1
|
McNealy KR, Houser SD, Barrett ST, Bevins RA. Investigating sex differences and the effect of drug exposure order in the sensory reward-enhancing effects of nicotine and d-amphetamine alone and in combination. Neuropharmacology 2022; 202:108845. [PMID: 34678376 PMCID: PMC8627442 DOI: 10.1016/j.neuropharm.2021.108845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Nicotine enhances the rewarding effects of other environmental stimuli; this reward-enhancement encourages and maintains nicotine consumption. Nicotine use precedes other psychostimulant use, but receiving a stimulant prescription also predicts future smoking. Previously, no study has investigated effects of drug exposure order in reward-enhancement, nor with nicotine and d-amphetamine. Thus, we aimed to investigate how drug exposure order impacted the reward-enhancing effects of nicotine and d-amphetamine, alone and in combination. We used 20 male and 20 female Sprague-Dawley rats. Enhancement was investigated within-subjects by examining responding maintained by a visual stimulus reinforcer following a pre-session injection of either d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) or nicotine (Sal, 0.03, 0.06, 0.1, 0.3 mg/kg). Twenty rats (10 M, 10 F) completed enhancement testing with nicotine before d-amphetamine. The other 20 rats (10 M, 10 F) completed testing with d-amphetamine before nicotine. Following these phases, rats were then given two pre-session injections: one of d-amphetamine (Sal, 0.1, 0.3, or 0.6 mg/kg) and another of nicotine (Sal, 0.03, 0.06, 0.1, or 0.3 mg/kg). Experiencing amphetamine before nicotine increased reward-enhancing effects of nicotine. Females exhibited greater effects of d-amphetamine on reward-enhancement, with no effect of exposure order. During the interaction phase, receiving nicotine before amphetamine enhanced the interaction between nicotine and d-amphetamine for females whereas amphetamine before nicotine heightened this interaction for males. From this, prior and current amphetamine use, in addition to sex, should be considered when treating nicotine dependency and when examining factors driving poly-substance use involving nicotine and d-amphetamine. Keywords: Adderall, ADHD, Dexedrine, operant, smoking, polysubstance use.
Collapse
Affiliation(s)
- Kathleen R McNealy
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Sydney D Houser
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Scott T Barrett
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA
| | - Rick A Bevins
- Department of Psychology University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| |
Collapse
|
2
|
Evaluation of the Phosphoproteome of Mouse Alpha 4/Beta 2-Containing Nicotinic Acetylcholine Receptors In Vitro and In Vivo. Proteomes 2018; 6:proteomes6040042. [PMID: 30326594 PMCID: PMC6313896 DOI: 10.3390/proteomes6040042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023] Open
Abstract
Activation of nicotinic acetylcholine receptors containing α4 and β2 subunits (α4/β2* nAChRs) in the mammalian brain is necessary for nicotine reinforcement and addiction. We previously identified interactions between α4/β2* nAChRs and calcium/calmodulin-dependent protein kinase II (CaMKII) in mouse and human brain tissue. Following co-expression of α4/β2 nAChR subunits with CaMKII in HEK cells, mass spectrometry identified 8 phosphorylation sites in the α4 subunit. One of these sites and an additional site were identified when isolated α4/β2* nAChRs were dephosphorylated and subsequently incubated with CaMKII in vitro, while 3 phosphorylation sites were identified following incubation with protein kinase A (PKA) in vitro. We then isolated native α4/β2* nAChRs from mouse brain following acute or chronic exposure to nicotine. Two CaMKII sites identified in HEK cells were phosphorylated, and 1 PKA site was dephosphorylated following acute nicotine administration in vivo, whereas phosphorylation of the PKA site was increased back to baseline levels following repeated nicotine exposure. Significant changes in β2 nAChR subunit phosphorylation were not observed under these conditions, but 2 novel sites were identified on this subunit, 1 in HEK cells and 1 in vitro. These experiments identified putative CaMKII and PKA sites on α4/β2* nAChRs and novel nicotine-induced phosphorylation sites in mouse brain that can be explored for their consequences on receptor function.
