1
|
Rao AM, DeHaan RD, Kahana MJ. Synchronous Theta Networks Characterize Successful Memory Retrieval. J Neurosci 2025; 45:e1332242025. [PMID: 40032520 PMCID: PMC12005240 DOI: 10.1523/jneurosci.1332-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
Memory retrieval activates regions across the brain, including not only the hippocampus and medial temporal lobe (MTL), but also frontal, parietal, and lateral temporal cortical regions. What remains unclear, however, is how these regions communicate to organize retrieval-specific processing. Here, we elucidate the role of theta (3-8 Hz) synchronization, broadly implicated in memory function, during the spontaneous retrieval of episodic memories. Analyzing a dataset of 382 neurosurgical patients (213 males, 168 females, and 1 unknown) implanted with intracranial electrodes who completed a free-recall task, we find that synchronous networks of theta phase synchrony span the brain in the moments before spontaneous recall, in comparison to periods of deliberation and incorrect recalls. Hubs of the retrieval network, which systematically synchronize with other regions, appear throughout the prefrontal cortex and lateral and medial temporal lobes, as well as other areas. Theta synchrony increases appear more prominently for slow (3 Hz) theta than for fast (8 Hz) theta in the recall-deliberation contrast, but not in the encoding or recall-intrusion contrasts, and theta power and synchrony correlate positively throughout the theta band. These results implicate diffuse brain-wide synchronization of theta rhythms, especially slow theta, in episodic memory retrieval.
Collapse
Affiliation(s)
- Aditya M Rao
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
2
|
Shtoots L, Nadler A, Gamoran A, Levy DA, Doron G. Evaluating the combined effects of mobile computerized CBT and post-learning oscillatory modulation on self-esteem: a randomized controlled trial. Sci Rep 2025; 15:10934. [PMID: 40157955 PMCID: PMC11955000 DOI: 10.1038/s41598-024-83941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 04/01/2025] Open
Abstract
Self-esteem, crucial for psychological well-being, can be enhanced through targeted interventions like cognitive behavioral therapy (CBT). However, traditional CBT faces various accessibility barriers. Digital health interventions such as computerized CBT and mobile health (mHealth) applications offer potential solutions. Recent research suggests that brain oscillations, particularly theta rhythms, play a key role in memory consolidation. Combining computerized CBT with post-learning theta rhythm modulation may optimize and stabilize improvements in self-esteem and promote neuro-wellbeing. This six-month longitudinal study aimed to evaluate the synergistic effects of a computerized CBT intervention (GGSE) combined with post-training theta rhythm brain modulation on improving self-esteem in young adults with low self-esteem. Participants were randomly allocated to three groups: GGSE + theta audio-visual entrainment (AVE) with Cranio-Electro Stimulation (CES), GGSE + beta AVE + CES (active control), and GGSE only (control). The intervention lasted three weeks. Assessments of self-esteem, maladaptive beliefs, and mood were conducted at baseline, 21 days, 42 days, and six months post-baseline. Although post-treatment oscillatory entrainment did not enhance the long-term efficacy of the intervention, significant treatment effects persisted for six months across all groups. These results support the potential long-term efficacy of brief, game-like, digital CBT approaches for improving self-esteem.
Collapse
Affiliation(s)
- Limor Shtoots
- The Dina Recanati School of Medicine, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel
| | - Avi Gamoran
- Department of Psychology, Ben-Gurion University of the Negev, 653, Beer Sheva, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Guy Doron
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel.
| |
Collapse
|
3
|
Aykan S, Laguitton V, Villalon SM, Lagarde S, Makhalova J, Bartolomei F, Bénar CG. Working memory deficit in patients with focal epilepsy is associated with higher interictal theta connectivity. Clin Neurophysiol 2025; 170:49-57. [PMID: 39667168 DOI: 10.1016/j.clinph.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Interictal cognitive disturbances are frequent in patients with focal epilepsies and the links with alteration of resting state brain oscillations are not well known. Changes in theta oscillations, may contribute to cognitive impairment. This study aimed to investigate whether changes in theta activity are related to cognitive disturbances. METHODS Retrospective data of 23 patients with temporal/frontal lobe epilepsy were included. Theta connectivity, power and interictal spikes rate from five-minute interictal resting state stereoelectroencephalography datasets were computed. Cognitive performances were assessed by Wechsler Intelligence Scale (WAIS-IV) and Weschler Memory Scale (WMS-III). Linear regression was performed to evaluate effect of interictal activity and seizure related parameters on cognitive scores. RESULTS WAIS-IV working memory score in patients with epilepsy showed negative correlation with frontotemporal theta connectivity (F(1,17) = 5,239, p = 0,036, R2 = 0,200, β = -0,497). Moreover, theta connectivity was correlated with mesial temporal spike rate and theta power (F(2,17) = 10,967, p = 0,001, adj.R2 = 0,540). CONCLUSIONS Patients with focal epilepsy often encounter compromised cognitive functions, particularly notable in the domain of working memory. This impairment might be attributed to physiological mechanisms involving increased theta connectivity within the frontotemporal regions and interictal spiking. SIGNIFICANCE Our study highlights the relation between theta connectivity and working memory impairments in patients with focal epilepsy.
Collapse
Affiliation(s)
- Simge Aykan
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Türkiye; Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France.
| | - Virginie Laguitton
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Samuel Medina Villalon
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Stanislas Lagarde
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Julia Makhalova
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Christian-George Bénar
- Aix Marseille Univ, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; APHM, Timone Hospital, Epileptology Department, Marseille, France
| |
Collapse
|
4
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall revealed through multi-experiment iEEG replication. eLife 2024; 13:RP99018. [PMID: 39556109 PMCID: PMC11573350 DOI: 10.7554/elife.99018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience network (SN), default mode network (DMN), and frontoparietal network (FPN), provides a framework for understanding these interactions. We analyzed intracranial electroencephalography (EEG) recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally driven memory encoding and internally governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
5
|
Mitsuhashi T, Iimura Y, Suzuki H, Ueda T, Nishioka K, Nomura K, Nakajima M, Sugano H, Kondo A. Bipolar and Laplacian montages are suitable for high-gamma modulation language mapping with stereoelectroencephalography. Front Neurol 2024; 15:1380644. [PMID: 39479009 PMCID: PMC11521834 DOI: 10.3389/fneur.2024.1380644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Objective To determine the optimal montage and vocalization conditions for high-gamma language mapping using stereoelectroencephalography. Methods We studied 12 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of auditory-naming related high-gamma modulations. We determined the effects of electrode montage and vocalization conditions of the response on the high-gamma (60-140 Hz) amplitudes. Results Compared to common average reference montage, bipolar and Laplacian montages effectively reduced the degree of auditory naming-related signal deflections in the white matter during the stimulus and response phases (mixed model estimate: -21.2 to -85.4%; p < 0.001), while maintaining those at the cortical level (-4.4 to +7.8%; p = 0.614 to 0.085). They also reduced signal deflections outside the brain parenchyma during the response phase (-90.6 to -91.2%; p < 0.001). Covert responses reduced signal deflections outside the brain parenchyma during the response phase (-17.0%; p = 0.010). Conclusion On depth electrode recording, bipolar and Laplacian montages are suitable for measuring auditory naming-related high-gamma modulations in gray matter. The covert response may highlight the gray matter activity. Significance This study helps establish the practical guidelines for high-gamma language mapping using stereoelectroencephalography.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hiroharu Suzuki
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Tetsuya Ueda
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nishioka
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Kazuki Nomura
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
- Epilepsy Center, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall: A multi-experiment iEEG replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582593. [PMID: 38463954 PMCID: PMC10925291 DOI: 10.1101/2024.02.28.582593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience (SN), default mode (DMN), and frontoparietal (FPN) networks, provides a framework for understanding these interactions. We analyzed intracranial EEG recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting-state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally-driven memory encoding and internally-governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Qi Z, Xiong H, Zhuo J, Cao D, Liu H, Shi W, Lang Y, Liu Y, Zhang G, Jiang T. Intracranial EEGs evidenced visual object processing in the human medial temporal lobe subregions. Neuroscience 2024; 555:205-212. [PMID: 39053670 DOI: 10.1016/j.neuroscience.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.
