1
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Ramakrishnan A, Wangensteen G, Kim S, Nestler EJ, Shen L. DeepRegFinder: deep learning-based regulatory elements finder. BIOINFORMATICS ADVANCES 2024; 4:vbae007. [PMID: 38343388 PMCID: PMC10858349 DOI: 10.1093/bioadv/vbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 06/15/2024]
Abstract
Summary Enhancers and promoters are important classes of DNA regulatory elements (DREs) that govern gene expression. Identifying them at a genomic scale is a critical task in bioinformatics. The DREs often exhibit unique histone mark binding patterns, which can be captured by high-throughput ChIP-seq experiments. To account for the variations and noises among the binding sites, machine learning models are trained on known enhancer/promoter sites using histone mark ChIP-seq data and predict enhancers/promoters at other genomic regions. To this end, we have developed a highly customizable program named DeepRegFinder, which automates the entire process of data processing, model training, and prediction. We have employed convolutional and recurrent neural networks for model training and prediction. DeepRegFinder further categorizes enhancers and promoters into active and poised states, making it a unique and valuable feature for researchers. Our method demonstrates improved precision and recall in comparison to existing algorithms for enhancer prediction across multiple cell types. Moreover, our pipeline is modular and eliminates the tedious steps involved in preprocessing, making it easier for users to apply on their data quickly. Availability and implementation https://github.com/shenlab-sinai/DeepRegFinder.
Collapse
Affiliation(s)
- Aarthi Ramakrishnan
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - George Wangensteen
- Department of Computer Science, Brown University, Providence, RI 02912, United States
| | - Sarah Kim
- Cancer Program, Broad Institute, Cambridge, MA 02142, United States
| | - Eric J Nestler
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Friedman Brain Institute and Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
3
|
Phillips RA, Wan E, Tuscher JJ, Reid D, Drake OR, Ianov L, Day JJ. Temporally specific gene expression and chromatin remodeling programs regulate a conserved Pdyn enhancer. eLife 2023; 12:RP89993. [PMID: 37938195 PMCID: PMC10631760 DOI: 10.7554/elife.89993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Neuronal and behavioral adaptations to novel stimuli are regulated by temporally dynamic waves of transcriptional activity, which shape neuronal function and guide enduring plasticity. Neuronal activation promotes expression of an immediate early gene (IEG) program comprised primarily of activity-dependent transcription factors, which are thought to regulate a second set of late response genes (LRGs). However, while the mechanisms governing IEG activation have been well studied, the molecular interplay between IEGs and LRGs remain poorly characterized. Here, we used transcriptomic and chromatin accessibility profiling to define activity-driven responses in rat striatal neurons. As expected, neuronal depolarization generated robust changes in gene expression, with early changes (1 hr) enriched for inducible transcription factors and later changes (4 hr) enriched for neuropeptides, synaptic proteins, and ion channels. Remarkably, while depolarization did not induce chromatin remodeling after 1 hr, we found broad increases in chromatin accessibility at thousands of sites in the genome at 4 hr after neuronal stimulation. These putative regulatory elements were found almost exclusively at non-coding regions of the genome, and harbored consensus motifs for numerous activity-dependent transcription factors such as AP-1. Furthermore, blocking protein synthesis prevented activity-dependent chromatin remodeling, suggesting that IEG proteins are required for this process. Targeted analysis of LRG loci identified a putative enhancer upstream of Pdyn (prodynorphin), a gene encoding an opioid neuropeptide implicated in motivated behavior and neuropsychiatric disease states. CRISPR-based functional assays demonstrated that this enhancer is both necessary and sufficient for Pdyn transcription. This regulatory element is also conserved at the human PDYN locus, where its activation is sufficient to drive PDYN transcription in human cells. These results suggest that IEGs participate in chromatin remodeling at enhancers and identify a conserved enhancer that may act as a therapeutic target for brain disorders involving dysregulation of Pdyn.