Collapse
|
3
|
Calcium as a Trojan horse in mental diseases-The role of PMCA and PMCA-interacting proteins in bipolar disorder and schizophrenia. Neurosci Lett 2017; 663:48-54. [PMID: 28780170 DOI: 10.1016/j.neulet.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 01/01/2023]
Abstract
Although first mentions about calcium disturbances in psychiatric diseases appeared more than 30 years ago, the most recent genomic and proteomic findings confirmed a significant role of Ca2+ and Ca2+-regulated pathways in development of neuropathological processes, including bipolar disorder and schizophrenia. Moreover, last decades have shown that due to multifactorial nature of both diseases, impairment in neuronal calcium homeostasis may depend not only on disturbed Ca2+ entry system, but also on altered extrusion system. A pivotal role in Ca2+ clearance mechanism is played by plasma membrane Ca2+-ATPase (PMCA), the enzyme responsible for returning the elevated levels of cytosolic Ca2+ back to the resting state. In this paper we summarize the current knowledge about the role of PMCA in bipolar disorder and schizophrenia pathologies, as well as the contribution of several proteins that by interaction with PMCA modify signal transduction mechanisms.
Collapse
|
4
|
Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice. Behav Brain Res 2017; 317:27-36. [DOI: 10.1016/j.bbr.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022]
|
5
|
Wada A, Kunii Y, Matsumoto J, Hino M, Yang Q, Niwa SI, Yabe H. Prominent increased calcineurin immunoreactivity in the superior temporal gyrus in schizophrenia: A postmortem study. Psychiatry Res 2017; 247:79-83. [PMID: 27871031 DOI: 10.1016/j.psychres.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/27/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
Many neuroimaging studies have demonstrated structural changes in the superior temporal gyrus (STG) in patients with schizophrenia. Several postmortem studies have reported on the pathogenesis of schizophrenia, but few reports have investigated alterations in molecules in the STG. In addition, several studies have suggested that calcineurin (CaN) inadequacy may be a risk factor for schizophrenia, but no reports about CaN expression in the STG in schizophrenia have been published. We compared the density of CaN-immunoreactive (CaN-IR) neurons in the STG from 11 patients with schizophrenia with that of 11 sex- and age-matched controls. We used immunohistochemical analysis with rabbit polyclonal antibodies against human CaN. In the STG, the density of CaN-IR neurons in layers II - VI in the group with schizophrenia was significantly higher than that in the control group. Our results confirmed pathological changes in the STG in patients with schizophrenia, suggesting that alterations in the CaN pathway play a role in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Akira Wada
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan; Department of Neuropsychiatry, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan; Departments of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Tanisawa Kawahigashimachi, Aizuwakamatsu city, Fukushima 969-3492, Japan
| | - Jyunya Matsumoto
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Qiaohui Yang
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Shin-Ichi Niwa
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan; Departments of Psychiatry, Aizu Medical Center, Fukushima Medical University, 21-2 Maeda, Tanisawa Kawahigashimachi, Aizuwakamatsu city, Fukushima 969-3492, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| |
Collapse
|
6
|
Carboni L, Romoli B, Romualdi P, Zoli M. Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug Alcohol Depend 2016; 166:150-8. [PMID: 27430399 DOI: 10.1016/j.drugalcdep.