Collapse
Affiliation(s)
- Zihui Qi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan 570228, China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongcui Lang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Yaoling Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China
| | - Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, No. 3 Beiyuan Road, Chaoyang District, Beijing 100012, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, China.
| |
Collapse
|
8
|
Stieger JR, Pinheiro-Chagas P, Fang Y, Li J, Lusk Z, Perry CM, Girn M, Contreras D, Chen Q, Huguenard JR, Spreng RN, Edlow BL, Wagner AD, Buch V, Parvizi J. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc Natl Acad Sci U S A 2024; 121:e2316021121. [PMID: 39078679 PMCID: PMC11317603 DOI: 10.1073/pnas.2316021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.
Collapse
Affiliation(s)
- James R. Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Ying Fang
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Claire M. Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Manesh Girn
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Diego Contreras
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA19104
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - John R. Huguenard
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anthony D. Wagner
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Psychology, Stanford University, Stanford, CA94305
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| |
Collapse
|
9
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
10
|
Hermiller MS. Effects of continuous versus intermittent theta-burst TMS on fMRI connectivity. Front Hum Neurosci 2024; 18:1380583. [PMID: 38883322 PMCID: PMC11177618 DOI: 10.3389/fnhum.2024.1380583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Transcranial magnetic stimulation is a noninvasive technique that can be used to evoke distributed network-level effects. Previous work demonstrated that the Hippocampal-Cortical Network responds preferably (i.e., greater memory improvement and increases in hippocampal-network connectivity) to continuous theta-burst stimulation protocol relative to intermittent theta-burst and to 20-Hz rTMS. Here, these data were further analyzed to characterize effects of continuous versus intermittent theta-burst stimulation on network-level connectivity measures - as well as local connectedness - via resting-state fMRI. In contrast to theories that propose continuous and intermittent theta-burst cause local inhibitory versus excitatory effects, respectively, both protocols caused local decreases in fMRI connectivity around the stimulated parietal site. While iTBS caused decreases in connectivity across the hippocampal-cortical network, cTBS caused increases and decreases in connectivity across the network. cTBS had no effect on the parietal-cortical network, whereas iTBS caused decreases in the right parietal cortex (contralateral hemisphere to the stimulation target). These findings suggest that continuous theta-burst may have entrained the endogenous hippocampal-cortical network, whereas the intermittent train was unable to maintain entrainment that may have yielded the long-lasting effects measured in this study (i.e., within 20-min post-stimulation). Furthermore, these effects were specific to the hippocampal-cortical network, which has a putative endogenous functionally-relevant theta rhythm, and not to the parietal network. These results add to the growing body of evidence that suggests effects of theta-burst stimulation are not fully characterized by excitatory/inhibitory theories. Further work is required to understand local and network-level effects of noninvasive stimulation.
Collapse
Affiliation(s)
- Molly S Hermiller
- Department of Psychology, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
11
|
Das A, Menon V. Hippocampal-parietal cortex causal directed connectivity during human episodic memory formation: Replication across three experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566056. [PMID: 37986855 PMCID: PMC10659286 DOI: 10.1101/2023.11.07.566056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305
| |
Collapse
|
12
|
Moore IL, Long NM. Semantic associations restore neural encoding mechanisms. Learn Mem 2024; 31:a053996. [PMID: 38503491 PMCID: PMC11000581 DOI: 10.1101/lm.053996.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Lapses in attention can negatively impact later memory of an experience. Attention and encoding resources are thought to decline as more experiences are encountered in succession, accounting for the primacy effect in which memory is better for items encountered early compared to late in a study list. However, accessing prior knowledge during study can facilitate subsequent memory, suggesting a potential avenue to counteract this decline. Here, we investigated the extent to which semantic associations-shared meaning between experiences-can counteract declines in encoding resources. Our hypothesis is that semantic associations restore neural encoding mechanisms, which in turn improves memory. We recorded scalp electroencephalography (EEG) while male and female human participants performed a delayed free recall task. Half of the items from late in each study list were semantically associated with an item presented earlier in the list. We find that semantic associations improve memory specifically for late list items and selectively modulate the neural signals engaged during the study of late list items. Relative to other recalled items, late list items that are subsequently semantically clustered-recalled consecutively with their semantic associate-elicit increased high-frequency activity and decreased low-frequency activity, a hallmark of successful encoding. Our findings demonstrate that semantic associations restore neural encoding mechanisms and improve later memory. More broadly, these findings suggest that prior knowledge modulates the orientation of attention to influence encoding mechanisms.
Collapse
Affiliation(s)
- Isabelle L Moore
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Nicole M Long
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
13
|
Shtoots L, Nadler A, Partouche R, Sharir D, Rothstein A, Shati L, Levy DA. Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ SCIENCE OF LEARNING 2024; 9:8. [PMID: 38365886 PMCID: PMC10873319 DOI: 10.1038/s41539-024-00222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Evidence implicating theta rhythms in declarative memory encoding and retrieval, together with the notion that both retrieval and consolidation involve memory reinstatement or replay, suggests that post-learning theta rhythm modulation can promote early consolidation of newly formed memories. Building on earlier work employing theta neurofeedback, we examined whether theta-frequency transcranial alternating stimulation (tACS) can engender effective consolidation of newly formed episodic memories, compared with beta frequency stimulation or sham control conditions. We compared midline frontal and posterior parietal theta stimulation montages and examined whether benefits to memory of theta upregulation are attributable to consolidation rather than to retrieval processes by using a washout period to eliminate tACS after-effects between stimulation and memory assessment. Four groups of participants viewed object pictures followed by a free recall test during three study-test cycles. They then engaged in tACS (frontal theta montage/parietal theta montage/frontal beta montage/sham) for a period of 20 min, followed by a 2-h break. Free recall assessments were conducted after the break, 24 h later, and 7 days later. Frontal midline theta-tACS induced significant off-line retrieval gains at all assessment time points relative to all other conditions. This indicates that theta upregulation provides optimal conditions for the consolidation of episodic memory, independent of mental-state strategies.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Roni Partouche
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Dorin Sharir
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel.
