1
|
Ozdemir B, Ambrus GG. From encoding to recognition: Exploring the shared neural signatures of visual memory. Brain Res 2025; 1857:149616. [PMID: 40187518 DOI: 10.1016/j.brainres.2025.149616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
This study investigated the shared neural dynamics underlying encoding and recognition processes across diverse visual object stimulus types in short term experimental familiarization, using EEG-based representational similarity analysis and multivariate cross-classification. Building upon previous research, we extended our exploration to the encoding phase. We show early visual stimulus category effects around 150 ms post-stimulus onset and old/new effects around 400 to 600 ms. Notably, a divergence in neural responses for encoding, old, and new stimuli emerged around 300 ms, with items encountered during the study phase showing the highest differentiation from old items during the test phase. Cross-category classification demonstrated discernible memory-related effects as early as 150 ms. Anterior regions of interest, particularly in the right hemisphere, did not exhibit differentiation between experimental phases or between study and new items, hinting at similar processing for items first encountered, irrespective of experiment phase. While short-term experimental familiarity did not consistently adhere to the old >new pattern observed in long-term personal familiarity, statistically significant effects are observed specifically for experimentally familiarized faces, suggesting a potential unique phenomenon specific to facial stimuli. Further investigation is warranted to elucidate underlying mechanisms and determine the extent of face-specific effects. Lastly, our findings underscore the utility of multivariate cross-classification and cross-dataset classification as promising tools for probing abstraction and shared neural signatures of cognitive processing.
Collapse
Affiliation(s)
- Berfin Ozdemir
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Géza Gergely Ambrus
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom.
| |
Collapse
|
2
|
Lehnen JM, Schweinberger SR, Nussbaum C. Vocal Emotion Perception and Musicality-Insights from EEG Decoding. SENSORS (BASEL, SWITZERLAND) 2025; 25:1669. [PMID: 40292745 PMCID: PMC11944463 DOI: 10.3390/s25061669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
Musicians have an advantage in recognizing vocal emotions compared to non-musicians, a performance advantage often attributed to enhanced early auditory sensitivity to pitch. Yet a previous ERP study only detected group differences from 500 ms onward, suggesting that conventional ERP analyses might not be sensitive enough to detect early neural effects. To address this, we re-analyzed EEG data from 38 musicians and 39 non-musicians engaged in a vocal emotion perception task. Stimuli were generated using parameter-specific voice morphing to preserve emotional cues in either the pitch contour (F0) or timbre. By employing a neural decoding framework with a Linear Discriminant Analysis classifier, we tracked the evolution of emotion representations over time in the EEG signal. Converging with the previous ERP study, our findings reveal that musicians-but not non-musicians-exhibited significant emotion decoding between 500 and 900 ms after stimulus onset, a pattern observed for F0-Morphs only. These results suggest that musicians' superior vocal emotion recognition arises from more effective integration of pitch information during later processing stages rather than from enhanced early sensory encoding. Our study also demonstrates the potential of neural decoding approaches using EEG brain activity as a biological sensor for unraveling the temporal dynamics of voice perception.
Collapse
Affiliation(s)
- Johannes M. Lehnen
- Department of Clinical Psychology in Childhood and Adolescence, Friedrich Schiller University Jena, 07743 Jena, Germany
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Stefan R. Schweinberger
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Voice Research Unit, Friedrich Schiller University Jena, 07743 Jena, Germany
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Christine Nussbaum
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Voice Research Unit, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Wang G, Chen L, Cichy RM, Kaiser D. Enhanced and idiosyncratic neural representations of personally typical scenes. Proc Biol Sci 2025; 292:20250272. [PMID: 40132631 PMCID: PMC11936675 DOI: 10.1098/rspb.2025.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Previous research shows that the typicality of visual scenes (i.e. if they are good examples of a category) determines how easily they can be perceived and represented in the brain. However, the unique visual diets individuals are exposed to across their lifetimes should sculpt very personal notions of typicality. Here, we thus investigated whether scenes that are more typical to individual observers are more accurately perceived and represented in the brain. We used drawings to enable participants to describe typical scenes (e.g. a kitchen) and converted these drawings into three-dimensional renders. These renders were used as stimuli in a scene categorization task, during which we recorded electroencephalography (EEG). In line with previous findings, categorization was most accurate for renders resembling the typical scene drawings of individual participants. Our EEG analyses reveal two critical insights on how these individual differences emerge on the neural level. First, personally typical scenes yielded enhanced neural representations from around 200 ms after onset. Second, personally typical scenes were represented in idiosyncratic ways, with reduced dependence on high-level visual features. We interpret these findings in a predictive processing framework, where individual differences in internal models of scene categories formed through experience shape visual analysis in idiosyncratic ways.
