1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Thornton ZA, Andrews LJ, Zhao H, Zheng J, Paternoster L, Robinson JW, Kurian KM. Brain multi-omic Mendelian randomisation to identify novel drug targets for gliomagenesis. Hum Mol Genet 2025; 34:178-192. [PMID: 39565278 PMCID: PMC11780873 DOI: 10.1093/hmg/ddae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Genetic variants associated with molecular traits that are also associated with liability to glioma can provide causal evidence for the identification and prioritisation of drug targets. METHODS We performed comprehensive two-sample Mendelian randomisation (Wald ratio and/or IVW) and colocalisation analyses of molecular traits on glioma. Instrumentable traits (QTLs P < 5 × 10-8) were identified amongst 11 985 gene expression measures, 13 285 splicing isoforms and 10 198 protein abundance measures, derived from 15 brain regions. Glioma summary-level data was extracted from a genome-wide association meta-analysis of 12 496 cases and 18 190 controls. RESULTS We found evidence for causal effect of 22 molecular traits (across 18 genes/proteins) on glioma risk. Thirteen molecular traits have been previously linked with glioma risk and five were novel; HBEGF (5q31.3) expression and all glioma [OR 1.36 (95%CI 1.19-1.55); P = 4.41 × 10-6]; a CEP192 (18p11.21) splice isoform and glioblastoma [OR 4.40 (95%CI 2.28-8.48); P = 9.78 × 10-4]; a FAIM (3q22.3) splice isoform and all glioma [OR 2.72-3.43; P = 1.03 × 10-5 to 1.09 × 10-5]; a SLC8A1 (2p22.1) splice isoform and all glioma [OR 0.37 (95%CI 0.24-0.56; P = 5.72 × 10-6]; D2HGDH (2q37.3) protein and all glioma [OR 0.86 (95%CI 0.80-0.92); P = 5.94 × 10-6)]. CONCLUSIONS We provide robust causal evidence for prioritising genes and their protein products in glioma research. Our results highlight the importance of alternative splicing as a mechanism in gliomagenesis and as an avenue for exploration of drug targets.
Collapse
Affiliation(s)
- Zak A Thornton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme (ICEP), University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Leeds Institute of Cardiovascular and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds and NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, United Kingdom
| | - Lily J Andrews
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme (ICEP), University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, South Chongqing Road, Shanghai, 200025, China
- Shanghai National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, South Chongqing Road, Shanghai, 200025, China
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Jamie W Robinson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
| | - Kathreena M Kurian
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Cancer Research Integrative Cancer Epidemiology Programme (ICEP), University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, United Kingdom
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Department of Neuropathology, Lime Walk Buidling, Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB, United Kingdom
| |
Collapse
|
3
|
Del Val C, Díaz de la Guardia-Bolívar E, Zwir I, Mishra PP, Mesa A, Salas R, Poblete GF, de Erausquin G, Raitoharju E, Kähönen M, Raitakari O, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. Gene expression networks regulated by human personality. Mol Psychiatry 2024; 29:2241-2260. [PMID: 38433276 PMCID: PMC11408262 DOI: 10.1038/s41380-024-02484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Genome-wide association studies of human personality have been carried out, but transcription of the whole genome has not been studied in relation to personality in humans. We collected genome-wide expression profiles of adults to characterize the regulation of expression and function in genes related to human personality. We devised an innovative multi-omic approach to network analysis to identify the key control elements and interactions in multi-modular networks. We identified sets of transcribed genes that were co-expressed in specific brain regions with genes known to be associated with personality. Then we identified the minimum networks for the co-localized genes using bioinformatic resources. Subjects were 459 adults from the Young Finns Study who completed the Temperament and Character Inventory and provided peripheral blood for genomic and transcriptomic analysis. We identified an extrinsic network of 45 regulatory genes from seed genes in brain regions involved in self-regulation of emotional reactivity to extracellular stimuli (e.g., self-regulation of anxiety) and an intrinsic network of 43 regulatory genes from seed genes in brain regions involved in self-regulation of interpretations of meaning (e.g., production of concepts and language). We discovered that interactions between the two networks were coordinated by a control hub of 3 miRNAs and 3 protein-coding genes shared by both. Interactions of the control hub with proteins and ncRNAs identified more than 100 genes that overlap directly with known personality-related genes and more than another 4000 genes that interact indirectly. We conclude that the six-gene hub is the crux of an integrative network that orchestrates information-transfer throughout a multi-modular system of over 4000 genes enriched in liquid-liquid-phase-separation (LLPS)-related RNAs, diverse transcription factors, and hominid-specific miRNAs and lncRNAs. Gene expression networks associated with human personality regulate neuronal plasticity, epigenesis, and adaptive functioning by the interactions of salience and meaning in self-awareness.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Elisa Díaz de la Guardia-Bolívar
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Igor Zwir
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Pashupati P Mishra
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Alberto Mesa
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Ramiro Salas