Collapse
Affiliation(s)
- Robert A Phillips
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Ethan Wan
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - David Reid
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Olivia R Drake
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| | - Lara Ianov
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
- Civitan International Research Center, University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
4
|
Bafna A, Banks G, Hastings MH, Nolan PM. Dynamic modulation of genomic enhancer elements in the suprachiasmatic nucleus, the site of the mammalian circadian clock. Genome Res 2023; 33:673-688. [PMID: 37156620 PMCID: PMC10317116 DOI: 10.1101/gr.277581.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker. By using histone-ChIP-seq, we identified SCN-enriched gene regulatory elements that associated with temporal gene expression. Based on tissue-specific H3K27ac and H3K4me3 marks, we successfully produced the first-ever SCN gene-regulatory map. We found that a large majority of SCN enhancers not only show robust 24-h rhythmic modulation in H3K27ac occupancy, peaking at distinct times of day, but also possess canonical E-box (CACGTG) motifs potentially influencing downstream cycling gene expression. To establish enhancer-gene relationships in the SCN, we conducted directional RNA-seq at six distinct times across the day and night, and studied the association between dynamically changing histone acetylation and gene transcript levels. About 35% of the cycling H3K27ac sites were found adjacent to rhythmic gene transcripts, often preceding the rise in mRNA levels. We also noted that enhancers encompass noncoding, actively transcribing enhancer RNAs (eRNAs) in the SCN, which in turn oscillate, along with cyclic histone acetylation, and correlate with rhythmic gene transcription. Taken together, these findings shed light on genome-wide pretranscriptional regulation operative in the central clock that confers its precise and robust oscillation necessary to orchestrate daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| | - Gareth Banks
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Patrick M Nolan
- Medical Research Council, Harwell Science Campus, Oxfordshire OX11 0RD, United Kingdom;
| |
Collapse
|
5
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
6
|
Iatrou A, Clark EM, Wang Y. Nuclear dynamics and stress responses in Alzheimer's disease. Mol Neurodegener 2021; 16:65. [PMID: 34535174 PMCID: PMC8447732 DOI: 10.1186/s13024-021-00489-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
In response to extracellular and intracellular stressors, the nucleus and nuclear compartments undergo distinct molecular changes to maintain cell homeostasis. In the context of Alzheimer’s disease, misfolded proteins and various cellular stressors lead to profound structural and molecular changes at the nucleus. This review summarizes recent research on nuclear alterations in AD development, from the nuclear envelope changes to chromatin and epigenetic regulation and then to common nuclear stress responses. Finally, we provide our thoughts on the importance of understanding cell-type-specific changes and identifying upstream causal events in AD pathogenesis and highlight novel sequencing and gene perturbation technologies to address those challenges.
Collapse
Affiliation(s)
- Artemis Iatrou
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Eric M Clark
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA
| | - Yanling Wang
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Carullo NVN, Phillips III RA, Simon RC, Soto SA, Hinds JE, Salisbury AJ, Revanna JS, Bunner KD, Ianov L, Sultan FA, Savell KE, Gersbach CA, Day JJ. Enhancer RNAs predict enhancer-gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Res 2020; 48:9550-9570. [PMID: 32810208 PMCID: PMC7515708 DOI: 10.1093/nar/gkaa671] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic enhancer elements regulate gene expression programs important for neuronal fate and function and are implicated in brain disease states. Enhancers undergo bidirectional transcription to generate non-coding enhancer RNAs (eRNAs). However, eRNA function remains controversial. Here, we combined Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-Seq) and RNA-Seq datasets from three distinct neuronal culture systems in two activity states, enabling genome-wide enhancer identification and prediction of putative enhancer-gene pairs based on correlation of transcriptional output. Notably, stimulus-dependent enhancer transcription preceded mRNA induction, and CRISPR-based activation of eRNA synthesis increased mRNA at paired genes, functionally validating enhancer-gene predictions. Focusing on enhancers surrounding the Fos gene, we report that targeted eRNA manipulation bidirectionally modulates Fos mRNA, and that Fos eRNAs directly interact with the histone acetyltransferase domain of the enhancer-linked transcriptional co-activator CREB-binding protein (CBP). Together, these results highlight the unique role of eRNAs in neuronal gene regulation and demonstrate that eRNAs can be used to identify putative target genes.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Phillips III
