1
|
Brüll L, Santuz A, Mersmann F, Bohm S, Schwenk M, Arampatzis A. Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults. J Exp Biol 2024; 227:jeb247271. [PMID: 38506185 PMCID: PMC11058090 DOI: 10.1242/jeb.247271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.2±5.2 years) participated in the study. Mediolateral and anteroposterior unpredictable and predictable perturbations during walking were introduced using a treadmill. Muscle synergies were extracted from the electromyographic activity of 13 lower limb muscles using Gaussian non-negative matrix factorization. The four basic synergies responsible for unperturbed walking (weight acceptance, propulsion, early swing and late swing) were preserved in all applied gait perturbations, yet their temporal recruitment and muscle contribution in each synergy were modified (P<0.05). These modifications were observed for up to four recovery steps and were more pronounced (P<0.05) following unpredictable perturbations. The recruitment of the four basic walking synergies in the perturbed and recovery gait cycles indicates a robust neuromotor control of locomotion by using activation patterns of a few and well-known muscle synergies with specific adjustments within the synergies. The selection of pre-existing muscle synergies while adjusting the time of their recruitment during challenging locomotor conditions may improve the effectiveness to deal with perturbations and promote the transfer of adaptation between different kinds of perturbations.
Collapse
Affiliation(s)
- Leon Brüll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Schwenk
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
- Institute of Sports and Sports Sciences, Heidelberg University, 69120 Heidelberg, Germany
- Department of Sport Science, Human Performance Research Center, University of Konstanz, 78464 Konstanz, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Weinman LE, Del Vecchio A, Mazzo MR, Enoka RM. Motor unit modes in the calf muscles during a submaximal isometric contraction are changed by brief stretches. J Physiol 2024; 602:1385-1404. [PMID: 38513002 DOI: 10.1113/jp285437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.
Collapse
Affiliation(s)
- Logan E Weinman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Seo G, Park JH, Park HS, Roh J. Developing new intermuscular coordination patterns through an electromyographic signal-guided training in the upper extremity. J Neuroeng Rehabil 2023; 20:112. [PMID: 37658406 PMCID: PMC10474681 DOI: 10.1186/s12984-023-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Muscle synergies, computationally identified intermuscular coordination patterns, have been utilized to characterize neuromuscular control and learning in humans. However, it is unclear whether it is possible to alter the existing muscle synergies or develop new ones in an intended way through a relatively short-term motor exercise in adulthood. This study aimed to test the feasibility of expanding the repertoire of intermuscular coordination patterns through an isometric, electromyographic (EMG) signal-guided exercise in the upper extremity (UE) of neurologically intact individuals. METHODS 10 participants were trained for six weeks to induce independent control of activating a pair of elbow flexor muscles that tended to be naturally co-activated in force generation. An untrained isometric force generation task was performed to assess the effect of the training on the intermuscular coordination of the trained UE. We applied a non-negative matrix factorization on the EMG signals recorded from 12 major UE muscles during the assessment to identify the muscle synergies. In addition, the performance of training tasks and the characteristics of individual muscles' activity in both time and frequency domains were quantified as the training outcomes. RESULTS Typically, in two weeks of the training, participants could use newly developed muscle synergies when requested to perform new, untrained motor tasks by activating their UE muscles in the trained way. Meanwhile, their habitually expressed muscle synergies, the synergistic muscle activation groups that were used before the training, were conserved throughout the entire training period. The number of muscle synergies activated for the task performance remained the same. As the new muscle synergies were developed, the neuromotor control of the trained muscles reflected in the metrics, such as the ratio between the targeted muscles, number of matched targets, and task completion time, was improved. CONCLUSION These findings suggest that our protocol can increase the repertoire of readily available muscle synergies and improve motor control by developing the activation of new muscle coordination patterns in healthy adults within a relatively short period. Furthermore, the study shows the potential of the isometric EMG-guided protocol as a neurorehabilitation tool for aiming motor deficits induced by abnormal intermuscular coordination after neurological disorders. TRIAL REGISTRATION This study was registered at the Clinical Research Information Service (CRiS) of the Korea National Institute of Health (KCT0005803) on 1/22/2021.