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
14
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Yin N, Wang H, Wang Z, Feng K, Xu G, Yin S. A study of brain networks associated with Freezing of gait in Parkinson's disease using transfer entropy analysis. Brain Res 2023; 1821:148610. [PMID: 37783260 DOI: 10.1016/j.brainres.2023.148610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease in the elderly. Freezing of Gait (FOG) is one of the common motor symptoms of PD, but the potential mechanism remains unclear. This study aimed to investigate the changes of brain functional network topology in PD patients with FOG. METHODS The resting electroencephalogram (EEG) were acquired from15 PD patients with FOG (PD-FOG), 13 PD patients without FOG (PD-nFOG), and 16 healthy control (HC). Cognitive and motor functions were assessed using subjective scales. The whole-brain functional networks were constructed based on transfer entropy. Transfer entropy was used to analyse the information flow and causality in the network and the network connectivity was analyzed by graph theory. The characteristics of PD-FOG and PD-nFOG were compared by receiver operator characteristic (ROC) curve analysis. RESULTS The θ bands brain network of PD-FOG, PD-nFOG and HC group was significantly different (P < 0.05). The average characteristic path length of the θ bands brain network was positively correlated with FOG Questionnaire (FOGQ). PD-FOG and PD-nFOG get high classification accuracy according to this feature. The information inflow in the frontal and occipital lobes and information outflow in the temporal lobe of PD-FOG patients in the θ bands increased significantly. CONCLUSIONS The whole-brain functional network characteristics of PD-FOG in the θ bands can serve as potential biomarkers for early diagnosis of PD-FOG. Abnormal information flow of the frontal, occipital, and temporal lobes in the θ bands may be an important factor leading to FOG.
Collapse
Affiliation(s)
- Ning Yin
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Haili Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhaoya Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Keke Feng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Shaoya Yin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
16
|
Rozengurt R, Kuznietsov I, Kachynska T, Kozachuk N, Abramchuk O, Zhuravlov O, Mendelsohn A, Levy DA. Theta EEG neurofeedback promotes early consolidation of real life-like episodic memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1473-1481. [PMID: 37752389 DOI: 10.3758/s13415-023-01125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Theta oscillations are believed to coordinate neuronal activity related to human cognition, especially for memory functions. Theta power during learning and retrieval has been found to correlate with memory performance success. Additionally, up-regulating theta oscillations during a post-encoding epoch crucial for memory consolidation was previously shown to benefit long-term memory for acquired motor sequences, pictures, and object-location associations. However, it remains to be determined whether such effects would be found for more ecological aspects of long-term episodic memory. Therefore, the current study assessed neurofeedback-based theta upregulation effects on movie memory. After viewing a 15-minute silent, narrative movie, participants engaged in neurofeedback-based theta/beta up-regulation, neurofeedback beta/theta up-regulation as an active control condition, or an unrelated passive control task. Memory was tested three times: once immediately after watching the movie (as baseline); 24 hours thereafter; and once again 1 week later. Memory performance 1 week after encoding was significantly enhanced in the theta/beta up-regulation group compared with the other groups. Additionally, changes in neurofeedback theta/beta ratio from baseline EEG recordings correlated with long-term memory gains in retrieving the movie's content. These findings highlight the relationship between post-learning theta oscillations and the consolidation of episodic memory for a naturalistic event.
Collapse
Affiliation(s)
- Roman Rozengurt
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | | | | | - Olha Abramchuk
- Lesya Ukrainka Volyn National University, Lutsk, Ukraine
| | | | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel.
| | - Daniel A Levy
- Reichman University, Herzliya, Israel
- Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
17
|
Herz N, Bukala BR, Kragel JE, Kahana MJ. Hippocampal activity predicts contextual misattribution of false memories. Proc Natl Acad Sci U S A 2023; 120:e2305292120. [PMID: 37751551 PMCID: PMC10556612 DOI: 10.1073/pnas.2305292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.
Collapse
Affiliation(s)
- Noa Herz
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Bernard R. Bukala
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - James E. Kragel
- Department of Neurology, University of Chicago, Chicago, IL60637
| | - Michael J. Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
18
|
Servais A, Hurter C, Barbeau EJ. Attentional switch to memory: An early and critical phase of the cognitive cascade allowing autobiographical memory retrieval. Psychon Bull Rev 2023; 30:1707-1721. [PMID: 37118526 DOI: 10.3758/s13423-023-02270-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/30/2023]
Abstract
Remembering and mentally reliving yesterday's lunch is a typical example of episodic autobiographical memory retrieval. In the present review, we reappraised the complex cascade of cognitive processes involved in memory retrieval, by highlighting one particular phase that has received little interest so far: attentional switch to memory (ASM). As attention cannot be simultaneously directed toward external stimuli and internal memories, there has to be an attentional switch from the external to the internal world in order to initiate memory retrieval. We formulated hypotheses and developed hypothetical models of both the cognitive and brain processes that accompany ASM. We suggest that gaze aversion could serve as an objective temporal marker of the point at which people switch their attention to memory, and highlight several fields (neuropsychology, neuroscience, social cognition, comparative psychology) in which ASM markers could be essential. Our review thus provides a new framework for understanding the early stages of autobiographical memory retrieval.
Collapse
Affiliation(s)
- Anaïs Servais
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France.
- ENAC, 7, avenue Edouard Belin, 31055, Toulouse, France.
| | | | - Emmanuel J Barbeau
- CerCo, CNRS UMR5549-Université de Toulouse, CHU Purpan, Pavillon Baudot, 31052, Toulouse, France
| |
Collapse
|
19
|
McNerney MW, Gurkoff GG, Beard C, Berryhill ME. The Rehabilitation Potential of Neurostimulation for Mild Traumatic Brain Injury in Animal and Human Studies. Brain Sci 2023; 13:1402. [PMID: 37891771 PMCID: PMC10605899 DOI: 10.3390/brainsci13101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neurostimulation carries high therapeutic potential, accompanied by an excellent safety profile. In this review, we argue that an arena in which these tools could provide breakthrough benefits is traumatic brain injury (TBI). TBI is a major health problem worldwide, with the majority of cases identified as mild TBI (mTBI). MTBI is of concern because it is a modifiable risk factor for dementia. A major challenge in studying mTBI is its inherent heterogeneity across a large feature space (e.g., etiology, age of injury, sex, treatment, initial health status, etc.). Parallel lines of research in human and rodent mTBI can be collated to take advantage of the full suite of neuroscience tools, from neuroimaging (electroencephalography: EEG; functional magnetic resonance imaging: fMRI; diffusion tensor imaging: DTI) to biochemical assays. Despite these attractive components and the need for effective treatments, there are at least two major challenges to implementation. First, there is insufficient understanding of how neurostimulation alters neural mechanisms. Second, there is insufficient understanding of how mTBI alters neural function. The goal of this review is to assemble interrelated but disparate areas of research to identify important gaps in knowledge impeding the implementation of neurostimulation.