Collapse
Affiliation(s)
- Gongting Wang
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Lixiang Chen
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Daniel Kaiser
- Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-Universität Gießen, Gießen, Germany
- Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-Universität Gießen, Philipps-Universität Marburg and Technische Universität Darmstadt, Marburg, Germany
| |
Collapse
|
4
|
Willscheid N, Bublatzky F. Outgroup homogeneity perception as a precursor to the generalization of threat across racial outgroup individuals. Cortex 2024; 181:258-271. [PMID: 39571195 DOI: 10.1016/j.cortex.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 09/27/2024] [Indexed: 12/29/2024]
Abstract
People who look different from oneself are often categorized as homogeneous members of another racial group. We examined whether the relationship between such categorization and the tendency to generalize across outgroup individuals is explained by perceived visual similarity, leading to an all-look-alike misperception. To address this question at the neural level, White participants perceived sequences of White and Black faces while event-related electrocortical activity was recorded. Prior to each face sequence, one specific ingroup or outgroup face was instructed as a cue for receiving unpleasant electric shocks (threat cue), and we were interested in the extent to which such threat effects generalize to other non-instructed faces (safety cues). Face stimuli were presented in adaptor-target pairs, consisting of two ingroup faces or two outgroup faces, which could depict either the same or different identities. Results show less identity processing of outgroup compared to ingroup faces in early visual processing, i.e., N170 repetition suppression was sensitive only to ingroup face identities. Subsequently, as indicated by enhanced Late Positive Potentials to both threat and safety faces, instructed threat generalized stronger across outgroup compared to ingroup faces. These findings and their interaction suggest that the misperception of outgroup homogeneity may be an early precursor to the tendency to generalize threat associations across outgroup individuals.
Collapse
Affiliation(s)
- Niclas Willscheid
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Florian Bublatzky
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
5
|
Wiese H, Schweinberger SR, Kovács G. The neural dynamics of familiar face recognition. Neurosci Biobehav Rev 2024; 167:105943. [PMID: 39557351 DOI: 10.1016/j.neubiorev.2024.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Humans are highly efficient at recognising familiar faces. However, previous EEG/ERP research has given a partial and fragmented account of the neural basis of this remarkable ability. We argue that this is related to insufficient consideration of fundamental characteristics of familiar face recognition. These include image-independence (recognition across different pictures), levels of familiarity (familiar faces vary hugely in duration and intensity of our exposure to them), automaticity (we cannot voluntarily withhold from recognising a familiar face), and domain-selectivity (the degree to which face familiarity effects are selective). We review recent EEG/ERP work, combining uni- and multivariate methods, that has systematically targeted these shortcomings. We present a theoretical account of familiar face recognition, dividing it into early visual, domain-sensitive and domain-general phases, and integrating image-independence and levels of familiarity. Our account incorporates classic and more recent concepts, such as multi-dimensional face representation and course-to-fine processing. While several questions remain to be addressed, this new account represents a major step forward in our understanding of the neurophysiological basis of familiar face recognition.
Collapse
|
6
|
Xu W, Lyu B, Ru X, Li D, Gu W, Ma X, Zheng F, Li T, Liao P, Cheng H, Yang R, Song J, Jin Z, Li C, He K, Gao JH. Decoding the Temporal Structures and Interactions of Multiple Face Dimensions Using Optically Pumped Magnetometer Magnetoencephalography (OPM-MEG). J Neurosci 2024; 44:e2237232024. [PMID: 39358044 PMCID: PMC11580774 DOI: 10.1523/jneurosci.2237-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Humans possess a remarkable ability to rapidly access diverse information from others' faces with just a brief glance, which is crucial for intricate social interactions. While previous studies using event-related potentials/fields have explored various face dimensions during this process, the interplay between these dimensions remains unclear. Here, by applying multivariate decoding analysis to neural signals recorded with optically pumped magnetometer magnetoencephalography, we systematically investigated the temporal interactions between invariant and variable aspects of face stimuli, including race, gender, age, and expression. First, our analysis revealed unique temporal structures for each face dimension with high test-retest reliability. Notably, expression and race exhibited a dominant and stably maintained temporal structure according to temporal generalization analysis. Further exploration into the mutual interactions among face dimensions uncovered age effects on gender and race, as well as expression effects on race, during the early stage (∼200-300 ms postface presentation). Additionally, we observed a relatively late effect of race on gender representation, peaking ∼350 ms after the stimulus onset. Taken together, our findings provide novel insights into the neural dynamics underlying the multidimensional aspects of face perception and illuminate the promising future of utilizing OPM-MEG for exploring higher-level human cognition.