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Gomez AM, Altomare D, Sun WL, Midde NM, Ji H, Shtutman M, Turner JR, Creek KE, Zhu J. Prefrontal microRNA-221 Mediates Environmental Enrichment-Induced Increase of Locomotor Sensitivity to Nicotine. Int J Neuropsychopharmacol 2015; 19:pyv090. [PMID: 26232787 PMCID: PMC4772274 DOI: 10.1093/ijnp/pyv090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/29/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Environmental enrichment alters susceptibility in developing drug addiction. We have demonstrated that rats raised in an enriched condition are more sensitive than rats raised in an impoverished condition to nicotine-induced locomotor activity, and this is associated with alterations of phosphorylated extracellular signal-regulated kinase 1/2 within the prefrontal cortex. This study determined the impact of microRNA-221 in the prefrontal cortex on phosphorylated extracellular signal-regulated kinase 1/2 and the enriched environment-dependent behavioral changes in response to nicotine. METHODS A microRNA array was conducted to profile microRNA expression in the prefrontal cortex of enriched condition and impoverished condition rats in response to repeated nicotine (0.35 mg/kg, s.c.) administration. microRNA-221 in the prefrontal cortex, nucleus accumbens, and striatum was further verified by quantitative real-time PCR. Lentiviral-mediated overexpression of microRNA-221 in PC12 cells and the medial prefrontal cortex was performed to determine the effects of microRNA-221 on nicotine-mediated phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated cAMP-response element-binding protein, and locomotor activity. RESULTS microRNA-221 was profoundly upregulated in the prefrontal cortex but not in nucleus accumbens and striatum of enriched condition rats relative to impoverished condition rats following repeated administration of nicotine. Overexpression of lentiviral-microRNA-221 attenuated nicotine-induced increase in phosphorylated extracellular signal-regulated kinase 1/2 in PC12 cells. Lentiviral-microRNA-221 overexpression in the medial prefrontal cortex further increased locomotor activity in impoverished condition but not in enriched condition rats in response to repeated nicotine administration. Accordingly, lentiviral-microRNA-221 attenuated nicotine-induced increases in phosphorylated extracellular signal-regulated kinase 1/2 and phosphorylated cAMP-response element-binding protein in the medial prefrontal cortex of impoverished condition but not enriched condition rats. CONCLUSION These findings suggest that environmental enrichment, via upregulation of prefrontal microRNA-221 expression, suppresses the nicotine-induced activation of extracellular signal-regulated kinase and cAMP-response element-binding protein, which provides a potential mechanism underlying enhanced locomotor sensitivity to nicotine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC (Dr Gomez, Dr Altomare, Dr Sun, Dr Middle, Mrs Ji, Dr Shtutman, Dr Turner, Dr Creek, and Dr Zhu).
| |
Collapse
|
8
|
Mizuno K, Kurokawa K, Ohkuma S. Nicotinic acetylcholine receptors regulate type 1 inositol 1,4,5-trisphosphate receptor expression via calmodulin kinase IV activation. J Neurosci Res 2014; 93:660-5. [PMID: 25430056 DOI: 10.1002/jnr.23518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/28/2014] [Accepted: 10/17/2014] [Indexed: 11/05/2022]
Abstract
Type 1 inositol 1,4,5-trisphosphate receptors (IP3 R-1) are among the important calcium channels regulating intracellular Ca(2+) concentration in the central nervous system. In a previous study, we showed that drugs of abuse, such as cocaine, methamphetamine, and ethanol, induced IP3 R-1 upregulation via the calcium signal transduction pathway in psychological dependence. Although nicotine, a major component in tobacco smoke, participates in psychological and/or physical dependence, it has not yet been clarified how nicotine alters IP3 R-1 expression. The present study, therefore, seeks to clarify the mechanism bgy which nicotine modifies IP3 R-1 expression by using mouse cerebral cortical neurons in primary culture. Nicotine induced dose- and time-dependent upregulation of IP3 R-1 protein following its mRNA increase, and the latter was significantly suppressed by a nonselective nicotinic acetylcholine receptors (nAChR) antagonist, mecamylamine. Both cFos and phosphorylated-cJun (p-cJun) were immediately increased in the nucleus, together with an increase of calmodulin kinase (CaMK) IV but not CaMKII expression after nicotine exposure. A nonselective inhibitor of CaMKs, KN-93, and a calcium chelating regent, BAPTA-AM, completely suppressed the expression of cFos and p-cJun in the nucleus as well as the nicotine-induced IP3 R-1 upregulation. These results indicate that nAChR activation by nicotine upregulates IP3 R-1 via increase of activator protein-1, which is a cFos and cJun dimmer, in the nucleus, with activation of Ca(2+) signaling transduction processes.