Collapse
Affiliation(s)
- M. Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, and Center for Neuroscience, University of California, Davis, Sacramento, CA 95817, USA;
- Department of Veterans Affairs, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Charlotte Beard
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; (M.W.M.); (C.B.)
- Program in Neuroscience and Behavioral Biology, Emory University, Atlanta, GA 30322, USA
| | - Marian E. Berryhill
- Programs in Cognitive and Brain Sciences, and Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
20
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
21
|
Gruenwald J, Sieghartsleitner S, Kapeller C, Scharinger J, Kamada K, Brunner P, Guger C. Characterization of High-Gamma Activity in Electrocorticographic Signals. Front Neurosci 2023; 17:1206120. [PMID: 37609450 PMCID: PMC10440607 DOI: 10.3389/fnins.2023.1206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Electrocorticographic (ECoG) high-gamma activity (HGA) is a widely recognized and robust neural correlate of cognition and behavior. However, fundamental signal properties of HGA, such as the high-gamma frequency band or temporal dynamics of HGA, have never been systematically characterized. As a result, HGA estimators are often poorly adjusted, such that they miss valuable physiological information. Methods To address these issues, we conducted a thorough qualitative and quantitative characterization of HGA in ECoG signals. Our study is based on ECoG signals recorded from 18 epilepsy patients while performing motor control, listening, and visual perception tasks. In this study, we first categorize HGA into HGA types based on the cognitive/behavioral task. For each HGA type, we then systematically quantify three fundamental signal properties of HGA: the high-gamma frequency band, the HGA bandwidth, and the temporal dynamics of HGA. Results The high-gamma frequency band strongly varies across subjects and across cognitive/behavioral tasks. In addition, HGA time courses have lowpass character, with transients limited to 10 Hz. The task-related rise time and duration of these HGA time courses depend on the individual subject and cognitive/behavioral task. Task-related HGA amplitudes are comparable across the investigated tasks. Discussion This study is of high practical relevance because it provides a systematic basis for optimizing experiment design, ECoG acquisition and processing, and HGA estimation. Our results reveal previously unknown characteristics of HGA, the physiological principles of which need to be investigated in further studies.
Collapse
Affiliation(s)
- Johannes Gruenwald
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Kyousuke Kamada
- Department for Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
- Hokashin Group Megumino Hospital, Sapporo, Japan
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
22
|
Wang DX, Ng N, Seger SE, Ekstrom AD, Kriegel JL, Lega BC. Machine learning classifiers for electrode selection in the design of closed-loop neuromodulation devices for episodic memory improvement. Cereb Cortex 2023; 33:8150-8163. [PMID: 36997155 PMCID: PMC10321120 DOI: 10.1093/cercor/bhad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 04/01/2023] Open
Abstract
Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.
Collapse
Affiliation(s)
- David X Wang
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nicole Ng
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sarah E Seger
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
| | - Arne D Ekstrom
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721, United States
- Department of Psychology, University of Arizona, Tucson, Arizona 85721, United States
| | - Jennifer L Kriegel
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bradley C Lega
- Department of Neurosurgery, The University of Texas – Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
23
|
Rubinstein DY, Weidemann CT, Sperling MR, Kahana MJ. Direct brain recordings suggest a causal subsequent-memory effect. Cereb Cortex 2023; 33:6891-6901. [PMID: 36702495 PMCID: PMC10233277 DOI: 10.1093/cercor/bhad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Endogenous variation in brain state and stimulus-specific evoked activity can both contribute to successful encoding. Previous studies, however, have not clearly distinguished among these components. We address this question by analysing intracranial EEG recorded from epilepsy patients as they studied and subsequently recalled lists of words. We first trained classifiers to predict recall of either single items or entire lists and found that both classifiers exhibited similar performance. We found that list-level classifier output-a biomarker of successful encoding-tracked item presentation and recall events, despite having no information about the trial structure. Across widespread brain regions, decreased low- and increased high-frequency activity (HFA) marked successful encoding of both items and lists. We found regional differences in the hippocampus and prefrontal cortex, where in the hippocampus HFA correlated more strongly with item recall, whereas, in the prefrontal cortex, HFA correlated more strongly with list performance. Despite subtle differences in item- and list-level features, the similarity in overall classification performance, spectral signatures of successful recall and fluctuations of spectral activity across the encoding period argue for a shared endogenous process that causally impacts the brain's ability to learn new information.
Collapse
Affiliation(s)
- Daniel Y Rubinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christoph T Weidemann
- Department of Psychology, Swansea University, Swansea SA2 8PP, UK
- Department of Bioengineering, Columbia University, New York, NY 10027, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
25
|
Hippocampal Theta and Episodic Memory. J Neurosci 2023; 43:613-620. [PMID: 36639900 PMCID: PMC9888505 DOI: 10.1523/jneurosci.1045-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Computational models of rodent physiology implicate hippocampal theta as a key modulator of learning and memory (Buzsáki and Moser, 2013; Lisman and Jensen, 2013), yet human hippocampal recordings have shown divergent theta correlates of memory formation. Herweg et al. (2020) suggest that decreases in memory-related broadband power mask narrowband theta increases. Their survey also notes that the theta oscillations appear most prominently in contrasts that isolate memory retrieval processes and when aggregating signals across large brain regions. We evaluate these hypotheses by analyzing human hippocampal recordings captured as 162 neurosurgical patients (n = 86 female) performed a free recall task. Using the Irregular-Resampling Auto-Spectral Analysis (IRASA) to separate broad and narrowband components of the field potential, we show that (1) broadband and narrowband components of theta exhibit opposite effects, with broadband signals decreasing and narrowband theta increasing during successful encoding; (2) whereas low-frequency theta oscillations increase before successful recall, higher-frequency theta and alpha oscillations decrease, masking the positive effect of theta when aggregating across the full band; and (3) the effects of theta on memory encoding and retrieval do not differ between reference schemes that accentuate local signals (bipolar) and those that aggregate signals globally (whole-brain average). In line with computational models that ascribe a fundamental role for hippocampal theta in memory, our large-scale study of human hippocampal recordings shows that 3-4 Hz theta oscillations reliably increase during successful memory encoding and before spontaneous recall of previously studied items.SIGNIFICANCE STATEMENT Analyzing recordings from 162 participants, we resolve a long-standing question regarding the role of hippocampal theta oscillations in the formation and retrieval of episodic memories. We show that broadband spectral changes confound estimates of narrowband theta activity, thereby accounting for inconsistent results in the literature. After accounting for broadband effects, we find that increased theta activity marks successful encoding and retrieval of episodic memories, supporting rodent models that ascribe a key role for hippocampal theta in memory function.