Collapse
Affiliation(s)
- Wei Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | | | - Xingyu Ru
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Dongxu Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Wenyu Gu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Xiao Ma
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Fufu Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Tingyue Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Pan Liao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Hao Cheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Rui Yang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jingqi Song
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zeyu Jin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Kaiyan He
- Changping Laboratory, Beijing 102206, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Wiese H, Popova T, Lidborg LH, Burton AM. The temporal dynamics of familiar face recognition: Event-related brain potentials reveal the efficient activation of facial identity representations. Int J Psychophysiol 2024; 204:112423. [PMID: 39168164 DOI: 10.1016/j.ijpsycho.2024.112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
While it is widely known that humans are typically highly accurate at recognizing familiar faces, it is less clear how efficiently recognition is achieved. In a series of three experiments, we used event-related brain potentials (ERP) in a repetition priming paradigm to examine the efficiency of familiar face recognition. Specifically, we varied the presentation time of the prime stimulus between 500 ms and 33 ms (Experiments 1 and 2), and additionally used backward masks (Experiment 3) to prevent the potential occurrence of visual aftereffects. Crucially, to test for the recognition of facial identity rather than a specific picture, we used different images of the same facial identities in repetition conditions. We observed clear ERP repetition priming effects between 300 and 500 ms after target onset at all prime durations, which suggests that the prime stimulus was sufficiently well processed to allow for facilitated recognition of the target in all conditions. This finding held true even in severely restricted viewing conditions including very brief prime durations and backward masks. We conclude that the facial recognition system is both highly effective and efficient, thus allowing for our impressive ability to recognise the faces that we know.
Collapse
Affiliation(s)
| | | | | | - A Mike Burton
- University of York, United Kingdom; Bond University, Australia
| |
Collapse
|
8
|
Ambrus GG. Shared neural codes of recognition memory. Sci Rep 2024; 14:15846. [PMID: 38982142 PMCID: PMC11233521 DOI: 10.1038/s41598-024-66158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Recognition memory research has identified several electrophysiological indicators of successful memory retrieval, known as old-new effects. These effects have been observed in different sensory domains using various stimulus types, but little attention has been given to their similarity or distinctiveness and the underlying processes they may share. Here, a data-driven approach was taken to investigate the temporal evolution of shared information content between different memory conditions using openly available EEG data from healthy human participants of both sexes, taken from six experiments. A test dataset involving personally highly familiar and unfamiliar faces was used. The results show that neural signals of recognition memory for face stimuli were highly generalized starting from around 200 ms following stimulus onset. When training was performed on non-face datasets, an early (around 200-300 ms) to late (post-400 ms) differentiation was observed over most regions of interest. Successful cross-classification for non-face stimuli (music and object/scene associations) was most pronounced in late period. Additionally, a striking dissociation was observed between familiar and remembered objects, with shared signals present only in the late window for correctly remembered objects, while cross-classification for familiar objects was successful in the early period as well. These findings suggest that late neural signals of memory retrieval generalize across sensory modalities and stimulus types, and the dissociation between familiar and remembered objects may provide insight into the underlying processes.
Collapse
Affiliation(s)
- Géza Gergely Ambrus
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
| |
Collapse
|
9
|
Ventura M, Caffò AO, Manippa V, Rivolta D. Normative data of the Italian Famous Face Test. Sci Rep 2024; 14:15276. [PMID: 38961204 PMCID: PMC11222389 DOI: 10.1038/s41598-024-66252-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
The faces we see in daily life exist on a continuum of familiarity, ranging from personally familiar to famous to unfamiliar faces. Thus, when assessing face recognition abilities, adequate evaluation measures should be employed to discriminate between each of these processes and their relative impairments. We here developed the Italian Famous Face Test (IT-FFT), a novel assessment tool for famous face recognition in typical and clinical populations. Normative data on a large sample (N = 436) of Italian individuals were collected, assessing both familiarity (d') and recognition accuracy. Furthermore, this study explored whether individuals possess insights into their overall face recognition skills by correlating the Prosopagnosia Index-20 (PI-20) with the IT-FFT; a negative correlation between these measures suggests that people have a moderate insight into their face recognition skills. Overall, our study provides the first online-based Italian test for famous faces (IT-FFT), a test that could be used alongside other standard tests of face recognition because it complements them by evaluating real-world face familiarity, providing a more comprehensive assessment of face recognition abilities. Testing different aspects of face recognition is crucial for understanding both typical and atypical face recognition.
Collapse
Affiliation(s)
- Martina Ventura
- The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, Australia
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Oronzo Caffò
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy.
