamo-cortical processing: the neural switch. Biomed Eng Lett 2017; 7:229-235. [PMID: 30603170 DOI: 10.1007/s13534-017-0033-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022] Open
Abstract
It has been reported that cross-frequency interactions may play an important role in local processing within thalamus and neocortex, as well as information transfer between subcortical and cortico-cortical brain regions. Strong commonalities in rhythmic network properties have been observed across recording techniques and task demands, but strong neuroscientific theories to situate such observations within a unified framework with direct relevance to explain neuropathologies remain scarce. Based on a comprehensive review of animal and human literature, we probe and introduce a neurophysiological framework to explain how coordinated cross-frequency and interregional oscillatory cortical dynamics underlie typical and atypical brain activation, and the formation of distributed functional ensembles supporting cortical networks underpinning perception and cognition. We propose that local regional activation by an external stimulus via a sensory pathway entails (1) attenuated alpha (8-14 Hz) and increased theta (4-8 Hz) and gamma (30-50 Hz) oscillatory activity, and (2) increased interactions among theta and gamma rhythms. These local dynamics also mediate the integration of activated neural populations into large-scale functional assemblies through neuronal synchronization. This comprehensive perspective into the animal and human literature indicates a further thinking beyond synchrony and connectivity and the readiness for more hypothesis-driven research and modeling toward unified principles of thalamo-cortical processing. We further introduced such a possible framework: "The ATG switch". We also discussed evidence that alpha-theta-gamma dynamics emerging from thalamocortical interactions may be implicated and disrupted in numerous neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Urs Ribary
- 1Simon Fraser University (SFU), Burnaby, Canada.,Behavioral and Cognitive Neuroscience Institute (BCNI), Burnaby, Canada.,3University of British Columbia (UBC), Vancouver, Canada.,4Child & Family Research Institute (CFRI), BC Children's Hospital, Vancouver, Canada.,5BC LEEF Leadership Chair, Behavioral and Cognitive Neuroscience Institute, Department of Psychology, Simon Fraser University (SFU), 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - S M Doesburg
- 1Simon Fraser University (SFU), Burnaby, Canada.,Behavioral and Cognitive Neuroscience Institute (BCNI), Burnaby, Canada
| | - L M Ward
- Behavioral and Cognitive Neuroscience Institute (BCNI), Burnaby, Canada.,3University of British Columbia (UBC), Vancouver, Canada
| |
Collapse
|
42
|
Walton KD, Maillet EL, Garcia J, Cardozo T, Galatzer-Levy I, Llinás RR. Differential Modulation of Rhythmic Brain Activity in Healthy Adults by a T-Type Calcium Channel Blocker: An MEG Study. Front Hum Neurosci 2017; 11:24. [PMID: 28217089 PMCID: PMC5289965 DOI: 10.3389/fnhum.2017.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
1-octanol is a therapeutic candidate for disorders involving the abnormal activation of the T-type calcium current since it blocks this current specifically. Such disorders include essential tremor and a group of neurological and psychiatric disorders resulting from thalamocortical dysrhythmia (TCD). For example, clinically, the observable phenotype in essential tremor is the tremor itself. The differential diagnostic of TCD is not based only on clinical signs and symptoms. Rather, TCD incorporates an electromagnetic biomarker, the presence of abnormal thalamocortical low frequency brain oscillations. The effect of 1-octanol on brain activity has not been tested. As a preliminary step to such a TCD study, we examined the short-term effects of a single dose of 1-octanol on resting brain activity in 32 healthy adults using magnetoencephalograpy. Visual inspection of baseline power spectra revealed that the subjects fell into those with strong low frequency activity (set 2, n = 11) and those without such activity, but dominated by an alpha peak (set 1, n = 22). Cross-validated linear discriminant analysis, using mean spectral density (MSD) in nine frequency bands as predictors, found overall that 82.5% of the subjects were classified as determined by visual inspection. The effect of 1-octanol on the MSD in narrow frequency bands differed between the two subject groups. In set 1 subjects the MSD increased in the 4.5-6.5Hz and 6.5-8.5 Hz bands. This was consistent with a widening of the alpha peak toward lower frequencies. In the set two subjects the MSD decrease in the 2.5-4.5 Hz and 4.5-6.5 Hz bands. This decreased power is consistent with the blocking effect of 1-octanol on T-type calcium channels. The subjects reported no adverse effects of the 1-octanol. Since stronger low frequency activity is characteristic of patients with TCD, 1-octanol and other T-type calcium channel blockers are good candidates for treatment of this group of disorders following a placebo-controlled study.