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rhiana C Simon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Salomon A Roman Soto
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jenna E Hinds
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron J Salisbury
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin S Revanna
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kendra D Bunner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Faraz A Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Maximizing lentiviral vector gene transfer in the CNS. Gene Ther 2020; 28:75-88. [PMID: 32632267 PMCID: PMC7902268 DOI: 10.1038/s41434-020-0172-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Gene transfer is a widely developed technique for studying and treating genetic diseases. However, the development of therapeutic strategies is challenging, due to the cellular and functional complexity of the central nervous system (CNS), its large size and restricted access. We explored two parameters for improving gene transfer efficacy and capacity for the selective targeting of subpopulations of cells with lentiviral vectors (LVs). We first developed a second-generation LV specifically targeting astrocytes for the efficient expression or silencing of genes of interest, and to better study the importance of cell subpopulations in neurological disorders. We then made use of the retrograde transport properties of a chimeric envelope to target brain circuits affected in CNS diseases and achieve a broad distribution. The combination of retrograde transport and specific tropism displayed by this LV provides opportunities for delivering therapeutic genes to specific cell populations and ensuring high levels of transduction in interconnected brain areas following local administration. This new LV and delivery strategy should be of greater therapeutic benefit and opens up new possibilities for the preclinical development of gene therapy for neurodegenerative diseases.
Collapse
|
9
|
Abstract
Numerous neuronal functions depend on the precise spatiotemporal regulation of gene expression, and the cellular machinery that contributes to this regulation is frequently disrupted in neurodevelopmental, neuropsychiatric, and neurological disease states. Recent advances in gene editing technology have enabled increasingly rapid understanding of gene sequence variation and gene regulatory function in the central nervous system. Moreover, these tools have provided new insights into the locus-specific functions of epigenetic modifications and enabled epigenetic editing at specific gene loci in disease contexts. Continued development of clustered regularly interspaced short palindromic repeats (CRISPR)-based tools has provided not only cell-specific modulation, but also rapid induction profiles that permit sophisticated interrogation of the temporal dynamics that contribute to brain health and disease. This review summarizes recent advances in genetic editing, transcriptional modulation, and epigenetic reorganization, with a focus on applications to neuronal systems and potential uses in brain disorders characterized by genetic sequence variation or transcriptional dysregulation.
.
Collapse
Affiliation(s)
- Jeremy J Day
- Author affiliations: Department of Neurobiology, University of Alabama at Birmingham, Alabama, US. Address for correspondence: Jeremy J. Day, PhD, Associate Professor, Department of Neurobiology, University of Alabama at Birmingham, 910 Shelby Building, 1825 University Blvd, Birmingham, AL 35294, US.
| |
Collapse
|
10
|
Salinas RD, Connolly DR, Song H. Invited Review: Epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 2020; 46:6-27. [PMID: 32056273 PMCID: PMC7174139 DOI: 10.1111/nan.12608] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Neural development requires the orchestration of dynamic changes in gene expression to regulate cell fate decisions. This regulation is heavily influenced by epigenetics, heritable changes in gene expression not directly explained by genomic information alone. An understanding of the complexity of epigenetic regulation is rapidly emerging through the development of novel technologies that can assay various features of epigenetics and gene regulation. Here, we provide a broad overview of several commonly investigated modes of epigenetic regulation, including DNA methylation, histone modifications, noncoding RNAs, as well as epitranscriptomics that describe modifications of RNA, in neurodevelopment and diseases. Rather than functioning in isolation, it is being increasingly appreciated that these various modes of gene regulation are dynamically interactive and coordinate the complex nature of neurodevelopment along multiple axes. Future work investigating these interactions will likely utilize 'multi-omic' strategies that assay cell fate dynamics in a high-dimensional and high-throughput fashion. Novel human neurodevelopmental models including iPSC and cerebral organoid systems may provide further insight into human-specific features of neurodevelopment and diseases.