- The Menninger Clinic, Baylor College of Medicine, and DeBakey VA Medical Center, Houston, TX, USA
| | | | - Gabriel de Erausquin
- University of Texas Health San Antonio, Long School of Medicine, Department of Neurology, Biggs Institute of Alzheimer's & Neurodegenerative Disorders, San Antonio, TX, USA
| | - Emma Raitoharju
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- University of Turku and Turku University Hospital, Center for Population Health Research; University of Turku, Research Center of Applied and Preventive Cardiovascular Medicine; Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku, Finland
| | | | - Terho Lehtimäki
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | | |
Collapse
|
4
|
Sirés A, Pazo-González M, López-Soriano J, Méndez A, de la Rosa EJ, de la Villa P, Comella JX, Hernández-Sánchez C, Solé M. The Absence of FAIM Leads to a Delay in Dark Adaptation and Hampers Arrestin-1 Translocation upon Light Reception in the Retina. Cells 2023; 12:cells12030487. [PMID: 36766830 PMCID: PMC9914070 DOI: 10.3390/cells12030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The short and long isoforms of FAIM (FAIM-S and FAIM-L) hold important functions in the central nervous system, and their expression levels are specifically enriched in the retina. We previously described that Faim knockout (KO) mice present structural and molecular alterations in the retina compatible with a neurodegenerative phenotype. Here, we aimed to study Faim KO retinal functions and molecular mechanisms leading to its alterations. Electroretinographic recordings showed that aged Faim KO mice present functional loss of rod photoreceptor and ganglion cells. Additionally, we found a significant delay in dark adaptation from early adult ages. This functional deficit is exacerbated by luminic stress, which also caused histopathological alterations. Interestingly, Faim KO mice present abnormal Arrestin-1 redistribution upon light reception, and we show that Arrestin-1 is ubiquitinated, a process that is abrogated by either FAIM-S or FAIM-L in vitro. Our results suggest that FAIM assists Arrestin-1 light-dependent translocation by a process that likely involves ubiquitination. In the absence of FAIM, this impairment could be the cause of dark adaptation delay and increased light sensitivity. Multiple retinal diseases are linked to deficits in photoresponse termination, and hence, investigating the role of FAIM could shed light onto the underlying mechanisms of their pathophysiology.
Collapse
Affiliation(s)
- Anna Sirés
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Mateo Pazo-González
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ana Méndez
- Department of Physiological Sciences, School of Medicine, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut de Neurociències, Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Campus Universitari de Bellvitge, University of Barcelona, 08907 Barcelona, Spain
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Pedro de la Villa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
5
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
6
|
Coccia E, Solé M, Comella JX. FAIM-L - SIVA-1: Two Modulators of XIAP in Non-Apoptotic Caspase Function. Front Cell Dev Biol 2022; 9:826037. [PMID: 35083225 PMCID: PMC8784879 DOI: 10.3389/fcell.2021.826037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Apoptosis is crucial for the correct development of the nervous system. In adulthood, the same protein machinery involved in programmed cell death can control neuronal adaptiveness through modulation of synaptic pruning and synaptic plasticity processes. Caspases are the main executioners in these molecular pathways, and their strict regulation is essential to perform neuronal remodeling preserving cell survival. FAIM-L and SIVA-1 are regulators of caspase activation. In this review we will focus on FAIM-L and SIVA-1 as two functional antagonists that modulate non-apoptotic caspase activity in neurons. Their participation in long-term depression and neurite pruning will be described in base of the latest studies performed. In addition, the association of FAIM-L non-apoptotic functions with the neurodegeneration process will be reviewed.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica I Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
7
|
Han T, Wang P, Wang Y, Xun W, Lei J, Wang T, Lu Z, Gan M, Zhang W, Yu B, Wang JB. FAIM regulates autophagy through glutaminolysis in lung adenocarcinoma. Autophagy 2021; 18:1416-1432. [PMID: 34720024 PMCID: PMC9225548 DOI: 10.1080/15548627.2021.1987672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Altered glutamine metabolism is an important aspect of cancer metabolic reprogramming. The GLS isoform GAC (glutaminase C), the rate-limiting enzyme in glutaminolysis, plays a vital role in cancer initiation and progression. Our previous studies demonstrated that phosphorylation of GAC was essential for its high enzymatic activity. However, the molecular mechanisms for GAC in maintaining its high enzymatic activity and protein stability still need to be further clarified. FAIM/FAIM1 (Fas apoptotic inhibitory molecule) is known as an important anti-apoptotic protein, but little is known about its function in tumorigenesis. Here, we found that knocking down FAIM induced macroautophagy/autophagy through suppressing the activation of the MTOR pathway in lung adenocarcinoma. Further studies demonstrated that FAIM could promote the tetramer formation of GAC through increasing PRKCE/PKCε-mediated phosphorylation. What's more, FAIM also stabilized GAC through sequestering GAC from degradation by protease ClpXP. These effects increased the production of α-ketoglutarate, leading to the activation of MTOR. Besides, FAIM also promoted the association of ULK1 and MTOR and this further suppressed autophagy induction. These findings discovered new functions of FAIM and elucidated an important molecular mechanism for GAC in maintaining its high enzymatic activity and protein stability.