Collapse
|
26
|
Pidnebesna A, Sanda P, Kalina A, Hammer J, Marusic P, Vlcek K, Hlinka J. Tackling the challenges of group network inference from intracranial EEG data. Front Neurosci 2022; 16:1061867. [PMID: 36532288 PMCID: PMC9752888 DOI: 10.3389/fnins.2022.1061867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. METHODS We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function-asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. RESULTS The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. DISCUSSION To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.
Collapse
Affiliation(s)
- Anna Pidnebesna
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| | - Pavel Sanda
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Kamil Vlcek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
27
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
28
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
29
|
Abstract
High-frequency oscillatory events, termed ripples, represent synchrony of neural activity in the brain. Recent evidence suggests that medial temporal lobe (MTL) ripples support memory retrieval. However, it is unclear if ripples signal the reinstatement of episodic memories. Analyzing electrophysiological MTL recordings from 245 neurosurgical participants performing episodic recall tasks, we find that the rate of hippocampal ripples rises just prior to the free recall of recently formed memories. This prerecall ripple effect (PRE) is stronger in the CA1 and CA3/dentate gyrus (CA3/DG) subfields of the hippocampus than the neighboring MTL regions entorhinal and parahippocampal cortex. PRE is also stronger prior to the retrieval of temporally and semantically clustered, as compared with unclustered, recalls, indicating the involvement of ripples in contextual reinstatement, which is a hallmark of episodic memory.
Collapse
|
30
|
Kamal F, Campbell K, Taler V. Effects of the Duration of a Resting-State EEG Recording in Healthy Aging and Mild Cognitive Impairment. Clin EEG Neurosci 2022; 53:443-451. [PMID: 33370162 DOI: 10.1177/1550059420983624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The recording of resting-state EEG may provide a means to predict early cognitive decline associated with mild cognitive impairment (MCI). Previous studies have typically used very short recording times to avoid a confound with drowsiness that may occur in longer recordings. The effects of a longer recording have not however been systematically examined. METHODS Eyes-closed resting-state EEG activity was recorded in 40 older adult participants (20 healthy older adults and 20 people with MCI). The recording period was a relatively long 6 minutes, divided into two equal 3-minute halves to determine if drowsiness will be more apparent as the recording progresses. The participants also completed standardized neuropsychological tasks that assessed global cognition (Montreal Cognitive Assessment) and memory (California Verbal Learning Test, Second Edition). A spectral analysis was performed on both short (2 seconds) and long (8 seconds) segments in both 3-minute halves. RESULTS No differences in power density for any of the EEG frequency bands were found between the 2 halves of the study for either group. There was little evidence of increased drowsiness in the second half of the study even when frequency resolution was increased with the 8-second segmentation. Theta power density was overall larger for people with MCI compared to healthy older adults. A negative correlation was also observed between theta power and global cognition in healthy older adults. CONCLUSIONS The present results indicate that longer resting-state EEG recording can be reliably employed without increased risk of drowsiness.
Collapse
Affiliation(s)
- Farooq Kamal
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Kenneth Campbell
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Bruyère Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022; 25:1237-1246. [PMID: 35995877 PMCID: PMC10068908 DOI: 10.1038/s41593-022-01132-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.
Collapse
|
32
|
Katerman BS, Li Y, Pazdera JK, Keane C, Kahana MJ. EEG biomarkers of free recall. Neuroimage 2022; 246:118748. [PMID: 34863960 PMCID: PMC9070361 DOI: 10.1016/j.neuroimage.2021.118748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Brain activity in the moments leading up to spontaneous verbal recall provide a window into the cognitive processes underlying memory retrieval. But these same recordings also subsume neural signals unrelated to mnemonic retrieval, such as response-related motor activity. Here we examined spectral EEG biomarkers of memory retrieval under an extreme manipulation of mnemonic demands: subjects either recalled items after a few seconds or after several days. This manipulation helped to isolate EEG components specifically related to long-term memory retrieval. In the moments immediately preceding recall we observed increased theta (4-8 Hz) power (+T), decreased alpha (8-20 Hz) power (-A), and increased gamma (40-128 Hz) power (+G), with this spectral pattern (+T-A + G) distinguishing the long-delay and immediate recall conditions. As subjects vocalized the same set of studied words in both conditions, we interpret the spectral +T-A + G as a biomarker of episodic memory retrieval.
Collapse
Affiliation(s)
| | - Y Li
- University of Pennsylvania, United States
| | | | - C Keane
- University of Pennsylvania, United States
| | - M J Kahana
- University of Pennsylvania, United States.
| |
Collapse
|
33
|
Treder MS, Charest I, Michelmann S, Martín-Buro MC, Roux F, Carceller-Benito F, Ugalde-Canitrot A, Rollings DT, Sawlani V, Chelvarajah R, Wimber M, Hanslmayr S, Staresina BP. The hippocampus as the switchboard between perception and memory. Proc Natl Acad Sci U S A 2021; 118:e2114171118. [PMID: 34880133 PMCID: PMC8685930 DOI: 10.1073/pnas.2114171118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to internal mnemonic representations. However, owing to the limited temporal or spatial resolution of brain imaging modalities used in isolation, the hippocampal-cortical dynamics supporting this process remain unknown. We thus employed an object-scene cued recall paradigm across two studies, including intracranial electroencephalography (iEEG) and high-density scalp EEG. First, a sustained increase in hippocampal high gamma power (55 to 110 Hz) emerged 500 ms after cue onset and distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was followed by a decrease in hippocampal alpha power (8 to 12 Hz). Intriguingly, the hippocampal gamma power increase marked the moment at which extrahippocampal activation patterns shifted from perceptual cue toward mnemonic target representations. In parallel, source-localized EEG alpha power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard between perception and memory and elucidate the ensuing hippocampal-cortical dynamics supporting the recall process.