Collapse
Affiliation(s)
- Ryan D. Salinas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel R. Connolly
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Gegenhuber B, Tollkuhn J. Signatures of sex: Sex differences in gene expression in the vertebrate brain. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e348. [PMID: 31106965 PMCID: PMC6864223 DOI: 10.1002/wdev.348] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Women and men differ in disease prevalence, symptoms, and progression rates for many psychiatric and neurological disorders. As more preclinical studies include both sexes in experimental design, an increasing number of sex differences in physiology and behavior have been reported. In the brain, sex-typical behaviors are thought to result from sex-specific patterns of neural activity in response to the same sensory stimulus or context. These differential firing patterns likely arise as a consequence of underlying anatomic or molecular sex differences. Accordingly, gene expression in the brains of females and males has been extensively investigated, with the goal of identifying biological pathways that specify or modulate sex differences in brain function. However, there is surprisingly little consensus on sex-biased genes across studies and only a handful of robust candidates have been pursued in the follow-up experiments. Furthermore, it is not known how or when sex-biased gene expression originates, as few studies have been performed in the developing brain. Here we integrate molecular genetic and neural circuit perspectives to provide a conceptual framework of how sex differences in gene expression can arise in the brain. We detail mechanisms of gene regulation by steroid hormones, highlight landmark studies in rodents and humans, identify emerging themes, and offer recommendations for future research. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Sex Determination.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
12
|
Sarkar S, Chowdhury A, Singh PC. Multimodal Interactions of Dopamine Hydrochloride with the Groove Region of DNA: A Key Factor in the Enhanced Stability of DNA. J Phys Chem B 2019; 123:10700-10708. [DOI: 10.1021/acs.jpcb.9b09254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhinanda Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
13
|
Neurobiological functions of transcriptional enhancers. Nat Neurosci 2019; 23:5-14. [PMID: 31740812 DOI: 10.1038/s41593-019-0538-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
Transcriptional enhancers are regulatory DNA elements that underlie the specificity and dynamic patterns of gene expression. Over the past decade, large-scale functional genomics projects have driven transformative progress in our understanding of enhancers. These data have relevance for identifying mechanisms of gene regulation in the CNS, elucidating the function of non-coding regulatory sequences in neurobiology and linking sequence variation within enhancers to genetic risk for neurological and psychiatric disorders. However, the sheer volume and complexity of genomic data presents a challenge to interpreting enhancer function in normal and pathogenic neurobiological processes. Here, to advance the application of genome-scale enhancer data, we offer a primer on current models of enhancer function in the CNS, we review how enhancers regulate gene expression across the neuronal lifespan, and we suggest how emerging findings regarding the role of non-coding sequence variation offer opportunities for understanding brain disorders and developing new technologies for neuroscience.
Collapse
|
14
|
Herre M, Korb E. The chromatin landscape of neuronal plasticity. Curr Opin Neurobiol 2019; 59:79-86. [PMID: 31174107 DOI: 10.1016/j.conb.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/27/2023]
Abstract
Examining the links between neuronal activity, transcriptional output, and synaptic function offers unique insights into how neurons adapt to changing environments and form memories. Epigenetic markers, such as DNA methylation and histone modifications, have been implicated in the formation of not only cellular memories such as cell fate, but also memories of experience at the organismal level. Here, we review recent advances in chromatin regulation that contribute to synaptic plasticity and drive adaptive behaviors through dynamic and precise regulation of transcription output in neurons. We discuss chromatin-associated proteins, histone variant proteins, the contribution of cis-regulatory elements and their interaction with histone modifications, and how these mechanisms are integrated into distinct behavior and environmental response paradigms.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
15
|
Abstract
The IBDs, Crohn's disease and ulcerative colitis, are chronic inflammatory conditions of the gastrointestinal tract resulting from an aberrant immune response to enteric microbiota in genetically susceptible individuals. Disease presentation and progression within and across IBDs, especially Crohn's disease, are highly heterogeneous in location, severity of inflammation and other phenotypes. Current clinical classifications fail to accurately predict disease course and response to therapies. Genome-wide association studies have identified >240 loci that confer risk of IBD, but the clinical utility of these findings remains unclear, and mechanisms by which the genetic variants contribute to disease are largely unknown. In the past 5 years, the profiling of genome-wide gene expression, epigenomic features and gut microbiota composition in intestinal tissue and faecal samples has uncovered distinct molecular signatures that define IBD subtypes, including within Crohn's disease and ulcerative colitis. In this Review, we summarize studies in both adult and paediatric patients that have identified different IBD subtypes, which in some cases have been associated with distinct clinical phenotypes. We posit that genome-scale molecular phenotyping in large cohorts holds great promise not only to further our understanding of the diverse molecular causes of IBD but also for improving clinical trial design to develop more personalized disease management and treatment.