Collapse
Affiliation(s)
- Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Pengcheng Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Yanan Wang
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Wenze Xun
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Tao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Zhuo Lu
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| |
Collapse
|
8
|
Sirés A, Turch-Anguera M, Bogdanov P, Sampedro J, Ramos H, Ruíz Lasa A, Huo J, Xu S, Lam KP, López-Soriano J, Pérez-García MJ, Hernández C, Simó R, Solé M, Comella JX. Faim knockout leads to gliosis and late-onset neurodegeneration of photoreceptors in the mouse retina. J Neurosci Res 2021; 99:3103-3120. [PMID: 34713467 DOI: 10.1002/jnr.24978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023]
Abstract
Fas Apoptotic Inhibitory Molecule protein (FAIM) is a death receptor antagonist and an apoptosis regulator. It encodes two isoforms, namely FAIM-S (short) and FAIM-L (long), both with significant neuronal functions. FAIM-S, which is ubiquitously expressed, is involved in neurite outgrowth. In contrast, FAIM-L is expressed only in neurons and it protects them from cell death. Interestingly, FAIM-L is downregulated in patients and mouse models of Alzheimer's disease before the onset of neurodegeneration, and Faim transcript levels are decreased in mouse models of retinal degeneration. However, few studies have addressed the role of FAIM in the central nervous system, yet alone the retina. The retina is a highly specialized tissue, and its degeneration has proved to precede pathological mechanisms of neurodegenerative diseases. Here we describe that Faim depletion in mice damages the retina persistently and leads to late-onset photoreceptor death in older mice. Immunohistochemical analyses showed that Faim knockout (Faim-/- ) mice present ubiquitinated aggregates throughout the retina from early ages. Moreover, retinal cells released stress signals that can signal to Müller cells, as shown by immunofluorescence and qRT-PCR. Müller cells monitor retinal homeostasis and trigger a gliotic response in Faim-/- mice that becomes pathogenic when sustained. In this regard, we observed pronounced vascular leakage at later ages, which may be caused by persistent inflammation. These results suggest that FAIM is an important player in the maintenance of retinal homeostasis, and they support the premise that FAIM is a plausible early marker for late photoreceptor and neuronal degeneration.
Collapse
Affiliation(s)
- Anna Sirés
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Mireia Turch-Anguera
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Joel Sampedro
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Agustín Ruíz Lasa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Research Center and Memory Clinic. Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jianxin Huo
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - M Jose Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Montse Solé
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
9
|
Sansa A, de la Fuente S, Comella JX, Garcera A, Soler RM. Intracellular pathways involved in cell survival are deregulated in mouse and human spinal muscular atrophy motoneurons. Neurobiol Dis 2021; 155:105366. [PMID: 33845129 DOI: 10.1016/j.nbd.2021.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder caused by loss of the Survival Motor Neuron 1 gene (SMN1). Due to this depletion of the survival motor neuron (SMN) protein, the disease is characterized by the degeneration of spinal cord motoneurons (MNs), progressive muscular atrophy, and weakness. Nevertheless, the ultimate cellular and molecular mechanisms leading to cell loss in SMN-reduced MNs are only partially known. We have investigated the activation of apoptotic and neuronal survival pathways in several models of SMA cells. Even though the antiapoptotic proteins FAIM-L and XIAP were increased in SMA MNs, the apoptosis executioner cleaved-caspase-3 was also elevated in these cells, suggesting the activation of the apoptosis process. Analysis of the survival pathway PI3K/Akt showed that Akt phosphorylation was reduced in SMA MNs and pharmacological inhibition of PI3K diminished SMN and Gemin2 at transcriptional level in control MNs. In contrast, ERK phosphorylation was increased in cultured mouse and human SMA MNs. Our observations suggest that apoptosis is activated in SMA MNs and that Akt phosphorylation reduction may control cell degeneration, thereby regulating the transcription of Smn and other genes related to SMN function.