Collapse
Affiliation(s)
- Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- cerebrUM, Département de Psychologie, Université de Montréal, Montreal, QC H2V 259, Canada
| | - Sebastian Michelmann
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - María Carmen Martín-Buro
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology 28223 Madrid, Spain
- Faculty of Health Sciences, King Juan Carlos University 28933 Madrid, Spain
| | - Frédéric Roux
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Arturo Ugalde-Canitrot
- Epilepsy Monitoring Unit, Neurology and Clinical Neurophysiology Service, Hospital Universitario La Paz 28046 Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria 28223 Madrid, Spain
| | - David T Rollings
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurophysiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Vijay Sawlani
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neuroradiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Ramesh Chelvarajah
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurosurgery Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Maria Wimber
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon Hanslmayr
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom;
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
34
|
Yoo HB, Umbach G, Lega B. Neurons in the human medial temporal lobe track multiple temporal contexts during episodic memory processing. Neuroimage 2021; 245:118689. [PMID: 34742943 PMCID: PMC8802214 DOI: 10.1016/j.neuroimage.2021.118689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023] Open
Abstract
Episodic memory requires associating items with temporal context, a process for which the medial temporal lobe (MTL) is critical. This study uses recordings from 27 human subjects who were undergoing surgical intervention for intractable epilepsy. These same data were also utilized in Umbach et al. (2020). We identify 103 memory-sensitive neurons in the hippocampus and entorhinal cortex, whose firing rates predicted successful episodic memory encoding as subjects performed a verbal free recall task. These neurons exhibit important properties. First, as predicted from the temporal context model, they demonstrate reinstatement of firing patterns observed during encoding at the time of retrieval. The magnitude of reinstatement predicted the tendency of subjects to cluster retrieved memory items according to input serial position. Also, we found that spiking activity of these neurons was locked to the phase of hippocampal theta oscillations, but that the mean phase of spiking shifted between memory encoding versus retrieval. This unique observation is consistent with predictions of the “Separate Phases at Encoding And Retrieval (SPEAR)” model. Together, the properties we identify for memory-sensitive neurons characterize direct electrophysiological mechanisms for the representation of contextual information in the human MTL.
Collapse
Affiliation(s)
- Hye Bin Yoo
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Gray Umbach
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Burke JF, Kunwar N, Yaroshinsky MS, Louie KH, Shirvalkar P, Su P, Henry M, Pasvankas G, Poree L, Jacques L, Wang DD. Epidural Spinal Electrogram Provides Direct Spinal Recordings in Awake Human Participants. Front Hum Neurosci 2021; 15:721076. [PMID: 34764858 PMCID: PMC8577539 DOI: 10.3389/fnhum.2021.721076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Little is known about the electrophysiological activity of the spinal cord during voluntary movement control in humans. We present a novel method for recording electrophysiological activity from the human spinal cord using implanted epidural electrodes during naturalistic movements including overground walking. Spinal electrograms (SEGs) were recorded from epidural electrodes implanted as part of a test trial for patients with chronic pain undergoing evaluation for spinal cord stimulation. Externalized ends of the epidural leads were connected to an external amplifier to capture SEGs. Electromyographic and accelerometry data from the upper and lower extremities were collected using wireless sensors and synchronized to the SEG data. Patients were instructed to perform various arm and leg movements while SEG and kinematic data were collected. This study proves the safety and feasibility of performing epidural spinal recordings from human subjects performing movement tasks.
Collapse
Affiliation(s)
- John F. Burke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nikhita Kunwar
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Maria S. Yaroshinsky
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth H. Louie
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia and Pain Management, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Paul Su
- Department of Anesthesia and Pain Management, University of California, San Francisco, San Francisco, CA, United States
| | - Melanie Henry
- Department of Anesthesia and Pain Management, University of California, San Francisco, San Francisco, CA, United States
| | - George Pasvankas
- Department of Anesthesia and Pain Management, University of California, San Francisco, San Francisco, CA, United States
| | - Lawrence Poree
- Department of Anesthesia and Pain Management, University of California, San Francisco, San Francisco, CA, United States
| | - Lines Jacques
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Doris D. Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
36
|
Marks VS, Saboo KV, Topçu Ç, Lech M, Thayib TP, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 2021; 245:118637. [PMID: 34644594 DOI: 10.1016/j.neuroimage.2021.118637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.
Collapse
Affiliation(s)
| | - Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Çağdaş Topçu
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Theodore P Thayib
- Department of Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Robotics, and Cybernetics, Czech Institute of Informatics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| | - Michal T Kucewicz
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
| |
Collapse
|
37
|
Das A, Menon V. Asymmetric Frequency-Specific Feedforward and Feedback Information Flow between Hippocampus and Prefrontal Cortex during Verbal Memory Encoding and Recall. J Neurosci 2021; 41:8427-8440. [PMID: 34433632 PMCID: PMC8496199 DOI: 10.1523/jneurosci.0802-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampus and prefrontal cortex (PFC) circuits are thought to play a prominent role in human episodic memory, but the precise nature, and electrophysiological basis, of directed information flow between these regions and their role in verbal memory formation has remained elusive. Here we investigate nonlinear causal interactions between hippocampus and lateral PFC using intracranial EEG recordings (26 participants, 16 females) during verbal memory encoding and recall tasks. Direction-specific information theoretic analysis revealed higher causal information flow from the hippocampus to PFC than in the reverse direction. Crucially, this pattern was observed during both memory encoding and recall, and the strength of causal interactions was significantly greater during memory task performance than resting baseline. Further analyses revealed frequency specificity of interactions with greater causal information flow from hippocampus to the PFC in the delta-theta frequency band (0.5-8 Hz); in contrast, PFC to hippocampus causal information flow were stronger in the beta band (12-30 Hz). Across all hippocampus-PFC electrode pairs, propagation delay between the source and target signals was estimated to be 17.7 ms, which is physiologically meaningful and corresponds to directional signal interactions on a timescale consistent with monosynaptic influence. Our findings identify distinct asymmetric feedforward and feedback signaling mechanisms between the hippocampus and PFC and their dissociable roles in memory recall, demonstrate that these regions preferentially use different frequency channels, and provide novel insights into the electrophysiological basis of directed information flow during episodic memory formation in the human brain.SIGNIFICANCE STATEMENT Hippocampal-PFC circuits play a critical role in episodic memory in rodents, nonhuman primates, and humans. Investigations using noninvasive fMRI techniques have provided insights into coactivation of the hippocampus and PFC during memory formation; however, the electrophysiological basis of dynamic causal hippocampal-PFC interactions in the human brain is poorly understood. Here, we use data from a large cohort of intracranial EEG recordings to investigate the neurophysiological underpinnings of asymmetric feedforward and feedback hippocampal-PFC interactions and their nonlinear causal dynamics during both episodic memory encoding and recall. Our findings provide novel insights into the electrophysiological basis of directed bottom-up and top-down information flow during episodic memory formation in the human brain.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences
- Department of Neurology & Neurological Sciences
- Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
38
|
Shtoots L, Dagan T, Levine J, Rothstein A, Shati L, Levy DA. The Effects of Theta EEG Neurofeedback on the Consolidation of Spatial Memory. Clin EEG Neurosci 2021; 52:338-344. [PMID: 33207955 DOI: 10.1177/1550059420973107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How can the stability of a recently acquired memory be improved? Recent findings regarding the importance of theta frequency EEG activity in the hippocampus suggest that entraining neural activity in that frequency band might increase post-encoding waking replay, reinforcing learning-related plasticity. Our previous studies revealed that upregulating postlearning theta power using EEG neurofeedback (NFB) significantly benefitted procedural and episodic memory performance (both immediate and delayed), and may provide optimal conditions for stabilization of new memories. We have now explored whether memory benefits of theta NFB generalize to delayed spatial memory, an additional hippocampus-dependent process. Participants learned to associate object images with locations on a computer screen. NFB was used to enable participants to selectively increase scalp EEG theta power for 30 minutes. Visuo-spatial memory was tested one week later, with the theta NFB participants compared with 2 control groups (beta-augmentation NFB as an active control group, and an additional passive control group that did not engage in NFB). Theta upregulation was found to improve visuo-spatial memory, as reflected in reduced error distances in location marking and faster reaction time for correct answers by the theta group. This supports the contention that theta upregulation immediately after learning strengthens early consolidation of visuo-spatial memory. This intervention could potentially benefit various memory-challenged populations, as well as healthy individuals.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Tom Dagan
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Josh Levine
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Herzliya, Israel
| |
Collapse
|
39
|
Tseng YH, Tamura K, Okamoto T. Neurofeedback training improves episodic and semantic long-term memory performance. Sci Rep 2021; 11:17274. [PMID: 34446791 PMCID: PMC8390655 DOI: 10.1038/s41598-021-96726-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Our study consisted of three stages. First, the long-term memory of participants was measured. In the second stage, the participants in the NFB group received 3 days of theta/low-beta NFB training. In the third stage, the long-term memory was measured again. The NFB group had better episodic and semantic long-term memory than the control group and significant differences in brain activity between episodic and semantic memory during the recall tests were revealed. These findings suggest that it is possible to improve episodic and semantic long-term memory abilities through theta/low-beta NFB training.