Collapse
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
9
|
Moriguchi S, Nishi M, Sasaki Y, Takeshima H, Fukunaga K. Aberrant behavioral sensitization by methamphetamine in junctophilin-deficient mice. Mol Neurobiol 2014; 51:533-42. [PMID: 24848513 DOI: 10.1007/s12035-014-8737-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Junctophilins (JPs) expressed in the endoplasmic/sarcoplasmic reticulum (ER/SR) interact with the plasma membrane, thereby constructing junctional membrane complexes (JMC). We here reported that double-knockout mice lacking both JP3 and JP4 (JP-DKO mice) exhibit aberrant synaptic plasticity in the corticostriatal circuits and irregular methamphetamine (METH)-induced behavioral sensitization when METH (1.0 mg/kg) was administrated six consecutive days and assessed the striatal glutamatergic population spike (PS) by stimulation of cortical white matter. When we assessed the striatal PS by stimulation of cortical white matter, the long-term depression (LTD) was observed in JP-DKO mouse striatum similar to that in control (JP-double hetero mice (JP-DHE mice)). Importantly, LTD converted to long-term potentiation (LTP) following chronic METH treatment concomitant with behavioral sensitization in JP-DHE mice. LTD in JP-DKO mice, however failed to convert to LTP with lacks of behavioral sensitization. LTP impairment in JP-DKO mice was restored by pretreatment with FK506, calcineurin (CaN) inhibitor, but not with apamin, SK channel inhibitor. In immunoblotting analyses, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation was significantly increased following METH treatment in the striatum of JP-DHE mice. However, CaMKII autophosphorylation did not changed by METH treatment in the striatum of JP-DKO mouse. The increased CaMKII autophosphorylation was closely associated with elevated CaN activity in JP-DKO mice. The lack of increased CaMKII activity in JP-DKO mice was correlated with the impaired METH-induced behavioral sensitization. Thus, elevated CaN and aberrant CaMKII activities in the striatum of JP-DKO mice likely accounts for lack of METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan,
| | | | | | | | | |
Collapse
|
10
|
Role of melanin-concentrating hormone in the nucleus accumbens shell in rats behaviourally sensitized to methamphetamine. Int J Neuropsychopharmacol 2013; 16:1767-80. [PMID: 23449013 DOI: 10.1017/s1461145713000072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide and its receptor is extensively expressed throughout the brain. MCH has been suggested to regulate the rewarding and reinforcing effects of psychostimulants by potentiating the dopaminergic system within the midbrain. Moreover, MCH and its receptor can regulate ERK activity. The present study investigated the role of MCH in the nucleus accumbens (NAc) in rats behaviourally sensitized to methamphetamine (Meth). We found that the development of Meth-induced locomotor sensitization was attenuated by MCH infused into the NAc shell but not core. Moreover, the elevation of ERK phosphorylation in the NAc shell induced by Meth was inhibited by locally infused MCH. Infusion of the MCH receptor 1 (MCHR1) antagonist SNAP 94847 into the NAc shell but not core augmented the initiation of locomotor sensitization and amplitude of elevated phosphorylated ERK levels induced by Meth. The expression of Meth-induced locomotor sensitization and ERK alterations after 1 wk withdrawal were not affected by either MCH or SNAP 94847 infused into the NAc shell or core. These results indicate that MCH in the NAc shell plays a critical role in the development but not expression of Meth-induced locomotor sensitization in rats, which might be mediated by the ERK signalling pathway. Our study suggests that MCH might be a potential target for the treatment of Meth addiction.