Collapse
Affiliation(s)
- Alba Sansa
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Sandra de la Fuente
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Joan X Comella
- CIBERNED & Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Ana Garcera
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Experimental Medicine Department, Universitat de Lleida-IRBLleida, Rovira Roure, 80, 25198, Lleida, Spain..
| |
Collapse
|
10
|
Coccia E, Masanas M, López-Soriano J, Segura MF, Comella JX, Pérez-García MJ. FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b. Front Cell Dev Biol 2021; 8:584606. [PMID: 33425889 PMCID: PMC7785887 DOI: 10.3389/fcell.2020.584606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis plays an important role during development, control of tissue homeostasis and in pathological contexts. Apoptosis is executed mainly through the intrinsic pathway or the death receptor pathway, i.e., extrinsic pathway. These processes are tightly controlled by positive and negative regulators that dictate pro- or anti-apoptotic death receptor signaling. One of these regulators is the Fas Apoptotic Inhibitory Molecule (FAIM). This death receptor antagonist has two main isoforms, FAIM-S (short) which is the ubiquitously expressed, and a longer isoform, FAIM-L (long), which is mainly expressed in the nervous system. Despite its role as a death receptor antagonist, FAIM also participates in cell death-independent processes such as nerve growth factor-induced neuritogenesis or synaptic transmission. Moreover, FAIM isoforms have been implicated in blocking the formation of protein aggregates under stress conditions or de-regulated in certain pathologies such as Alzheimer’s and Parkinson’s diseases. Despite the role of FAIM in physiological and pathological processes, little is known about the molecular mechanisms involved in the regulation of its expression. Here, we seek to investigate the post-transcriptional regulation of FAIM isoforms by microRNAs (miRNAs). We found that miR-206, miR-1-3p, and miR-133b are direct regulators of FAIM expression. These findings provide new insights into the regulation of FAIM and may provide new opportunities for therapeutic intervention in diseases in which the expression of FAIM is altered.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Masanas
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, Barcelona, Spain
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M José Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
11
|
Wang P, Xun W, Han T, Cheng Z. FAIM-S functions as a negative regulator of NF-κB pathway and blocks cell cycle progression in NSCLC cells. Cell Cycle 2020; 19:3458-3467. [PMID: 33249986 DOI: 10.1080/15384101.2020.1843811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Tumorigenesis is closely related to the disorder of the cell cycle. The cell cycle progression includes the interphase (G0/G1, S, and G2 phase) and mitosis (M phase). CCND1 is a key protein that regulates the entry of the G0/G1 phase into the S phase. In our study, we found that the short form of Fas Apoptosis Inhibitory Molecule 1 (FAIM-S) could regulate the expression of CCND1 and had a tumor-suppressing role in non-small cell lung cancer (NSCLC). Overexpressing FAIM-S significantly inhibited the proliferation and cell cycle progression in NSCLC cells. Further studies demonstrated that FAIM-S could interact with IKK-α, reducing its protein stability. This effect led to the suppression of the NF-κB pathway, resulting in the decreased expression of CCND1. Thus, our study demonstrated that FAIM-S functioned as a negative regulator of the NF-κB pathway and played a tumor-suppressing role through blocking cell cycle progression in NSCLC cells.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China.,Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Wenze Xun
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University , Nanchang, P.R.China
| |
Collapse
|
12
|
Coccia E, Planells-Ferrer L, Badillos-Rodríguez R, Pascual M, Segura MF, Fernández-Hernández R, López-Soriano J, Garí E, Soriano E, Barneda-Zahonero B, Moubarak RS, Pérez-García MJ, Comella JX. SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death Dis 2020; 11:82. [PMID: 32015347 PMCID: PMC6997380 DOI: 10.1038/s41419-020-2282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.