Collapse
Affiliation(s)
- Yu-Hsuan Tseng
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan
| | - Kaori Tamura
- grid.418051.90000 0000 8774 3245Faculty of Information Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka Japan
| | - Tsuyoshi Okamoto
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan ,grid.177174.30000 0001 2242 4849Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka Japan
| |
Collapse
|
40
|
Drane DL, Pedersen NP, Sabsevitz DS, Block C, Dickey AS, Alwaki A, Kheder A. Cognitive and Emotional Mapping With SEEG. Front Neurol 2021; 12:627981. [PMID: 33912122 PMCID: PMC8072290 DOI: 10.3389/fneur.2021.627981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David S. Sabsevitz
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Cady Block
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam S. Dickey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
41
|
Tracy JI, Chaudhary K, Modi S, Crow A, Kumar A, Weinstein D, Sperling MR. Computational support, not primacy, distinguishes compensatory memory reorganization in epilepsy. Brain Commun 2021; 3:fcab025. [PMID: 34222865 PMCID: PMC8244645 DOI: 10.1093/braincomms/fcab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy is associated with impairment in episodic memory. A substantial subgroup, however, is able to maintain adequate memory despite temporal lobe pathology. Missing from prior work in cognitive reorganization is a direct comparison of temporal lobe epilepsy patients with intact status with those who are memory impaired. Little is known about the regional activations, functional connectivities and/or network reconfigurations that implement changes in primary computations or support functions that drive adaptive plasticity and compensated memory. We utilized task functional MRI on 54 unilateral temporal lobe epilepsy patients and 24 matched healthy controls during the performance of a paired-associate memory task to address three questions: (i) which regions implement paired-associate memory in temporal lobe epilepsy, and do they vary as a function of good versus poor performance, (ii) is there unique functional connectivity present during memory encoding that accounts for intact status by preservation of primary memory computations or the supportive computations that allow for intact memory responses and (iii) what features during memory encoding are most distinctive: is it the magnitude and location of regional activations, or the presence of enhanced functional connections to key structures such as the hippocampus? The study revealed non-dominant hemisphere regions (right posterior temporal regions) involving both increased regional activity and increased modulatory communication with the hippocampi as most important to intact memory in left temporal lobe epilepsy compared to impaired status. The profile involved areas that are neither contralateral homologues to left hemisphere memory areas, nor regions traditionally considered computationally primary for episodic memory. None of these areas of increased activation or functional connectivity were associated with advantaged memory in healthy controls. Our emphasis on different performance levels yielded insight into two forms of cognitive reorganization: computational primacy, where left temporal lobe epilepsy showed little change relative to healthy controls, and computational support where intact left temporal lobe epilepsy patients showed adaptive abnormalities. The analyses isolated the unique regional activations and mediating functional connectivity that implements truly compensatory reorganization in left temporal lobe epilepsy. The results provided a new perspective on memory deficits by making clear that they arise not just from the knockout of a functional hub, but from the failure to instantiate a complex set of reorganization responses. Such responses provided the computational support to ensure successful memory. We demonstrated that by keeping track of performance levels, we can increase understanding of adaptive brain responses and neuroplasticity in epilepsy.
Collapse
Affiliation(s)
- Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA,Correspondence to: Joseph I. Tracy, Department of Neurology, Thomas Jefferson University, 901 Walnut Street, Health Sciences Building, Suite 447, Philadelphia, PA 19107, USA. E-mail:
| | - Kapil Chaudhary
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shilpi Modi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Crow
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashith Kumar
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David Weinstein
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
42
|
Wang DX, Schmitt K, Seger S, Davila CE, Lega BC. Cross-regional phase amplitude coupling supports the encoding of episodic memories. Hippocampus 2021; 31:481-492. [PMID: 33544408 DOI: 10.1002/hipo.23309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 01/23/2021] [Indexed: 11/10/2022]
Abstract
Phase amplitude coupling (PAC) between theta and gamma oscillations represents a key neurophysiological mechanism that promotes the temporal organization of oscillatory activity. For this reason, PAC has been implicated in item/context integration for episodic processes, including coordinating activity across multiple cortical regions. While data in humans has focused principally on PAC within a single brain region, data in rodents has revealed evidence that the phase of the hippocampal theta oscillation modulates gamma oscillations in the cortex (and vice versa). This pattern, termed cross-regional PAC (xPAC), has not previously been observed in human subjects engaged in mnemonic processing. We use a unique dataset with intracranial electrodes inserted simultaneously into the hippocampus and seven cortical regions across 40 human subjects to (1) test for the presence of significant cross-regional PAC (xPAC), (2) to establish that the magnitude of xPAC predicts memory encoding success, (3) to describe specific frequencies within the broad 2-9 Hz theta range that govern hippocampal-cortical interactions in xPAC, and (4) compare anterior versus posterior hippocampal xPAC patterns. We find that strong functional xPAC occurs principally between the hippocampus and other mesial temporal structures, namely entorhinal and parahippocampal cortices, and that xPAC is overall stronger for posterior hippocampal connections. We also show that our results are not confounded by alternative factors such as inter-regional phase synchrony, local PAC occurring within cortical regions, or artifactual theta oscillatory waveforms.