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Del Bianco T, Lai MC, Mason L, Johnson MH, Charman T, Loth E, Banaschewski T, Buitelaar J, Murphy DGM, Jones EJH. Sex differences in social brain neural responses in autism: temporal profiles of configural face-processing within data-driven time windows. Sci Rep 2024; 14:14038. [PMID: 38890406 PMCID: PMC11189412 DOI: 10.1038/s41598-024-64387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Face-processing timing differences may underlie visual social attention differences between autistic and non-autistic people, and males and females. This study investigates the timing of the effects of neurotype and sex on face-processing, and their dependence on age. We analysed EEG data during upright and inverted photographs of faces from 492 participants from the Longitudinal European Autism Project (141 neurotypical males, 76 neurotypical females, 202 autistic males, 73 autistic females; age 6-30 years). We detected timings of sex/diagnosis effects on event-related potential amplitudes at the posterior-temporal channel P8 with Bootstrapped Cluster-based Permutation Analysis and conducted Growth Curve Analysis (GCA) to investigate the timecourse and dependence on age of neural signals. The periods of influence of neurotype and sex overlapped but differed in onset (respectively, 260 and 310 ms post-stimulus), with sex effects lasting longer. GCA revealed a smaller and later amplitude peak in autistic female children compared to non-autistic female children; this difference decreased in adolescence and was not significant in adulthood. No age-dependent neurotype difference was significant in males. These findings indicate that sex and neurotype influence longer latency face processing and implicates cognitive rather than perceptual processing. Sex may have more overarching effects than neurotype on configural face processing.
Collapse
Affiliation(s)
- Teresa Del Bianco
- Centre for Brain and Cognitive Development, Henry Wellcome Building, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK.
- School of Social Sciences and Professions, London Metropolitan University, London, UK.
| | - Meng-Chuan Lai
- Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Luke Mason
- Centre for Brain and Cognitive Development, Henry Wellcome Building, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Tony Charman
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eva Loth
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Jan Buitelaar
- Donders Center of Medical Neurosciences, Radboud University, Nijmegen, The Netherlands
| | - Declan G M Murphy
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Henry Wellcome Building, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
11
|
Wiese H, Popova T, Schipper M, Zakriev D, Burton AM, Young AW. How neural representations of newly learnt faces change over time: Event-related brain potential evidence for overnight consolidation. Cortex 2024; 171:13-25. [PMID: 37977110 DOI: 10.1016/j.cortex.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Previous experiments have shown that a brief encounter with a previously unfamiliar person leads to the establishment of new facial representations, which can be activated by completely novel pictures of the newly learnt face. The present study examined how stable such novel neural representations are over time, and, specifically, how they become consolidated within the first 24 h after learning. Using event-related brain potentials (ERPs) in a between-participants design, we demonstrate that clear face familiarity effects in the occipito-temporal N250 are evident immediately after learning. These effects then undergo change, with a nearly complete absence of familiarity-related ERP differences 4 h after the initial encounter. Critically, 24 h after learning, the original familiarity effect re-emerges. These findings suggest that the neural correlates of novel face representations are not stable over time but change during the first day after learning. The resulting pattern of change is consistent with a process of consolidation.
Collapse
|
12
|
Hagen S, Laguesse R, Rossion B. Extensive Visual Training in Adulthood Reduces an Implicit Neural Marker of the Face Inversion Effect. Brain Sci 2024; 14:146. [PMID: 38391720 PMCID: PMC10886861 DOI: 10.3390/brainsci14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Face identity recognition (FIR) in humans is supported by specialized neural processes whose function is spectacularly impaired when simply turning a face upside-down: the face inversion effect (FIE). While the FIE appears to have a slow developmental course, little is known about the plasticity of the neural processes involved in this effect-and in FIR in general-at adulthood. Here, we investigate whether extensive training (2 weeks, ~16 h) in young human adults discriminating a large set of unfamiliar inverted faces can reduce an implicit neural marker of the FIE for a set of entirely novel faces. In all, 28 adult observers were trained to individuate 30 inverted face identities presented under different depth-rotated views. Following training, we replicate previous behavioral reports of a significant reduction (56% relative accuracy rate) in the behavioral FIE as measured with a challenging four-alternative delayed-match-to-sample task for individual faces across depth-rotated views. Most importantly, using EEG together with a validated frequency tagging approach to isolate a neural index of FIR, we observe the same substantial (56%) reduction in the neural FIE at the expected occipito-temporal channels. The reduction in the neural FIE correlates with the reduction in the behavioral FIE at the individual participant level. Overall, we provide novel evidence suggesting a substantial degree of plasticity in processes that are key for face identity recognition in the adult human brain.
Collapse
Affiliation(s)
- Simen Hagen
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Renaud Laguesse
- Psychological Sciences Research Institute, UCLouvain, 1348 Louvain-La-Neuve, Belgium
| | - Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| |
Collapse
|
13
|
Cao R, Wang J, Brunner P, Willie JT, Li X, Rutishauser U, Brandmeir NJ, Wang S. Neural mechanisms of face familiarity and learning in the human amygdala and hippocampus. Cell Rep 2024; 43:113520. [PMID: 38151023 PMCID: PMC10834150 DOI: 10.1016/j.celrep.2023.113520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Recognizing familiar faces and learning new faces play an important role in social cognition. However, the underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the human amygdala and hippocampus and find a greater neuronal representational distance between pairs of familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more distinct. Representational distance increases with exposures to the same identity, suggesting that neural face representations are sharpened with learning and familiarization. Furthermore, representational distance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces increases representational distance, thus sharpening neural representations. Finally, we construct a computational model that demonstrates an increase in the representational distance of artificial units with training. Together, our results suggest that the neuronal population geometry, quantified by the representational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition and memory.