Collapse
Affiliation(s)
- Elena Coccia
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Raquel Badillos-Rodríguez
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Marta Pascual
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR)-UAB, 08035, Barcelona, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Joaquin López-Soriano
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Eloi Garí
- Cell Cycle Laboratory, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina, Universitat de Lleida, 25198, Lleida, Catalonia, Spain
| | - Eduardo Soriano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Bellaterra, Spain.,Department of Cell Biology, Physiology and Immunology, Institut de Neurociències, Universitat de Barcelona, 08031, Barcelona, Spain.,ICREA Academia, Barcelona, Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain
| | - Rana S Moubarak
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.,Department of Pathology, NYU Langone Health, New York, 10016, NY, USA
| | - M Jose Pérez-García
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| | - Joan X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain. .,Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08031, Bellaterra, Spain.
| |
Collapse
|
13
|
Huo J, Xu S, Lam KP. FAIM: An Antagonist of Fas-Killing and Beyond. Cells 2019; 8:cells8060541. [PMID: 31167518 PMCID: PMC6628066 DOI: 10.3390/cells8060541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Fas Apoptosis Inhibitory Molecule (FAIM) is an anti-apoptotic protein that is up-regulated in B cell receptor (BCR)-activated B cells and confers upon them resistance to Fas-mediated cell death. Faim has two alternatively spliced isoforms, with the short isoform ubiquitously expressed in various tissues and the long isoform mainly found in the nervous tissues. FAIM is evolutionarily conserved but does not share any significant primary sequence homology with any known protein. The function of FAIM has been extensively studied in the past 20 years, with its primary role being ascribed to be anti-apoptotic. In addition, several other functions of FAIM were also discovered in different physiological and pathological conditions, such as cell growth, metabolism, Alzheimer’s disease and tumorigenesis. However, the detailed molecular mechanisms underlying FAIM’s role in these conditions remain unknown. In this review, we summarize comprehensively the functions of FAIM in these different contexts and discuss its potential as a diagnostic, prognostic or therapeutic target.
Collapse
Affiliation(s)
- Jianxin Huo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
14
|
Xia J, Kong L, Zhou LJ, Wu SZ, Yao LJ, He C, He CY, Peng HJ. Genome-Wide Bimolecular Fluorescence Complementation-Based Proteomic Analysis of Toxoplasma gondii ROP18's Human Interactome Shows Its Key Role in Regulation of Cell Immunity and Apoptosis. Front Immunol 2018; 9:61. [PMID: 29459857 PMCID: PMC5807661 DOI: 10.3389/fimmu.2018.00061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/10/2018] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii rhoptry protein ROP18 (TgROP18) is a key virulence factor secreted into the host cell during invasion, where it modulates the host cell response by interacting with its host targets. However, only a few TgROP18 targets have been identified. In this study, we applied a high-throughput protein-protein interaction (PPI) screening in human cells using bimolecular fluorescence complementation (BiFC) to identify the targets of Type I strain ROP18 (ROP18I) and Type II strain ROP18 (ROP18II). From a pool of more than 18,000 human proteins, 492 and 141 proteins were identified as the targets of ROP18I and ROP18II, respectively. Gene ontology, search tool for the retrieval of interacting genes/proteins PPI network, and Ingenuity pathway analyses revealed that the majority of these proteins were associated with immune response and apoptosis. This indicates a key role of TgROP18 in manipulating host's immunity and cell apoptosis, which might contribute to the immune escape and successful parasitism of the parasite. Among the proteins identified, the immunity-related proteins N-myc and STAT interactor, IL20RB, IL21, ubiquitin C, and vimentin and the apoptosis-related protein P2RX1 were further verified as ROP18I targets by sensitized emission-fluorescence resonance energy transfer (SE-FRET) and co-immunoprecipitation. Our study substantially contributes to the current limited knowledge on human targets of TgROP18 and provides a novel tool to investigate the function of parasite effectors in human cells.