Collapse
|
16
|
Ho EYK, Cao Q, Gu M, Chan RWL, Wu Q, Gerstein M, Yip KY. Shaping the nebulous enhancer in the era of high-throughput assays and genome editing. Brief Bioinform 2019; 21:836-850. [PMID: 30895290 DOI: 10.1093/bib/bbz030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Since the 1st discovery of transcriptional enhancers in 1981, their textbook definition has remained largely unchanged in the past 37 years. With the emergence of high-throughput assays and genome editing, which are switching the paradigm from bottom-up discovery and testing of individual enhancers to top-down profiling of enhancer activities genome-wide, it has become increasingly evidenced that this classical definition has left substantial gray areas in different aspects. Here we survey a representative set of recent research articles and report the definitions of enhancers they have adopted. The results reveal that a wide spectrum of definitions is used usually without the definition stated explicitly, which could lead to difficulties in data interpretation and downstream analyses. Based on these findings, we discuss the practical implications and suggestions for future studies.
Collapse
Affiliation(s)
| | - Qin Cao
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ricky Wai-Lun Chan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Qiong Wu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.,Program in Computational Biology and Bioinformatics.,Department of Computer Science, Yale University, New Haven, Connecticut, USA
| | - Kevin Y Yip
- Department of Biomedical Engineering.,Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre.,CUHK-BGI Innovation Institute of Trans-omics.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Sharma N, Pollina EA, Nagy MA, Yap EL, DiBiase FA, Hrvatin S, Hu L, Lin C, Greenberg ME. ARNT2 Tunes Activity-Dependent Gene Expression through NCoR2-Mediated Repression and NPAS4-Mediated Activation. Neuron 2019; 102:390-406.e9. [PMID: 30846309 DOI: 10.1016/j.neuron.2019.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/20/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Neuronal activity-dependent transcription is tuned to ensure precise gene induction during periods of heightened synaptic activity, allowing for appropriate responses of activated neurons within neural circuits. The consequences of aberrant induction of activity-dependent genes on neuronal physiology are not yet clear. Here, we demonstrate that, in the absence of synaptic excitation, the basic-helix-loop-helix (bHLH)-PAS family transcription factor ARNT2 recruits the NCoR2 co-repressor complex to suppress neuronal activity-dependent regulatory elements and maintain low basal levels of inducible genes. This restricts inhibition of excitatory neurons, maintaining them in a state that is receptive to future sensory stimuli. By contrast, in response to heightened neuronal activity, ARNT2 recruits the neuronal-specific bHLH-PAS factor NPAS4 to activity-dependent regulatory elements to induce transcription and thereby increase somatic inhibitory input. Thus, the interplay of bHLH-PAS complexes at activity-dependent regulatory elements maintains temporal control of activity-dependent gene expression and scales somatic inhibition with circuit activity.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Florence A DiBiase
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda Hu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cindy Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Carullo NVN, Day JJ. Genomic Enhancers in Brain Health and Disease. Genes (Basel) 2019; 10:E43. [PMID: 30646598 PMCID: PMC6357130 DOI: 10.3390/genes10010043] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
Enhancers are non-coding DNA elements that function in cis to regulate transcription from nearby genes. Through direct interactions with gene promoters, enhancers give rise to spatially and temporally precise gene expression profiles in distinct cell or tissue types. In the brain, the accurate regulation of these intricate expression programs across different neuronal classes gives rise to an incredible cellular and functional diversity. Newly developed technologies have recently allowed more accurate enhancer mapping and more sophisticated enhancer manipulation, producing rapid progress in our understanding of enhancer biology. Furthermore, identification of disease-linked genetic variation in enhancer regions has highlighted the potential influence of enhancers in brain health and disease. This review outlines the key role of enhancers as transcriptional regulators, reviews the current understanding of enhancer regulation in neuronal development, function and dysfunction and provides our thoughts on how enhancers can be targeted for technological and therapeutic goals.