Collapse
|
11
|
Gomez AM, Midde NM, Mactutus CF, Booze RM, Zhu J. Environmental enrichment alters nicotine-mediated locomotor sensitization and phosphorylation of DARPP-32 and CREB in rat prefrontal cortex. PLoS One 2012; 7:e44149. [PMID: 22952905 PMCID: PMC3432100 DOI: 10.1371/journal.pone.0044149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Exposure within an environmental enrichment paradigm results in neurobiological adaptations and decreases the baseline of locomotor activity. The current study determined activation of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32) and CREB (cAMP response element binding protein), and locomotor activity in rats raised in enriched (EC), impoverished (IC), and standard (SC) conditions following repeated administration of nicotine or saline. In the saline-control group, the basal phosphorylation state of DARPP-32 at Threonine-34 site (pDARPP-32 Thr34) in the prefrontal cortex (PFC) was lower in EC compared to IC and SC rats, which was positively correlated with their respective baseline activities. While nicotine (0.35 mg/kg, freebase) produced locomotor sensitization across all housing conditions when the nicotine-mediated locomotor activity was expressed as a percent change from their respective saline control, EC rats displayed greater sensitization to nicotine than IC and SC rats. Consistent with the behavioral findings, repeated nicotine injection increased pDARPP-32 Thr34 in PFC of EC and IC rats and in nucleus accumbens of EC rats; however, the magnitude of change from saline control in nicotine-induced enhancement of pDARPP-32 Thr34 in PFC was strikingly increased in EC rats relative to IC rats. Moreover, EC rats had lower basal phosphorylation levels of CREB at serine 133 in PFC and nucleus accumbens compared to IC and SC rats, whereas the nicotine-induced increase in phosphorylated CREB-Ser133 was more pronounced in PFC of EC rats relative to IC and SC rats. Collectively, these findings suggest innovative insights into advancing our understanding of the molecular mechanisms of enrichment-induced changes in the motivational effects of nicotine, and aiding in the identification of new therapeutic strategies for tobacco smokers.
Collapse
Affiliation(s)
- Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Charles F. Mactutus
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
12
|
Mizuno K, Kurokawa K, Ohkuma S. Dopamine D1 receptors regulate type 1 inositol 1,4,5-trisphosphate receptor expression via both AP-1- and NFATc4-mediated transcriptional processes. J Neurochem 2012; 122:702-13. [PMID: 22686291 DOI: 10.1111/j.1471-4159.2012.07827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although our recent report demonstrates the essential involvement of up-regulation of a regulator of intracellular Ca(2+) concentration, type 1 inositol 1,4,5-trisphosphate receptors (IP(3) Rs-1), mediated via dopamine D1-like receptor (D1DR) stimulation in the cocaine-induced psychological dependence, the exact mechanisms of regulation of IP(3) R-1 expression by D1DRs have not yet been clarified. This study attempted to clarify these mechanisms using mouse cerebral cortical neurons. An agonist for phosphatidylinositide-linked D1DRs, SKF83959, induced dose- and time-dependently IP(3) R-1 protein up-regulation following its mRNA increase without cAMP production. U73122 (a phospholipase C inhibitor), BAPTA-AM (an intracellular calcium chelating reagent), W7 (a calmodulin inhibitor), KN-93 (a calmodulin-dependent protein kinases inhibitor), and FK506 (a calcineurin inhibitor), significantly inhibited the SKF83959-induced IP(3) R-1 up-regulation. Furthermore, immunohistochemical examinations showed that SKF83959 increased expression of both cFos and cJun in nucleus as well as enhanced translocation of both calcineurin and NFATc4 complex to nucleus from cytoplasm. In addition, SKF83959 directly recruited binding of both AP-1 and NFATc4 to IP(3) R-1 promoter region. These results indicate that D1DR activation induces IP(3) R-1 up-regulation via increased translocation of AP-1 as well as NFATc4 in Gαq protein-coupled calcium signaling transduction pathway.
Collapse
Affiliation(s)
- Koji Mizuno
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | |
Collapse
|
13
|
Role of calcineurin in the VTA in rats behaviorally sensitized to methamphetamine. Psychopharmacology (Berl) 2012; 220:117-28. [PMID: 21901318 DOI: 10.1007/s00213-011-2461-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Chronic psychostimulant administration increases locomotor activity, which is referred to as locomotor sensitization. Calcineurin has been suggested to participate in psychostimulant-induced sensitization, but the underlying neurobiological mechanism is poorly understood. OBJECTIVES This study was designed to examine whether calcineurin activity and its substrates participate in methamphetamine (METH)-induced locomotor sensitization in rats. MATERIALS AND METHODS Two weeks daily METH (1 mg/kg, i.p.) was administrated to rats to induce locomotor sensitization, activity of calcineurin and its substrates Synapsin and glycogen synthase kinase-3β (GSK-3β) were detected. The initiation and expression of locomotor sensitization were tested by inhibition of calcineurin activity systematically or locally in the ventral tegmental area (VTA). RESULTS Expression of the calcineurin A subunit (catalytic subunit) increased in the VTA but not prefrontal cortex, nucleus accumbens, or hippocampus in rats sensitized to METH. The calcineurin inhibitor cyclosporine A, systemically administered or microinfused into the VTA, suppressed the initiation but not expression of METH-induced locomotor sensitization. Chronic METH exposure upregulated the expression of the calcineurin A subunit in the VTA, which was negatively associated with downregulation of the phosphorylation of Synapsin and GSK-3β. Moreover, the related molecular changes were blocked by systemically administered cyclosporine A or microinjections into the VTA. CONCLUSIONS These data elucidate the critical role of calcineurin in the neurobiological mechanism underlying METH-induced locomotor sensitization, suggesting that calcineurin might participate in the initiation of METH-induced locomotor sensitization by negatively regulating the activity of Synapsin and GSK-3β in the VTA.