Collapse
Affiliation(s)
- Runnan Cao
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Jinge Wang
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter Brunner
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jon T Willie
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Ueli Rutishauser
- Departments of Neurosurgery and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA; Department of Neurosurgery, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Klink H, Kaiser D, Stecher R, Ambrus GG, Kovács G. Your place or mine? The neural dynamics of personally familiar scene recognition suggests category independent familiarity encoding. Cereb Cortex 2023; 33:11634-11645. [PMID: 37885126 DOI: 10.1093/cercor/bhad397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Recognizing a stimulus as familiar is an important capacity in our everyday life. Recent investigation of visual processes has led to important insights into the nature of the neural representations of familiarity for human faces. Still, little is known about how familiarity affects the neural dynamics of non-face stimulus processing. Here we report the results of an EEG study, examining the representational dynamics of personally familiar scenes. Participants viewed highly variable images of their own apartments and unfamiliar ones, as well as personally familiar and unfamiliar faces. Multivariate pattern analyses were used to examine the time course of differential processing of familiar and unfamiliar stimuli. Time-resolved classification revealed that familiarity is decodable from the EEG data similarly for scenes and faces. The temporal dynamics showed delayed onsets and peaks for scenes as compared to faces. Familiarity information, starting at 200 ms, generalized across stimulus categories and led to a robust familiarity effect. In addition, familiarity enhanced category representations in early (250-300 ms) and later (>400 ms) processing stages. Our results extend previous face familiarity results to another stimulus category and suggest that familiarity as a construct can be understood as a general, stimulus-independent processing step during recognition.
Collapse
Affiliation(s)
- Hannah Klink
- Department of Neurology, Universitätsklinikum, Kastanienstraße1 Jena, D-07747 Jena, Thüringen, Germany
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| | - Daniel Kaiser
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-University Gießen and Philipps-University Marburg, Hans-Meerwein-Straße 6 Mehrzweckgeb, 03C022, Marburg, D-35032, Hessen, Germany
| | - Rico Stecher
- Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, Justus-Liebig-University Gießen, Arndtstraße 2, D-35392 Gießen, Hessen, Germany
| | - Géza G Ambrus
- Department of Psychology, Bournemouth University, Poole House P319, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Gyula Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Institute of Psychology, Friedrich Schiller University Jena, Leutragraben 1, D-07743 Jena, Thüringen, Germany
| |
Collapse
|
15
|
Yan X, Volfart A, Rossion B. A neural marker of the human face identity familiarity effect. Sci Rep 2023; 13:16294. [PMID: 37770466 PMCID: PMC10539293 DOI: 10.1038/s41598-023-40852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Human adults associate different views of an identity much better for familiar than for unfamiliar faces. However, a robust and consistent neural index of this behavioral face identity familiarity effect (FIFE)-not found in non-human primate species-is lacking. Here we provide such a neural FIFE index, measured implicitly and with one fixation per face. Fourteen participants viewed 70 s stimulation sequences of a large set (n = 40) of widely variable natural images of a face identity at a rate of 6 images/second (6 Hz). Different face identities appeared every 5th image (1.2 Hz). In a sequence, face images were either familiar (i.e., famous) or unfamiliar, participants performing a non-periodic task unrelated to face recognition. The face identity recognition response identified at 1.2 Hz over occipital-temporal regions in the frequency-domain electroencephalogram was 3.4 times larger for familiar than unfamiliar faces. The neural response to familiar faces-which emerged at about 180 ms following face onset-was significant in each individual but a case of prosopdysgnosia. Besides potential clinical and forensic applications to implicitly measure one's knowledge of a face identity, these findings open new perspectives to clarify the neurofunctional source of the FIFE and understand the nature of human face identity recognition.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Université de Lorraine, CNRS, 54000, Nancy, France
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Angélique Volfart
- Université de Lorraine, CNRS, 54000, Nancy, France
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Bruno Rossion
- Université de Lorraine, CNRS, 54000, Nancy, France.
- Psychological Sciences Research Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, 54000, Nancy, France.