Collapse
Affiliation(s)
- Kerry D Walton
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - Emeline L Maillet
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - John Garcia
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York NY, USA
| | - Isaac Galatzer-Levy
- Steven and Alexandra Cohen Veterans Center for PostTraumatic Stress and Traumatic Brain Injury, Department of Psychiatry, New York University School of Medicine, New York NY, USA
| | - Rodolfo R Llinás
- Center for Neuromagnetism, Department of Neuroscience and Physiology, New York University School of Medicine, New York NY, USA
| |
Collapse
|
43
|
Kammermeier S, Pittard D, Hamada I, Wichmann T. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys. J Neurophysiol 2016; 116:2869-2881. [PMID: 27683881 DOI: 10.1152/jn.00104.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023] Open
Abstract
Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs.
Collapse
Affiliation(s)
- Stefan Kammermeier
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Damien Pittard
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Ikuma Hamada
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia; .,School of Medicine, Department of Neurology, Emory University, Atlanta, Georgia; and.,Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
44
|
Shoykhet M, Middleton JW. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood. Front Neural Circuits 2016; 10:68. [PMID: 27610077 PMCID: PMC4996986 DOI: 10.3389/fncir.2016.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and population level activity in the basal ganglia that may contribute to motor dysfunction after injury. Combination of deficits in sensory and motor thalamocortical circuit function may negatively impact sensorimotor integration in CA survivors. Modulation of abnormal activity patterns post-injury may represent a novel therapeutic target to improve neurologic function in survivors.
Collapse
Affiliation(s)
- Michael Shoykhet
- Department of Pediatrics, Washington University School of Medicine in St. LouisSt. Louis, MO, USA; Department of Pediatrics, St. Louis Children's HospitalSt. Louis, MO, USA
| | - Jason W Middleton
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences CenterNew Orleans, LA, USA; Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences CenterNew Orleans, LA, USA
| |
Collapse
|
45
|
The Impact of Cortical Lesions on Thalamo-Cortical Network Dynamics after Acute Ischaemic Stroke: A Combined Experimental and Theoretical Study. PLoS Comput Biol 2016; 12:e1005048. [PMID: 27509209 PMCID: PMC4979968 DOI: 10.1371/journal.pcbi.1005048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/05/2016] [Indexed: 01/25/2023] Open
Abstract
The neocortex and thalamus provide a core substrate for perception, cognition, and action, and are interconnected through different direct and indirect pathways that maintain specific dynamics associated with functional states including wakefulness and sleep. It has been shown that a lack of excitation, or enhanced subcortical inhibition, can disrupt this system and drive thalamic nuclei into an attractor state of low-frequency bursting and further entrainment of thalamo-cortical circuits, also called thalamo-cortical dysrhythmia (TCD). The question remains however whether similar TCD-like phenomena can arise with a cortical origin. For instance, in stroke, a cortical lesion could disrupt thalamo-cortical interactions through an attenuation of the excitatory drive onto the thalamus, creating an imbalance between excitation and inhibition that can lead to a state of TCD. Here we tested this hypothesis by comparing the resting-state EEG recordings of acute ischaemic stroke patients (N = 21) with those of healthy, age-matched control-subjects (N = 17). We observed that these patients displayed the hallmarks of TCD: a characteristic downward shift of dominant α-peaks in the EEG power spectra, together with increased power over the lower frequencies (δ and θ-range). Contrary to general observations in TCD, the patients also displayed a broad reduction in β-band activity. In order to explain the genesis of this stroke-induced TCD, we developed a biologically constrained model of a general thalamo-cortical module, allowing us to identify the specific cellular and network mechanisms involved. Our model showed that a lesion in the cortical component leads to sustained cell membrane hyperpolarization in the corresponding thalamic relay neurons, that in turn leads to the de-inactivation of voltage-gated T-type Ca2+-channels, switching neurons from tonic spiking to a pathological bursting regime. This thalamic bursting synchronises activity on a population level through divergent intrathalamic circuits, and entrains thalamo-cortical pathways by means of propagating low-frequency oscillations beyond the restricted region of the lesion. Hence, pathological stroke-induced thalamo-cortical dynamics can be the source of diaschisis, and account for the dissociation between lesion location and non-specific symptoms of stroke such as neuropathic pain and hemispatial neglect. The thalamus is involved in the relay and processing of most sensory information, and provides an interface between subcortical structures and the neocortex. However, disruptions in the subcortical communication with the thalamus are known to lead to thalamo-cortical dysrhythmia (TCD), which is linked to symptoms in a range of illnesses including Parkinson’s disease, neurogenic pain syndrome and tinnitus. Thus far, TCD has solely been interpreted in terms of changes within subcortical pathways, but here we investigate how cortical disturbances (i.e., ischaemic stroke) may affect thalamic function in a similar manner. We do so by analysing the electroencephalogram (EEG) of stroke patients with a cortical lesion, and show that their EEG power spectra display the characteristic features of TCD. We subsequently built a detailed spiking model of thalamo-cortical circuits to identify the local cellular, circuit, and network properties and dynamics that lead to the development of this stroke-induced TCD. Together, our results shed light on less-understood symptoms of stroke such as neuropathic pain and hemispatial neglect, help inform future brain monitoring and diagnostics post-stroke, and suggest potential new treatments for stroke and related neurological conditions.