Collapse
|
14
|
Midde NM, Gomez AM, Harrod SB, Zhu J. Genetically expressed HIV-1 viral proteins attenuate nicotine-induced behavioral sensitization and alter mesocorticolimbic ERK and CREB signaling in rats. Pharmacol Biochem Behav 2011; 98:587-97. [PMID: 21420997 PMCID: PMC3091851 DOI: 10.1016/j.pbb.2011.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/07/2011] [Accepted: 03/12/2011] [Indexed: 12/29/2022]
Abstract
The prevalence of tobacco smoking in HIV-1 positive individuals is 3-fold greater than that in the HIV-1 negative population; however, whether HIV-1 viral proteins and nicotine together produce molecular changes in mesolimbic structures that mediate psychomotor behavior has not been studied. This study determined whether HIV-1 viral proteins changed nicotine-induced behavioral sensitization in HIV-1 transgenic (HIV-1Tg) rats. Further, we examined cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the prefrontal cortex (PFC), nucleus accumbens (NAc) and ventral tegmental area (VTA). HIV-1Tg rats exhibited a transient decrease of activity during habituation, but showed attenuated nicotine (0.35mg/kg, s.c.)-induced behavioral sensitization compared to Fisher 344 (F344) rats. The basal levels of phosphorylated CREB and ERK2 were lower in the PFC of HIV-1Tg rats, but not in the NAc and VTA, relative to the controls. In the nicotine-treated groups, the levels of phosphorylated CREB and ERK2 in the PFC were increased in HIV-1Tg rats, but decreased in F344 animals. Moreover, repeated nicotine administration reduced phosphorylated ERK2 in the VTA of HIV-1Tg rats and in the NAc of F344 rats, but had no effect on phosphorylated CREB, indicating a region-specific change of intracellular signaling. These results demonstrate that HIV-1 viral proteins produce differences in basal and nicotine-induced alterations in CREB and ERK signaling that may contribute to the alteration in psychomotor sensitization. Thus, HIV-1 positive smokers are possibly more vulnerable to alterations in CREB and ERK signaling and this has implications for motivated behavior, including tobacco smoking, in HIV-1 positive individuals who self-administer nicotine.