| |
Collapse
|
16
|
Abreu AL, Fernández-Aguilar L, Ferreira-Santos F, Fernandes C. Increased N250 elicited by facial familiarity: An ERP study including the face inversion effect and facial emotion processing. Neuropsychologia 2023; 188:108623. [PMID: 37356541 DOI: 10.1016/j.neuropsychologia.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
The present study aims to explore how familiarity modulates the neural processing of faces under different conditions: upright or inverted, neutral or emotional. To this purpose, 32 participants (25 female; age: M = 27.7 years, SD = 9.3) performed two face/emotion identification tasks during EEG recording. In the first task, to study facial processing, three different categories of facial stimuli were presented during a target detection task: famous familiar faces, faces of loved ones, and unfamiliar faces. To explore the face inversion effect according to each level of familiarity, these facial stimuli were also presented upside down. In the second task, to study emotional face processing, an emotional identification task on personally familiar and unfamiliar faces was conducted. The behavioural results showed an improved performance in the identification of facial expressions of emotion with the increase of facial familiarity, consistent with the previous literature. Regarding electrophysiological results, we found increased amplitudes of the P100, N170, and N250 for inverted compared to upright faces, independently of their degree of familiarity. Moreover, we did not find familiarity effects at the P100 and N170 time-windows, but we found that N250 amplitude was larger for personally familiar compared to unfamiliar faces. This result supports the reasoning that the facial familiarity increases the neural activity during the N250 time-window, which may be explained by the processing of additional information prompted by the viewing of our loved ones faces, in contrast to what happens with unfamiliar individuals.
Collapse
Affiliation(s)
- A L Abreu
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal; MindProber Labs, Porto, Portugal.
| | - L Fernández-Aguilar
- Department of Psychology, University of Castilla La Mancha, Albacete, Spain; Applied Cognitive Psychology Unit, Research Institute of Neurological Disabilities, University of Castilla La Mancha, Albacete, Spain
| | - F Ferreira-Santos
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal
| | - C Fernandes
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Portugal; Faculty of Human and Social Sciences, University Fernando Pessoa, Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Portugal
| |
Collapse
|
17
|
Shi Y, Kang J, Sommer W, Cao X. The development of processing second-order spatial relations of faces in Chinese preschoolers. J Exp Child Psychol 2023; 232:105678. [PMID: 37004264 DOI: 10.1016/j.jecp.2023.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Second-order relational information processing is the perception of the relative distance between facial features. Previous studies ignored the effect of different spatial manipulations on second-order sensitivity in face processing, and little is known about its developmental trajectory in East Asian populations, who have stronger holistic face processing than Western populations. We addressed these gaps in the literature through an experiment with four groups of Chinese preschool children (aged 3-6 years; n = 157) and a group of adults (n = 25). The participants were presented with face pairs displaying features with various spatial distance manipulations (Change 1: changes in the spacing between eyes; Change 2: nose-mouth spacing changes; Change 3: a combination of Changes 1 and 2) using a simultaneous two-alternative forced-choice task. Second-order sensitivity was already present in 3-year-old children across all manipulations and became more pronounced in 4-year-old children. Second-order sensitivity to the spatial distance between the eyes (i.e., Changes 1 and 3) among 4-year-olds was higher than that of 3-year-olds and was similar to that of adults, suggesting a key increase of this sensitivity from 3 to 4 years of age. Regarding the Change 2 condition, preschoolers aged 5 and 6 years had higher sensitivity than 3-year-olds; however, all preschoolers' sensitivity was inferior to that of adults. These findings show that the development of Chinese preschoolers' sensitivity for detecting spatial relations between the eyes might be faster than that for detecting nose-mouth spacing, supporting the importance of eyes in face processing.
Collapse
|
18
|
Popova T, Wiese H. Developing familiarity during the first eight months of knowing a person: A longitudinal EEG study on face and identity learning. Cortex 2023; 165:26-37. [PMID: 37245406 DOI: 10.1016/j.cortex.2023.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 04/23/2023] [Indexed: 05/30/2023]
Abstract
It is well-established that familiar and unfamiliar faces are processed differently, but surprisingly little is known about how familiarity builds up over time and how novel faces gradually become represented in the brain. Here, we used event-related brain potentials (ERPs) in a pre-registered, longitudinal study to examine the neural processes accompanying face and identity learning during the first eight months of knowing a person. Specifically, we examined how increasing real-life familiarity affects visual recognition (N250 Familiarity Effect) and the integration of person-related knowledge (Sustained Familiarity Effect, SFE). Sixteen first-year undergraduates were tested in three sessions, approximately one, five, and eight months after the start of the academic year, with highly variable "ambient" images of a new friend they had met at university and of an unfamiliar person. We observed clear ERP familiarity effects for the new friend after one month of familiarity. While there was an increase in the N250 effect over the course of the study, no change in the SFE was observed. These results suggest that visual face representations develop faster relative to the integration of identity-specific knowledge.
Collapse
|
19
|
Dunn JD, Towler A, Kemp RI, White D. Selecting police super-recognisers. PLoS One 2023; 18:e0283682. [PMID: 37195905 PMCID: PMC10191310 DOI: 10.1371/journal.pone.0283682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023] Open
Abstract
People vary in their ability to recognise faces. These individual differences are consistent over time, heritable and associated with brain anatomy. This implies that face identity processing can be improved in applied settings by selecting high performers-'super-recognisers' (SRs)-but these selection processes are rarely available for scientific scrutiny. Here we report an 'end-to-end' selection process used to establish an SR 'unit' in a large police force. Australian police officers (n = 1600) completed 3 standardised face identification tests and we recruited 38 SRs from this cohort to complete 10 follow-up tests. As a group, SRs were 20% better than controls in lab-based tests of face memory and matching, and equalled or surpassed accuracy of forensic specialists that currently perform face identification tasks for police. Individually, SR accuracy was variable but this problem was mitigated by adopting strict selection criteria. SRs' superior abilities transferred only partially to body identity decisions where the face was not visible, and they were no better than controls at deciding which visual scene that faces had initially been encountered in. Notwithstanding these important qualifications, we conclude that super-recognisers are an effective solution to improving face identity processing in applied settings.