Collapse
Affiliation(s)
- Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Sakai A, Sugiyama S. Experience-dependent transcriptional regulation in juvenile brain development. Dev Growth Differ 2019; 60:473-482. [PMID: 30368782 DOI: 10.1111/dgd.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Abstract
During brain development, once primary neural networks are formed, they are largely sculpted by environmental stimuli. The juvenile brain has a unique time window termed the critical period, in which neuronal circuits are remodeled by experience. Accumulating evidence indicates that abnormal rewiring of circuits in early life contributes to various neurodevelopmental disorders at later stages of life. Recent studies implicate two important aspects for activation of the critical period, both of which are experience-dependent: (a) proper excitatory/inhibitory (E/I) balance of neural circuit achieved during developmental trajectory of inhibitory interneurons, and (b) epigenetic regulation allowing flexible gene expression for neuronal plasticity. In this review, we discuss the molecular mechanisms of juvenile brain plasticity from the viewpoints of transcriptional and chromatin regulation, with a focus on Otx2 homeoprotein. Depending on experience, Otx2 is transported into cortical parvalbumin-positive interneurons (PV cells), where it induces PV cell maturation to activate the critical period. Understanding the unique behavior and function of Otx2 as a "messenger" of experience should therefore provide insights into mechanisms of juvenile brain development. Recently identified downstream targets of Otx2 suggest novel roles of Otx2 in homeostasis of PV cells, and, moreover, in regulation of chromatin state, which is important for neuronal plasticity. We further discuss epigenetic changes during postnatal brain development spanning the critical period. Different aspects of chromatin regulation may underlie experience-dependent neuronal development and plasticity.
Collapse
Affiliation(s)
- Akiko Sakai
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sayaka Sugiyama
- Laboratory of Neuronal Development, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
20
|
Saunders J, Hore Z, Gentry C, McMahon S, Denk F. Negative Evidence for a Functional Role of Neuronal DNMT3a in Persistent Pain. Front Mol Neurosci 2018; 11:332. [PMID: 30258352 PMCID: PMC6143791 DOI: 10.3389/fnmol.2018.00332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 11/13/2022] Open
Abstract
Traditionally, neuroscience has had to rely on mixed tissue analysis to examine transcriptional and epigenetic changes in the context of nervous system function or pathology. However, particularly when studying chronic pain conditions, this approach can be flawed, since it neglects to take into account the shifting contribution of different cell types across experimental conditions. Here, we demonstrate this using the example of DNA methyltransferases (DNMTs) – a group of epigenetic modifiers consisting of Dnmt1, Dnmt3a, and Dnmt3b in mammalian cells. We used sensory neuron-specific knockout mice for Dnmt3a/3b as well as pharmacological blockade of Dnmt1 to study their role in nociception. In contrast to previous analyses on whole tissue, we find that Dnmt3a and 3b protein is not expressed in adult DRG neurons, that none of the DNA methyltransferases are regulated with injury and that interfering with their function has no effect on nociception. Our results therefore currently do not support a role for neuronal DNA methyltransferases in pain processing in adult animals.