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Jeong-Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jinsook Roh
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Wang S, Hase K, Funato T. Computational prediction of muscle synergy using a finite element framework for a musculoskeletal model on lower limb. Front Bioeng Biotechnol 2023; 11:1130219. [PMID: 37533695 PMCID: PMC10392837 DOI: 10.3389/fbioe.2023.1130219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Previous studies have demonstrated that the central nervous system activates muscles in module patterns to reduce the complexity needed to control each muscle while producing a movement, which is referred to as muscle synergy. In previous musculoskeletal modeling-based muscle synergy analysis studies, as a result of simplification of the joints, a conventional rigid-body link musculoskeletal model failed to represent the physiological interactions of muscle activation and joint kinematics. However, the interaction between the muscle level and joint level that exists in vivo is an important relationship that influences the biomechanics and neurophysiology of the musculoskeletal system. In the present, a lower limb musculoskeletal model coupling a detailed representation of a joint including complex contact behavior and material representations was used for muscle synergy analysis using a decomposition method of non-negative matrix factorization (NMF). The complexity of the representation of a joint in a musculoskeletal system allows for the investigation of the physiological interactions in vivo on the musculoskeletal system, thereby facilitating the decomposition of the muscle synergy. Results indicated that, the activities of the 20 muscles on the lower limb during the stance phase of gait could be controlled by three muscle synergies, and total variance accounted for by synergies was 86.42%. The characterization of muscle synergy and musculoskeletal biomechanics is consistent with the results, thus explaining the formational mechanism of lower limb motions during gait through the reduction of the dimensions of control issues by muscle synergy and the central nervous system.
Collapse
Affiliation(s)
- Sentong Wang
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Kazunori Hase
- Faculty of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Tetsuro Funato
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
5
|
Chen X, Dong X, Feng Y, Jiao Y, Yu J, Song Y, Li X, Zhang L, Hou P, Xie P. Muscle activation patterns and muscle synergies reflect different modes of coordination during upper extremity movement. Front Hum Neurosci 2023; 16:912440. [PMID: 36741782 PMCID: PMC9889926 DOI: 10.3389/fnhum.2022.912440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
A core issue in motor control is how the central nervous system generates and selects the muscle activation patterns necessary to achieve a variety of behaviors and movements. Extensive studies have verified that it is the foundation to induce a complex movement by the modular combinations of several muscles with a synergetic relationship. However, a few studies focus on the synergetic similarity and dissimilarity among different types of movements, especially for the upper extremity movements. In this study, we introduced the non-negative matrix factorization (NMF) method to explore the muscle activation patterns and synergy structure under 6 types of movements, involving the hand open (HO), hand close (HC), wrist flexion (WF), wrist extension (WE), supination (SU), and pronation (PR). For this, we enrolled 10 healthy subjects to record the electromyography signal for NMF calculation. The results showed a highly modular similarity of the muscle synergy among subjects under the same movement. Furthermore, Spearman's correlation analysis indicated significant similarities among HO-WE, HO-SU, and WE-SU (p < 0.001). Additionally, we also found shared synergy and special synergy in activation patterns among different movements. This study confirmed the theory of modular structure in the central nervous system, which yields a stable synergetic pattern under the same movement. Our findings on muscle synergy will be of great significance to motor control and even to clinical assessment techniques.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Xiaojiao Dong
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yange Feng
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yuntao Jiao
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Jian Yu
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Yan Song
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Xinxin Li
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Lijie Zhang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei, China
| | - Peiguo Hou
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Peiguo Hou,
| | - Ping Xie
- Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei, China,*Correspondence: Ping Xie,
| |
Collapse
|
6
|
Guo X, He B, Lau KYS, Chan PPK, Liu R, Xie JJ, Ha SCW, Chen CY, Cheing GLY, Cheung RTH, Chan RHM, Cheung VCK. Age-Related Modifications of Muscle Synergies and Their Temporal Activations for Overground Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2700-2709. [PMID: 36107887 DOI: 10.1109/tnsre.2022.3206887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.