Collapse
Affiliation(s)
- James D. Dunn
- School of Psychology, UNSW Sydney, Sydney, Australia
| | - Alice Towler
- School of Psychology, UNSW Sydney, Sydney, Australia
- School of Psychology, University of Queensland, Brisbane, Australia
| | | | - David White
- School of Psychology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
20
|
Lockhart AK, Sharpley CF, Bitsika V. Mu Desynchronisation in Autistic Individuals: What We Know and What We Need to Know. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2023. [DOI: 10.1007/s40489-023-00354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
AbstractAutism spectrum disorder (ASD) is a neurodevelopmental condition that includes social-communication deficits and repetitive and stereotypical behaviours (APA 2022). Neurobiological methods of studying ASD are a promising methodology for identifying ASD biomarkers. Mu rhythms (Mu) have the potential to shed light on the socialisation deficits that characterise ASD; however, Mu/ASD studies thus far have yielded inconsistent results. This review examines the existing Mu/ASD studies to determine where this variability lies to elucidate potential factors that can be addressed in future studies.
Collapse
|
21
|
How quickly do we learn new faces in everyday life? Neurophysiological evidence for face identity learning after a brief real-life encounter. Cortex 2023; 159:205-216. [PMID: 36640620 DOI: 10.1016/j.cortex.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Faces learnt in a single experimental session elicit a familiarity effect in event-related brain potentials (ERPs), with more negative amplitudes for newly learnt relative to unfamiliar faces in the N250 component. However, no ERP study has examined face learning following a brief real-life encounter, and it is not clear how long it takes to learn new faces in such ecologically more valid conditions. To investigate these questions, the present study examined whether robust image-independent representations, as reflected in the N250 familiarity effect, could be established after a brief unconstrained social interaction by analysing the ERPs elicited by highly variable images of the newly learnt identity and an unfamiliar person. Significant N250 familiarity effects were observed after a 30-min (Experiment 1) and a 10-min (Experiment 2) encounter, and a trend was observed after 5 min of learning (Experiment 3), demonstrating that 5-10 min of exposure were sufficient for the initial establishment of image-independent representations. Additionally, the magnitude of the effects reported after 10 and 30 min was comparable suggesting that the first 10 min of a social encounter might be crucial, with extra 20 min from the same encounter not adding further benefit for the initial formation of robust face representations.
Collapse
|
22
|
Dalski A, Kovács G, Ambrus GG. No semantic information is necessary to evoke general neural signatures of face familiarity: evidence from cross-experiment classification. Brain Struct Funct 2023; 228:449-462. [PMID: 36244002 PMCID: PMC9944719 DOI: 10.1007/s00429-022-02583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022]
Abstract
Recent theories on the neural correlates of face identification stressed the importance of the available identity-specific semantic and affective information. However, whether such information is essential for the emergence of neural signal of familiarity has not yet been studied in detail. Here, we explored the shared representation of face familiarity between perceptually and personally familiarized identities. We applied a cross-experiment multivariate pattern classification analysis (MVPA), to test if EEG patterns for passive viewing of personally familiar and unfamiliar faces are useful in decoding familiarity in a matching task where familiarity was attained thorough a short perceptual task. Importantly, no additional semantic, contextual, or affective information was provided for the familiarized identities during perceptual familiarization. Although the two datasets originate from different sets of participants who were engaged in two different tasks, familiarity was still decodable in the sorted, same-identity matching trials. This finding indicates that the visual processing of the faces of personally familiar and purely perceptually familiarized identities involve similar mechanisms, leading to cross-classifiable neural patterns.