Collapse
Affiliation(s)
- Jing Xia
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Juan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shui-Zhen Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li-Jie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Identification and characterization of new isoforms of human fas apoptotic inhibitory molecule (FAIM). PLoS One 2017; 12:e0185327. [PMID: 28981531 PMCID: PMC5628826 DOI: 10.1371/journal.pone.0185327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Fas Apoptosis Inhibitory Molecule (FAIM) is an evolutionarily highly conserved death receptor antagonist, widely expressed and known to participate in physiological and pathological processes. Two FAIM transcript variants have been characterized to date, namely FAIM short (FAIM-S) and FAIM long (FAIM-L). FAIM-S is ubiquitously expressed and serves as an anti-apoptotic protein in the immune system. Furthermore, in neurons, this isoform promotes NGF-induced neurite outgrowth through NF-кB and ERK signaling. In contrast FAIM-L is found only in neurons, where it exerts anti-apoptotic activity against several stimuli. In addition to these two variants, in silico studies point to the existence of two additional isoforms, neither of which have been characterized to date. In this regard, here we confirm the presence of these two additional FAIM isoforms in human fetal brain, fetal and adult testes, and placenta tissues. We named them FAIM-S_2a and FAIM-L_2a since they have the same sequence as FAIM-S and FAIM-L, but include exon 2a. PCR and western blot revealed that FAIM-S_2a shows ubiquitous expression in all the tissues and cellular models tested, while FAIM-L_2a is expressed exclusively in tissues of the nervous system. In addition, we found that, when overexpressed in non-neuronal cells, the splicing factor nSR100 induces the expression of the neuronal isoforms, thus identifying it as responsible for the generation of FAIM-L and FAIM-L_2a. Functionally, FAIM-S_2a and FAIM-L_2a increased neurite outgrowth in response to NGF stimulation in a neuronal model. This observation thus, supports the notion that these two isoforms are involved in neuronal differentiation. Furthermore, subcellular fractionation experiments revealed that, in contrast to FAIM-S and FAIM-L, FAIM-S_2a and FAIM-L_2a are able to localize to the nucleus, where they may have additional functions. In summary, here we report on two novel FAIM isoforms that may have relevant roles in the physiology and pathology of the nervous system.
Collapse
|
16
|
Mukherjee A, Williams DW. More alive than dead: non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 2017. [PMID: 28644437 PMCID: PMC5520460 DOI: 10.1038/cdd.2017.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are arguably the most fascinating and complex structures in the known universe. How they are built, changed by experience and then degenerate are some of the biggest questions in biology. Regressive phenomena, such as neuron pruning and programmed cell death, have a key role in the building and maintenance of the nervous systems. Both of these cellular mechanisms deploy the caspase family of protease enzymes. In this review, we highlight the non-apoptotic function of caspases during nervous system development, plasticity and disease, particularly focussing on their role in structural remodelling. We have classified pruning as either macropruning, where complete branches are removed, or micropruning, where individual synapses or dendritic spines are eliminated. Finally we discuss open questions and possible future directions within the field.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Darren W Williams
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
17
|
FAIM-L regulation of XIAP degradation modulates Synaptic Long-Term Depression and Axon Degeneration. Sci Rep 2016; 6:35775. [PMID: 27767058 PMCID: PMC5073314 DOI: 10.1038/srep35775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 10/05/2016] [Indexed: 12/19/2022] Open
Abstract
Caspases have recently emerged as key regulators of axonal pruning and degeneration and of long-term depression (LTD), a long-lasting form of synaptic plasticity. However, the mechanism underlying these functions remains unclear. In this context, XIAP has been shown to modulate these processes. The neuron-specific form of FAIM protein (FAIM-L) is a death receptor antagonist that stabilizes XIAP protein levels, thus preventing death receptor-induced neuronal apoptosis. Here we show that FAIM-L modulates synaptic transmission, prevents chemical-LTD induction in hippocampal neurons, and thwarts axon degeneration after nerve growth factor (NGF) withdrawal. Additionally, we demonstrate that the participation of FAIM-L in these two processes is dependent on its capacity to stabilize XIAP protein levels. Our data reveal FAIM-L as a regulator of axonal degeneration and synaptic plasticity.