Collapse
|
7
|
Forearm and Hand Muscles Exhibit High Coactivation and Overlapping of Cortical Motor Representations. Brain Topogr 2022; 35:322-336. [PMID: 35262840 PMCID: PMC9098558 DOI: 10.1007/s10548-022-00893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Most of the motor mapping procedures using navigated transcranial magnetic stimulation (nTMS) follow the conventional somatotopic organization of the primary motor cortex (M1) by assessing the representation of a particular target muscle, disregarding the possible coactivation of synergistic muscles. In turn, multiple reports describe a functional organization of the M1 with an overlapping among motor representations acting together to execute movements. In this context, the overlap degree among cortical representations of synergistic hand and forearm muscles remains an open question. This study aimed to evaluate the muscle coactivation and representation overlapping common to the grasping movement and its dependence on the stimulation parameters. The nTMS motor maps were obtained from one carpal muscle and two intrinsic hand muscles during rest. We quantified the overlapping motor maps in size (area and volume overlap degree) and topography (similarity and centroid Euclidean distance) parameters. We demonstrated that these muscle representations are highly overlapped and similar in shape. The overlap degrees involving the forearm muscle were significantly higher than only among the intrinsic hand muscles. Moreover, the stimulation intensity had a stronger effect on the size compared to the topography parameters. Our study contributes to a more detailed cortical motor representation towards a synergistic, functional arrangement of M1. Understanding the muscle group coactivation may provide more accurate motor maps when delineating the eloquent brain tissue during pre-surgical planning.
Collapse
|
8
|
Moiseev SA, Pukhov AM, Mikhailova EA, Gorodnichev RM. Methodological and Computational Aspects of Extracting Extensive Muscle Synergies in Moderate-Intensity Locomotions. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
10
|
Cheung VCK, Seki K. Approaches to revealing the neural basis of muscle synergies: a review and a critique. J Neurophysiol 2021; 125:1580-1597. [PMID: 33729869 DOI: 10.1152/jn.00625.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The central nervous system (CNS) may produce coordinated motor outputs via the combination of motor modules representable as muscle synergies. Identification of muscle synergies has hitherto relied on applying factorization algorithms to multimuscle electromyographic data (EMGs) recorded during motor behaviors. Recent studies have attempted to validate the neural basis of the muscle synergies identified by independently retrieving the muscle synergies through CNS manipulations and analytic techniques such as spike-triggered averaging of EMGs. Experimental data have demonstrated the pivotal role of the spinal premotor interneurons in the synergies' organization and the presence of motor cortical loci whose stimulations offer access to the synergies, but whether the motor cortex is also involved in organizing the synergies has remained unsettled. We argue that one difficulty inherent in current approaches to probing the synergies' neural basis is that the EMG generative model based on linear combination of synergies and the decomposition algorithms used for synergy identification are not grounded on enough prior knowledge from neurophysiology. Progress may be facilitated by constraining or updating the model and algorithms with knowledge derived directly from CNS manipulations or recordings. An investigative framework based on evaluating the relevance of neurophysiologically constrained models of muscle synergies to natural motor behaviors will allow a more sophisticated understanding of motor modularity, which will help the community move forward from the current debate on the neural versus nonneural origin of muscle synergies.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| |
Collapse
|
11
|
Min K, Lee J, Kakei S. Dynamic Modulation of a Learned Motor Skill for Its Recruitment. Front Comput Neurosci 2020; 14:457682. [PMID: 33424572 PMCID: PMC7793756 DOI: 10.3389/fncom.2020.457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
Humans learn motor skills (MSs) through practice and experience and may then retain them for recruitment, which is effective as a rapid response for novel contexts. For an MS to be recruited for novel contexts, its recruitment range must be extended. In addressing this issue, we hypothesized that an MS is dynamically modulated according to the feedback context to expand its recruitment range into novel contexts, which do not involve the learning of an MS. The following two sub-issues are considered. We previously demonstrated that the learned MS could be recruited in novel contexts through its modulation, which is driven by dynamically regulating the synergistic redundancy between muscles according to the feedback context. However, this modulation is trained in the dynamics under the MS learning context. Learning an MS in a specific condition naturally causes movement deviation from the desired state when the MS is executed in a novel context. We hypothesized that this deviation can be reduced with the additional modulation of an MS, which tunes the MS-produced muscle activities by using the feedback gain signals driven by the deviation from the desired state. Based on this hypothesis, we propose a feedback gain signal-driven tuning model of a learned MS for its robust recruitment. This model is based on the neurophysiological architecture in the cortico-basal ganglia circuit, in which an MS is plausibly retained as it was learned and is then recruited by tuning its muscle control signals according to the feedback context. In this study, through computational simulation, we show that the proposed model may be used to neurophysiologically describe the recruitment of a learned MS in novel contexts.