Collapse
Affiliation(s)
- Narasimha M. Midde
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Adrian M. Gomez
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Steven B. Harrod
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Department of Psychology, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
15
|
Zhu WL, Shi HS, Wang SJ, Wu P, Ding ZB, Lu L. Hippocampal CA3 calcineurin activity participates in depressive-like behavior in rats. J Neurochem 2011; 117:1075-86. [DOI: 10.1111/j.1471-4159.2011.07285.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhu CZ, Chin CL, Rustay NR, Zhong C, Mikusa J, Chandran P, Salyers A, Gomez E, Simler G, Lewis LG, Gauvin D, Baker S, Pai M, Tovcimak A, Brown J, Komater V, Fox GB, Decker MW, Jacobson PB, Gopalakrishnan M, Lee CH, Honore P. Potentiation of analgesic efficacy but not side effects: co-administration of an α4β2 neuronal nicotinic acetylcholine receptor agonist and its positive allosteric modulator in experimental models of pain in rats. Biochem Pharmacol 2011; 82:967-76. [PMID: 21620806 DOI: 10.1016/j.bcp.2011.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/29/2022]
Abstract
Positive modulation of the neuronal nicotinic acetylcholine receptor (nAChR) α4β2 subtype by selective positive allosteric modulator NS-9283 has shown to potentiate the nAChR agonist ABT-594-induced anti-allodynic activity in preclinical neuropathic pain. To determine whether this benefit can be extended beyond neuropathic pain, the present study examined the analgesic activity and adverse effect profile of co-administered NS-9283 and ABT-594 in a variety of preclinical models in rats. The effect of the combined therapy on drug-induced brain activities was also determined using pharmacological magnetic resonance imaging. In carrageenan-induced thermal hyperalgesia, co-administration of NS-9283 (3.5 μmol/kg, i.p.) induced a 6-fold leftward shift of the dose-response of ABT-594 (ED(50)=26 vs. 160 nmol/kg, i.p.). In the paw skin incision model of post-operative pain, co-administration of NS-9283 similarly induced a 6-fold leftward shift of ABT-594 (ED(50)=26 vs. 153 nmol/kg). In monoiodo-acetate induced knee joint pain, co-administration of NS-9283 enhanced the potency of ABT-594 by 5-fold (ED(50)=1.0 vs. 4.6 nmol/kg). In pharmacological MRI, co-administration of NS-9283 was shown to lead to a leftward shift of ABT-594 dose-response for cortical activation. ABT-594 induced CNS-related adverse effects were not exacerbated in presence of an efficacious dose of NS-9283 (3.5 μmol/kg). Acute challenge of NS-9283 produced no cross sensitization in nicotine-conditioned animals. These results demonstrate that selective positive allosteric modulation at the α4β2 nAChR potentiates nAChR agonist-induced analgesic activity across neuropathic and nociceptive preclinical pain models without potentiating ABT-594-mediated adverse effects, suggesting that selective positive modulation of α4β2 nAChR by PAM may represent a novel analgesic approach.
Collapse
Affiliation(s)
- Chang Z Zhu
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ziviani E, Lippi G, Bano D, Munarriz E, Guiducci S, Zoli M, Young KW, Nicotera P. Ryanodine receptor-2 upregulation and nicotine-mediated plasticity. EMBO J 2011; 30:194-204. [PMID: 21113126 PMCID: PMC3020107 DOI: 10.1038/emboj.2010.279] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/18/2010] [Indexed: 01/01/2023] Open
Abstract
Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.
Collapse
Affiliation(s)
- Elena Ziviani
- MRC Toxicology Unit, University of Leicester, Leicester, UK
| | - Giordano Lippi
- MRC Toxicology Unit, University of Leicester, Leicester, UK
- Department of Biomedical Science, Section of Physiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Bano
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Stefania Guiducci
- Department of Biomedical Science, Section of Physiology, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Zoli
- Department of Biomedical Science, Section of Physiology, University of Modena and Reggio Emilia, Modena, Italy
- Centro AntiFumo (Interdipartimentale), Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | | | | |
Collapse
|
18
|
Gao M, Jin Y, Yang K, Zhang D, Lukas RJ, Wu J. Mechanisms involved in systemic nicotine-induced glutamatergic synaptic plasticity on dopamine neurons in the ventral tegmental area. J Neurosci 2010; 30:13814-25. [PMID: 20943922 PMCID: PMC2995497 DOI: 10.1523/jneurosci.1943-10.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/30/2010] [Accepted: 08/24/2010] [Indexed: 11/21/2022] Open
Abstract