Collapse
Affiliation(s)
- Alexia Dalski
- Department of Psychology, Philipps-Universität Marburg, 35039 Marburg, Germany ,Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, 35039 Marburg, Germany
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Géza Gergely Ambrus
- Institute of Psychology, Friedrich Schiller University Jena, 07743, Jena, Germany. .,Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK.
| |
Collapse
|
23
|
Trinh A, Dunn JD, White D. Verifying unfamiliar identities: Effects of processing name and face information in the same identity-matching task. Cogn Res Princ Implic 2022; 7:92. [PMID: 36224440 PMCID: PMC9556678 DOI: 10.1186/s41235-022-00441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Matching the identity of unfamiliar faces is important in applied identity verification tasks, for example when verifying photo ID at border crossings, in secure access areas, or when issuing identity credentials. In these settings, other biographical details-such as name or date of birth on an identity document-are also often compared to existing records, but the impact of these concurrent checks on decisions has not been examined. Here, we asked participants to sequentially compare name, then face information between an ID card and digital records to detect errors. Across four experiments (combined n = 274), despite being told that mismatches between written name pairs and face image pairs were independent, participants were more likely to say that face images matched when names also matched. Across all experiments, we found that this bias was unaffected by the image quality, suggesting that the source of the bias is somewhat independent of perceptual processes. In a final experiment, we show that this decisional bias was found only for name checks, but not when participants were asked to check ID card expiration dates or unrelated object names. We conclude that the bias arises from processing identity information and propose that it operates at the level of unfamiliar person identity representations. Results are interpreted in the context of theoretical models of face processing, and we discuss applied implications.
Collapse
Affiliation(s)
- Anita Trinh
- grid.1005.40000 0004 4902 0432School of Psychology, UNSW Sydney, Kensington, NSW 2052 Australia
| | - James D. Dunn
- grid.1005.40000 0004 4902 0432School of Psychology, UNSW Sydney, Kensington, NSW 2052 Australia
| | - David White
- grid.1005.40000 0004 4902 0432School of Psychology, UNSW Sydney, Kensington, NSW 2052 Australia
| |
Collapse
|
24
|
Characterizing the shared signals of face familiarity: Long-term acquaintance, voluntary control, and concealed knowledge. Brain Res 2022; 1796:148094. [PMID: 36116487 DOI: 10.1016/j.brainres.2022.148094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In a recent study using cross-experiment multivariate classification of EEG patterns, we found evidence for a shared familiarity signal for faces, patterns of neural activity that successfully separate trials for familiar and unfamiliar faces across participants and modes of familiarization. Here, our aim was to expand upon this research to further characterize the spatio-temporal properties of this signal. By utilizing the information content present for incidental exposure to personally familiar and unfamiliar faces, we tested how the information content in the neural signal unfolds over time under different task demands - giving truthful or deceptive responses to photographs of genuinely familiar and unfamiliar individuals. For this goal, we re-analyzed data from two previously published experiments using within-experiment leave-one-subject-out and cross-experiment classification of face familiarity. We observed that the general face familiarity signal, consistent with its previously described spatio-temporal properties, is present for long-term personally familiar faces under passive viewing, as well as for acknowledged and concealed familiarity responses. Also, central-posterior regions contain information related to deception. We propose that signals in the 200-400 ms window are modulated by top-down task-related anticipation, while the patterns in the 400-600 ms window are influenced by conscious effort to deceive. To our knowledge, this is the first report describing the representational dynamics of concealed knowledge for faces, using time-resolved multivariate classification.
Collapse
|
25
|
Li C, Burton AM, Ambrus GG, Kovács G. A neural measure of the degree of face familiarity. Cortex 2022; 155:1-12. [DOI: 10.1016/j.cortex.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
|
26
|
Popova T, Wiese H. The time it takes to truly know someone: Neurophysiological correlates of face and identity learning during the first two years. Biol Psychol 2022; 170:108312. [DOI: 10.1016/j.biopsycho.2022.108312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
|
27
|
Campbell A, Tanaka JW. When a stranger becomes a friend: Measuring the neural correlates of real-world face familiarisation. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.2002993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alison Campbell
- Department of Psychology, University of Victoria, Victoria, Canada
| | - James W. Tanaka
- Department of Psychology, University of Victoria, Victoria, Canada
| |
Collapse
|
28
|
Dalski A, Kovács G, Ambrus GG. Evidence for a General Neural Signature of Face Familiarity. Cereb Cortex 2021; 32:2590-2601. [PMID: 34628490 DOI: 10.1093/cercor/bhab366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
We explored the neural signatures of face familiarity using cross-participant and cross-experiment decoding of event-related potentials, evoked by unknown and experimentally familiarized faces from a set of experiments with different participants, stimuli, and familiarization-types. Human participants of both sexes were either familiarized perceptually, via media exposure, or by personal interaction. We observed significant cross-experiment familiarity decoding involving all three experiments, predominantly over posterior and central regions of the right hemisphere in the 270-630 ms time window. This shared face familiarity effect was most prominent across the Media and the Personal, as well as between the Perceptual and Personal experiments. Cross-experiment decodability makes this signal a strong candidate for a general neural indicator of face familiarity, independent of familiarization methods, participants, and stimuli. Furthermore, the sustained pattern of temporal generalization suggests that it reflects a single automatic processing cascade that is maintained over time.
Collapse
Affiliation(s)
- Alexia Dalski
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
- Department of Psychology, Philipps-Universität Marburg, D-35039 Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, D-35039 Marburg, Germany
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Géza Gergely Ambrus
- Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| |
Collapse
|