Collapse
Affiliation(s)
- Kyuengbo Min
- Department of Psychiatry & Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jongho Lee
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Japan
| | - Shinji Kakei
- Department of Psychiatry & Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
12
|
Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Proc Natl Acad Sci U S A 2020; 117:27655-27666. [PMID: 33060294 PMCID: PMC7959559 DOI: 10.1073/pnas.1919253117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies in frogs and rodents have shown that to deal with the complexity of controlling all the muscles in the body the brain can activate sets of neurons in the spinal cord with a single signal. Here, we provide confirmation of a similar system of “modular” output in nonhuman primates. Costimulation at two spinal sites resulted in force field directionality that was the linear sum of the fields from each site. However, unlike the frog and rodent, the magnitude of the force vectors was greater than the simple sum (supralinear). Thus, while force direction in primates is controlled by the linear sum of modular output, force amplitude might be adjusted by additional sources shared by those modules. Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.
Collapse
|
13
|
Keloth SM, Radcliffe PJ, Raghav S, Arjunan SP, Kumar D. Differentiating between Parkinson's disease patients and controls using variability in muscle activation during walking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3158-3161. [PMID: 33018675 DOI: 10.1109/embc44109.2020.9176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Surface electromyography (sEMG) of the lower limb muscles has been proposed to evaluate motor dysfunctions in Parkinson's disease (PD) patients. Variability in the sEMG could be used as an indicator of poor muscle coordination, but previous studies have reported conflicting results. This study has examined the variability of muscle using the coefficients of variance of Tibialis anterior (TA) and Medial gastrocnemius (MG) lower limb muscles for 24 PD, 24 age matched controls (CO), and 24 young controls (YC), during different phases of the gait cycle. The gait intervals were measured using the inertial measurement unit (IMU). We observed a statistically significant difference between PD and control for the variability of lower limb muscle when comparing the sub-phases of the gait. It was also found that the difference was more pronounced for the TA muscle.
Collapse
|
14
|
Cheung VCK, Cheung BMF, Zhang JH, Chan ZYS, Ha SCW, Chen CY, Cheung RTH. Plasticity of muscle synergies through fractionation and merging during development and training of human runners. Nat Commun 2020; 11:4356. [PMID: 32868777 PMCID: PMC7459346 DOI: 10.1038/s41467-020-18210-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Complex motor commands for human locomotion are generated through the combination of motor modules representable as muscle synergies. Recent data have argued that muscle synergies are inborn or determined early in life, but development of the neuro-musculoskeletal system and acquisition of new skills may demand fine-tuning or reshaping of the early synergies. We seek to understand how locomotor synergies change during development and training by studying the synergies for running in preschoolers and diverse adults from sedentary subjects to elite marathoners, totaling 63 subjects assessed over 100 sessions. During development, synergies are fractionated into units with fewer muscles. As adults train to run, specific synergies coalesce to become merged synergies. Presences of specific synergy-merging patterns correlate with enhanced or reduced running efficiency. Fractionation and merging of muscle synergies may be a mechanism for modifying early motor modules (Nature) to accommodate the changing limb biomechanics and influences from sensorimotor training (Nurture).
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong and Kunming Institute of Zoology of The Chinese Academy of Sciences, Hong Kong, China.
| | - Ben M F Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Janet H Zhang
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Zoe Y S Chan
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Sophia C W Ha
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao-Ying Chen
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Roy T H Cheung
- Gait & Motion Analysis Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|