Systemic exposure to nicotine induces glutamatergic synaptic plasticity on dopamine (DA) neurons in the ventral tegmental area (VTA), but mechanisms are largely unknown. Here, we report that single, systemic exposure in rats to nicotine (0.17 mg/kg free base) increases the ratio of DA neuronal currents mediated by AMPA relative to NMDA receptors (AMPA/NMDA ratio) assessed 24 h later, based on slice-patch recording. The AMPA/NMDA ratio increase is evident within 1 h and lasts for at least 72 h after nicotine exposure (and up to 8 d after repeated nicotine administration). This effect cannot be prevented by systemic injection of either α7-nAChR (nicotinic ACh receptor)-selective [methyllycaconitine (MLA)] or β2*-nAChR-selective [mecamylamine (MEC)] antagonists but is prevented by coinjection of MLA and MEC. In either nAChR α7 or β2 subunit knock-out mice, systemic exposure to nicotine still increases the AMPA/NMDA ratio. Preinjection in rats of a NMDA receptor antagonist MK-801((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), but neither DA receptor antagonists [SCH-23390 (R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) plus haloperidol] nor a calcineurin inhibitor (cyclosporine), prevents the nicotine-induced increase in AMPA/NMDA ratio. After systemic exposure to nicotine, glutamatergic (but not GABAergic) transmission onto rat VTA DA neuronal inputs is enhanced. Correspondingly, DA neuronal firing measured 24 h after nicotine exposure using extracellular single-unit recording in vivo is significantly faster, and there is conversion of silent to active DA neurons. Collectively, these findings demonstrate that systemic nicotine acting via either α7- or β2*-nAChRs increases presynaptic and postsynaptic glutamatergic function, and consequently initiates glutamatergic synaptic plasticity, which may be an important, early neuronal adaptation in nicotine reward and reinforcement.
Collapse
Affiliation(s)
| | - Yu Jin
- Divisions of Neurology and
| | | | | | - Ronald J. Lukas
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013
| | - Jie Wu
- Divisions of Neurology and
| |
Collapse
|
19
|
Baker TB, Cummings KM, Hatsukami DK, Johnson CA, Lerman C, Niaura R, O'Malley SS. Transdisciplinary Tobacco Use Research Centers: research achievements and future implications. Nicotine Tob Res 2009; 11:1231-44. [PMID: 19633277 DOI: 10.1093/ntr/ntp112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Timothy B Baker
- Center for Tobacco and Intervention, Department of Medicine, 1930 Monroe Street, Suite 200, Madison, WI 53711, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Addy NA, Bahi A, Taylor JR, Picciotto MR. Administration of the calcineurin inhibitor cyclosporine modulates cocaine-induced locomotor activity in rats. Psychopharmacology (Berl) 2008; 200:129-39. [PMID: 18587562 PMCID: PMC2574760 DOI: 10.1007/s00213-008-1189-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Cocaine administration in rats increases locomotor activity as a result of underlying changes in neurotransmitter dynamics and intracellular signaling. The serine/ threonine phosphatase, calcineurin, is known to modulate several signaling proteins that can influence behavioral responses to cocaine. OBJECTIVE This study aimed to determine whether calcineurin plays a role in locomotor responses associated with acute and repeated cocaine exposure. Second, we examined cocaine-mediated changes in intracellular signaling to identify potential mechanism underlying the ability of calcineurin to influence cocaine-mediated behavior. METHODS Locomotor activity was assessed over 17 days in male Sprague-Dawley rats (n = 48) that received daily administration of cocaine (15 mg/kg, s.c.) or saline in the presence or absence of the calcineurin inhibitor, cyclosporine (15 mg/kg, i.p.). Non-cocaine-treated animals from this initial experiment (n = 24) also received an acute cocaine challenge on day 18 of testing. RESULTS Daily cyclosporine administration potentiated the locomotor response to repeated cocaine 5 min after cocaine injection and attenuated the sustained locomotor response 15 to 40 min after cocaine. Furthermore, cyclosporine pretreatment for 17 days augmented the acute locomotor response to acute cocaine 5 to 30 min after cocaine injection. Finally, repeated exposure to either cocaine or cyclosporine for 22 days increased synapsin I phosphorylation at the calcineurin-sensitive Ser 62/67 site, demonstrating a common downstream target for both calcineurin and cocaine. CONCLUSION Our results suggest that calcineurin inhibition augments locomotor responses to cocaine and mimics cocaine-mediated phosphorylation of synapsin I.
Collapse
Affiliation(s)
- Nii A. Addy
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Amine Bahi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Jane R. Taylor
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | - Marina R. Picciotto
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06508
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| |
Collapse
|