Collapse
|
18
|
Planells-Ferrer L, Urresti J, Coccia E, Galenkamp KMO, Calleja-Yagüe I, López-Soriano J, Carriba P, Barneda-Zahonero B, Segura MF, Comella JX. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system. J Neurochem 2016; 139:11-21. [DOI: 10.1111/jnc.13729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Planells-Ferrer
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Jorge Urresti
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Elena Coccia
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Koen M. O. Galenkamp
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Isabel Calleja-Yagüe
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Joaquín López-Soriano
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Paulina Carriba
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Bruna Barneda-Zahonero
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| | - Miguel F. Segura
- Group of Translational Research in Childhood and Adolescent Cancer; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
| | - Joan X. Comella
- Cell Signaling and Apoptosis Group; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR); Barcelona Spain
- Institut de Neurociències; Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Madrid Spain
| |
Collapse
|
19
|
Huo J, Ma Y, Liu JJ, Ho YS, Liu S, Soh LY, Chen S, Xu S, Han W, Hong A, Lim SC, Lam KP. Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis. Cell Death Dis 2016; 7:e2091. [PMID: 26866272 PMCID: PMC4849152 DOI: 10.1038/cddis.2016.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 12/26/2022]
Abstract
Altered hepatic lipogenesis is associated with metabolic diseases such as obesity and hepatosteatosis. Insulin resistance and compensatory hyperinsulinaemia are key drivers of these metabolic imbalances. Fas apoptosis inhibitory molecule (FAIM), a ubiquitously expressed antiapoptotic protein, functions as a mediator of Akt signalling. Since Akt acts at a nodal point in insulin signalling, we hypothesize that FAIM may be involved in energy metabolism. In the current study, C57BL/6 wild-type (WT) and FAIM-knockout (FAIM-KO) male mice were fed with normal chow diet and body weight changes were monitored. Energy expenditure, substrate utilization and physical activities were analysed using a metabolic cage. Liver, pancreas and adipose tissue were subjected to histological examination. Serum glucose and insulin levels and lipid profiles were determined by biochemical assays. Changes in components of the insulin signalling pathway in FAIM-KO mice were examined by immunoblots. We found that FAIM-KO mice developed spontaneous non-hyperphagic obesity accompanied by hepatosteatosis, adipocyte hypertrophy, dyslipidaemia, hyperglycaemia and hyperinsulinaemia. In FAIM-KO liver, lipogenesis was elevated as indicated by increased fatty acid synthesis and SREBP-1 and SREBP-2 activation. Notably, protein expression of insulin receptor beta was markedly reduced in insulin target organs of FAIM-KO mice. Akt phosphorylation was also lower in FAIM-KO liver and adipose tissue as compared with WT controls. In addition, phosphorylation of insulin receptor substrate-1 and Akt2 in response to insulin treatment in isolated FAIM-KO hepatocytes was also markedly attenuated. Altogether, our data indicate that FAIM is a novel regulator of insulin signalling and plays an essential role in energy homoeostasis. These findings may shed light on the pathogenesis of obesity and hepatosteatosis.
Collapse
Affiliation(s)
- J Huo
- Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Y Ma
- Institute of Biomedicine, Ji Nan University, 601 HUANG PO DA DAO XI, Guang Zhou 510632, P.R. China
| | - J-J Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, ALEXANDRA HEALTH PTE LTD, 90 Yishun Central, Singapore 768828, Singapore
| | - Y S Ho
- Metabolomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #02-01 Centros, Singapore 138668, Singapore
| | - S Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, ALEXANDRA HEALTH PTE LTD, 90 Yishun Central, Singapore 768828, Singapore
| | - L Y Soh
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - S Chen
- Metabolomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #02-01 Centros, Singapore 138668, Singapore
| | - S Xu
- Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - W Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - A Hong
- Institute of Biomedicine, Ji Nan University, 601 HUANG PO DA DAO XI, Guang Zhou 510632, P.R. China
| | - S C Lim
- Diabetes Center, Khoo Teck Puat Hospital, ALEXANDRA HEALTH PTE LTD, 90 Yishun Central, Singapore 768828, Singapore
| | - K-P Lam
- Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Department of Physiology, National University of Singapore, NUS Yong Loo Lin School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597, Singapore.,Department of Microbiology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117545, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
20
|
Ahrens TD, Timme S, Hoeppner J, Ostendorp J, Hembach S, Follo M, Hopt UT, Werner M, Busch H, Boerries M, Lassmann S. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics 2016; 10:431-45. [PMID: 25923331 DOI: 10.1080/15592294.2015.1039216] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combination treatment using both types of drugs. The drug targets, HDAC1/2/3 and DNMT1, were expressed in normal esophageal epithelium and tumor cells of ESCC or EAC tissue specimens, as well as in non-neoplastic esophageal epithelial (Het-1A), ESCC (OE21, Kyse-270, Kyse-410), and EAC (OE33, SK-GT-4) cell lines. In vitro, HDAC activity, histone acetylation, and p21 expression were similarly affected in non-neoplastic, ESCC, and EAC cell lines post inhibitor treatment. Combined MS-275/AZA treatment, however, selectively targeted esophageal cancer cell lines by inducing DNA damage, cell viability loss, and apoptosis, and by decreasing cell migration. Non-neoplastic Het-1A cells were protected against HDACi (MS-275)/AZA treatment. RNA transcriptome analyses post MS-275 and/or AZA treatment identified novel regulated candidate genes (up: BCL6, Hes2; down: FAIM, MLKL), which were specifically associated with the treatment responses of esophageal cancer cells. In summary, combined HDACi/AZA treatment is efficient and selective for the targeting of esophageal cancer cells, despite similar target expression of normal and esophageal cancer epithelium, in vitro and in human esophageal carcinomas. The precise mechanisms of action of treatment responses involve novel candidate genes regulated by HDACi/AZA in esophageal cancer cells. Together, targeting of epigenetic modifiers in esophageal cancers may represent a potential future therapeutic approach.