Collapse
Affiliation(s)
- Jessica Saunders
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Abstract
Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Urann Chan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Signal transduction in L-DOPA-induced dyskinesia: from receptor sensitization to abnormal gene expression. J Neural Transm (Vienna) 2018; 125:1171-1186. [PMID: 29396608 PMCID: PMC6060907 DOI: 10.1007/s00702-018-1847-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 01/06/2023]
Abstract
A large number of signaling abnormalities have been implicated in the emergence and expression of l-DOPA-induced dyskinesia (LID). The primary cause for many of these changes is the development of sensitization at dopamine receptors located on striatal projection neurons (SPN). This initial priming, which is particularly evident at the level of dopamine D1 receptors (D1R), can be viewed as a homeostatic response to dopamine depletion and is further exacerbated by chronic administration of l-DOPA, through a variety of mechanisms affecting various components of the G-protein-coupled receptor machinery. Sensitization of dopamine receptors in combination with pulsatile administration of l-DOPA leads to intermittent and coordinated hyperactivation of signal transduction cascades, ultimately resulting in long-term modifications of gene expression and protein synthesis. A detailed mapping of these pathological changes and of their involvement in LID has been produced during the last decade. According to this emerging picture, activation of sensitized D1R results in the stimulation of cAMP-dependent protein kinase and of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa. This, in turn, activates the extracellular signal-regulated kinases 1 and 2 (ERK), leading to chromatin remodeling and aberrant gene transcription. Dysregulated ERK results also in the stimulation of the mammalian target of rapamycin complex 1, which promotes protein synthesis. Enhanced levels of multiple effector targets, including several transcription factors have been implicated in LID and associated changes in synaptic plasticity and morphology. This article provides an overview of the intracellular modifications occurring in SPN and associated with LID.
Collapse
|
23
|
Lissek T. Interfacing Neural Network Components and Nucleic Acids. Front Bioeng Biotechnol 2017; 5:53. [PMID: 29255707 PMCID: PMC5722975 DOI: 10.3389/fbioe.2017.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022] Open
Abstract
Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat.
Collapse
Affiliation(s)
- Thomas Lissek
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Savell KE, Day JJ. Applications of CRISPR/Cas9 in the Mammalian Central Nervous System. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:567-581. [PMID: 29259522 PMCID: PMC5733858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Within the central nervous system, gene regulatory mechanisms are crucial regulators of cellular development and function, and dysregulation of these systems is commonly observed in major neuropsychiatric and neurological disorders. However, due to a lack of tools to specifically modulate the genome and epigenome in the central nervous system, many molecular and genetic mechanisms underlying cognitive function and behavior are still unknown. Although genome editing tools have been around for decades, the recent emergence of inexpensive, straightforward, and widely accessible CRISPR/Cas9 systems has led to a revolution in gene editing. The development of the catalytically dead Cas9 (dCas9) expanded this flexibility even further by acting as an anchoring system for fused effector proteins, structural scaffolds, and RNAs. Together, these advances have enabled robust, modular approaches for specific targeting and modification of the local chromatin environment at a single gene. This review highlights these advancements and how the combination of powerful modulatory tools paired with the versatility of CRISPR-Cas9-based systems offer great potential for understanding the underlying genetic and epigenetic contributions of neuronal function, behavior, and neurobiological diseases.
Collapse
Affiliation(s)
- Katherine E. Savell
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy J. Day
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
25
|
|
26
|
Yang MG, West AE. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:457-470. [PMID: 28018138 PMCID: PMC5168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo, and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.
Collapse
Affiliation(s)
| | - Anne E. West
- Anne West, Department of Neurobiology, DUMC Box 3209, 311 Research Drive, Bryan Research 301D, Durham, NC 27710, Phone: 919-681-1909, Fax: 919-668-4431,
| |
Collapse
|
27
|
Ehrlich KC, Paterson HL, Lacey M, Ehrlich M. DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:441-455. [PMID: 28018137 PMCID: PMC5168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1's super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA
| | | | - Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Mathematics Department, Tulane University, New Orleans, LA
| | - Melanie Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA,To whom all correspondence should be addressed: Melanie Ehrlich, PhD, Hayward Genetics Center, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112; Tele: 504-988-2449; Fax: 504-988-1763;
| |
Collapse
|