Collapse
|
46
|
Wavelet Energy and Wavelet Coherence as EEG Biomarkers for the Diagnosis of Parkinson’s Disease-Related Dementia and Alzheimer’s Disease. ENTROPY 2015. [DOI: 10.3390/e18010008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Galvan A, Devergnas A, Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 2015; 9:5. [PMID: 25698937 PMCID: PMC4318426 DOI: 10.3389/fnana.2015.00005] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; Department of Neurology, School of Medicine, Emory University Atlanta, GA, USA ; Udall Center of Excellence for Parkinson's Disease Research, Emory University Atlanta, GA, USA
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; Udall Center of Excellence for Parkinson's Disease Research, Emory University Atlanta, GA, USA
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; Department of Neurology, School of Medicine, Emory University Atlanta, GA, USA ; Udall Center of Excellence for Parkinson's Disease Research, Emory University Atlanta, GA, USA
| |
Collapse
|
48
|
Wojtecki L, Petri D, Elben S, Hirschmann J, Yelnik J, Eickhoff S, Vesper J, Schnitzler A. Modulation of central thalamic oscillations during emotional-cognitive processing in chronic disorder of consciousness. Cortex 2014; 60:94-102. [DOI: 10.1016/j.cortex.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/16/2014] [Accepted: 09/10/2014] [Indexed: 11/29/2022]
|
49
|
Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp Neurol 2014; 261:782-90. [DOI: 10.1016/j.expneurol.2014.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
50
|
Fuggetta G, Bennett MA, Duke PA, Young AMJ. Quantitative electroencephalography as a biomarker for proneness toward developing psychosis. Schizophr Res 2014; 153:68-77. [PMID: 24508484 DOI: 10.1016/j.schres.2014.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/23/2013] [Accepted: 01/20/2014] [Indexed: 11/28/2022]
Abstract
The fully dimensional approach to the relationship between schizotypal personality traits and schizophrenia describes schizotypy as a continuum throughout the general population ranging from low schizotypy (LoS) and psychological health to high schizotypy (HiS) and psychosis-proneness. However, no biological markers have yet been discovered that reliably quantify an individual's degree of schizotypy and/or psychosis. This study aimed to evaluate quantitative electroencephalographic (qEEG) measures of power spectra as potential biomarkers of the proneness towards the development of psychosis in schizotypal individuals. The resting-state oscillatory brain dynamics under eyes-closed condition from 16 LoS and 16 HiS individuals were analysed for qEEG measures of background rhythm frequency, relative power in δ, θ, low-α, high-α, low-β, high-β and low-γ frequency bands, and the high-temporal cross-correlation of power spectra between low- and high-frequency bands observed by averaging signals from whole-head EEG electrodes. HiS individuals at rest locked the thalamocortical loop in the low-α band at a lower-frequency oscillation and displayed an abnormally high level of neural synchronisation. In addition, the high-α band was found to be positively correlated with both the high-β and low-γ bands unlike LoS individuals, indicating widespread thalamocortical resonance in HiS individuals. The increase of regional alpha oscillations in HiS individuals suggests abnormal high-level attention, whereas the pattern of correlation between frequency bands resembles the thalamocortical dysrhythmia phenomenon which underlies the symptomatology of a variety of neuropsychiatric disorders including schizophrenia. These qEEG biomarkers may aid clinicians in identifying HiS individuals with a high-risk of developing psychosis.
Collapse
Affiliation(s)
- Giorgio Fuggetta
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom.
| | - Matthew A Bennett
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom
| | - Philip A Duke
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom
| | - Andrew M J Young
- School of Psychology, College of Medicine, Biological Sciences and Psychology, University of Leicester, United Kingdom
| |
Collapse
|