Collapse
Key Words
- 5mC, 5-methylcytidine
- AZA, Azacytidine
- DAC, Decitabine
- DNMT, DNA (cytosine-5)-methyltransferase
- EAC, esophageal adenocarcinoma
- ESCC, esophageal squamous cell carcinoma
- FAIM, Fas apoptotic inhibitory molecule
- GEJ, gastro-esophageal junction
- H3Ac, histone H3 acetylation
- H3K4me3, histone H3 trimethylation at lysine 4
- H3K9Ac, histone 3 lysine 9 acetylation
- HDAC, histone deacetylases
- HDACi, HDAC inhibitor
- Hes-2, Hairy and enhancer of split 2
- SAHA, suberoylanilide hydroxamic acid
- TSA, Trichostatin A
- azacytidine/gene pathway regulation
- epigenetics/HDAC inhibitor
- esophageal cancer
Collapse
Affiliation(s)
- Theresa D Ahrens
- a Dept. of Pathology; University Medical Center ; Freiburg , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Carriba P, Comella JX. Neurodegeneration and neuroinflammation: two processes, one target. Neural Regen Res 2015; 10:1581-3. [PMID: 26692848 PMCID: PMC4660744 DOI: 10.4103/1673-5374.165269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Paulina Carriba
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain ; Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain ; Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08035, Spain
| | - Joan X Comella
- Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain ; Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain ; Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona 08035, Spain
| |
Collapse
|
22
|
Carriba P, Jimenez S, Navarro V, Moreno-Gonzalez I, Barneda-Zahonero B, Moubarak RS, Lopez-Soriano J, Gutierrez A, Vitorica J, Comella JX. Amyloid-β reduces the expression of neuronal FAIM-L, thereby shifting the inflammatory response mediated by TNFα from neuronal protection to death. Cell Death Dis 2015; 6:e1639. [PMID: 25675299 PMCID: PMC4669818 DOI: 10.1038/cddis.2015.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 12/12/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
The brains of patients with Alzheimer's disease (AD) present elevated levels of tumor necrosis factor-α (TNFα), a cytokine that has a dual function in neuronal cells. On one hand, TNFα can activate neuronal apoptosis, and on the other hand, it can protect these cells against amyloid-β (Aβ) toxicity. Given the dual behavior of this molecule, there is some controversy regarding its contribution to the pathogenesis of AD. Here we examined the relevance of the long form of Fas apoptotic inhibitory molecule (FAIM) protein, FAIM-L, in regulating the dual function of TNFα. We detected that FAIM-L was reduced in the hippocampi of patients with AD. We also observed that the entorhinal and hippocampal cortex of a mouse model of AD (PS1M146LxAPP751sl) showed a reduction in this protein before the onset of neurodegeneration. Notably, cultured neurons treated with the cortical soluble fractions of these animals showed a decrease in endogenous FAIM-L, an effect that is mimicked by the treatment with Aβ-derived diffusible ligands (ADDLs). The reduction in the expression of FAIM-L is associated with the progression of the neurodegeneration by changing the inflammatory response mediated by TNFα in neurons. In this sense, we also demonstrate that the protection afforded by TNFα against Aβ toxicity ceases when endogenous FAIM-L is reduced by short hairpin RNA (shRNA) or by treatment with ADDLs. All together, these results support the notion that levels of FAIM-L contribute to determine the protective or deleterious effect of TNFα in neuronal cells.
Collapse
Affiliation(s)
- P Carriba
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - S Jimenez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - V Navarro
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - I Moreno-Gonzalez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - B Barneda-Zahonero
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - R S Moubarak
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J Lopez-Soriano
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - A Gutierrez
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Departamento de Biologia Celular, Genetica y Fisiologia. Facultad de Ciencias. IBIMA Universidad de Malaga, Malaga 29071, Spain
| | - J Vitorica
- 1] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain [2] Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, Sevilla 41013, Spain [3] Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla 41012, Spain
| | - J X Comella
- 1] Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain [2] Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra (Edifici M), Bellaterra 08193, Spain [3] Centro de Investigación Biomèdica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|