Collapse
Affiliation(s)
- David X Wang
- Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Kelsey Schmitt
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah Seger
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos E Davila
- Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Bradley C Lega
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
43
|
Li X, Chen W, Yu Q, Zhang Q, Zhang T, Huang X, Li H, He A, Yu H, Jing W, Du H, Ke X, Zhang B, Tian Q, Liu R, Lu Y. A circuit of mossy cells controls the efficacy of memory retrieval by Gria2I inhibition of Gria2. Cell Rep 2021; 34:108741. [PMID: 33596426 DOI: 10.1016/j.celrep.2021.108741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
Mossy cells (MCs) are a unique group of excitatory neurons in the hippocampus, a brain region important for emotion, learning, and memory. Due to the lack of a reliable method to isolate MCs from other cell types, how MCs integrate neural information and convey it to their synaptic targets for engaging a specific function are still unknown. Here, we report that MCs control the efficacy of spatial memory retrieval by synapsing directly onto local somatostatin-expressing (SST) cells. MC-SST synaptic transmission undergoes long-term potentiation (LTP), requiring Gria2-lacking Ca2+-permeable anti-α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (Ca2+AR). A long noncoding RNA (Gria2I) is associated with Gria2 transcriptional repressors in SST cells. Silencing Gria2I induces Gria2 transcription, blocks LTP of MCs-SST synaptic transmission, and reduces the efficacy of memory retrieval. Thus, MCs directly and functionally innervate local SST neurons, and this innervation controls the efficacy of spatial memory retrieval by Gria2I inhibition of Gria2 transcription.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingping Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aodi He
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Tian
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Lohnas LJ, Healey MK. The role of context in episodic memory: Behavior and neurophysiology. PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Tan RJ, Rugg MD, Lega BC. Direct brain recordings identify hippocampal and cortical networks that distinguish successful versus failed episodic memory retrieval. Neuropsychologia 2020; 147:107595. [PMID: 32871132 PMCID: PMC7554101 DOI: 10.1016/j.neuropsychologia.2020.107595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Human data collected using noninvasive imaging techniques have established the importance of parietal regions towards episodic memory retrieval, including the angular gyrus and posterior cingulate cortex. Such regions comprise part of a putative core episodic retrieval network. In free recall, comparisons between contextually appropriate and inappropriate recall events (i.e. prior list intrusions) provide the opportunity to study memory retrieval networks supporting veridical recall, and existing findings predict that differences in electrical activity in these brain regions should be identified according to the accuracy of recall. However, prior iEEG studies, utilizing principally subdural grid electrodes, have not fully characterized brain activity in parietal regions during memory retrieval and have not examined connectivity between core recollection areas and the hippocampus or prefrontal cortex. Here, we employed a data set obtained from 100 human patients implanted with stereo EEG electrodes for seizure mapping purposes as they performed a free recall task. This data set allowed us to separately analyze activity in midline versus lateral parietal brain regions, and in anterior versus posterior hippocampus, to identify areas in which retrieval-related activity predicted the recollection of a correct versus an incorrect memory. With the wide coverage afforded by the stereo EEG approach, we were also able to examine interregional connectivity. Our key findings were that differences in gamma band activity in the angular gyrus, precuneus, posterior temporal cortex, and posterior (more than anterior) hippocampus discriminated accurate versus inaccurate recall as well as active retrieval versus memory search. The left angular gyrus exhibited a significant power decrease preceding list intrusions as well as unique phase-amplitude coupling properties, whereas the prefrontal cortex was unique in exhibiting a power increase during list intrusions. Analysis of connectivity revealed significant hemispheric asymmetry, with relatively sparse left-sided functional connections compared to the right hemisphere. One exception to this finding was elevated connectivity between the prefrontal cortex and left angular gyrus. This finding is interpreted as evidence for the engagement of prefrontal cortex in memory monitoring and mnemonic decision-making.
Collapse
Affiliation(s)
- Ryan Joseph Tan
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA.
| | - Michael D Rugg
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75390, USA
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Mousavi N, Nazari MA, Babapour J, Jahan A. Electroencephalographic characteristics of word finding during phonological and semantic verbal fluency tasks. Neuropsychopharmacol Rep 2020; 40:254-261. [PMID: 32757253 PMCID: PMC7722674 DOI: 10.1002/npr2.12129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aims Verbal Fluency is sensitive to brain damage and is employed to assess language abilities like the size of vocabulary and the semantic‐lexical networks’ integrity and executive functioning abilities particularly inhibition, working memory, and self‐monitoring. Various studies revealed oscillatory changes related to word retrieval during different tasks. However, there are not enough studies on electroencephalographic characteristics of word retrieval routes (phonological or semantic pathway) during free recall. The purpose of our study was to investigate electroencephalography power relationship with semantic and phonological word finding routes during verbal fluency. Methods In this within‐subject study, the electroencephalography of 20 healthy participants was recorded during written category and letter fluency tasks and compared with the rest state. Absolute power of the signals in delta (1‐3.5 Hz), theta (4‐7.5 Hz), alpha (8‐12 Hz), and beta (12.5‐30 Hz) was calculated in three lobes (frontal, parietal, and temporal). Results A repeated measures ANOVA showed significant interaction of condition × lobe × frequency × side (P < .001). Post hoc test for each lobe showed significant changes in the absolute power of delta, theta and beta for frontal, delta and theta for parietal, and theta and beta for temporal lobes (P‐values < .05). Conclusion Searching the words by phonological entries is associated with decreased beta and increased theta in left frontal lobe. These changes are not necessary for semantic word retrieval strategy. Word retrieval either by phonological entries or semantic categories is accompanied by increased delta in frontal and parietal lobes. Decreased beta and increased theta bands in the left frontal lobe are associated with phonological word retrieval strategy while during semantic word finding, increased beta was observed in the left temporal lobe.![]()
Collapse
Affiliation(s)
- Najva Mousavi
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Jalil Babapour
- Psychology Department, University of Tabriz, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Herweg NA, Solomon EA, Kahana MJ. Theta Oscillations in Human Memory. Trends Cogn Sci 2020; 24:208-227. [PMID: 32029359 PMCID: PMC8310425 DOI: 10.1016/j.tics.2019.12.006] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
Theta frequency (4-8 Hz) fluctuations of the local field potential have long been implicated in learning and memory. Human studies of episodic memory, however, have provided mixed evidence for theta's role in successful learning and remembering. Re-evaluating these conflicting findings leads us to conclude that: (i) successful memory is associated both with increased narrow-band theta oscillations and a broad-band tilt of the power spectrum; (ii) theta oscillations specifically support associative memory, whereas the spectral tilt reflects a general index of activation; and (iii) different cognitive contrasts (generalized versus specific to memory), recording techniques (invasive versus noninvasive), and referencing schemes (local versus global) alter the balance between the two phenomena to make one or the other more easily detectable.
Collapse
Affiliation(s)
- Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan A Solomon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Alpha Rhythms Reveal When and Where Item and Associative Memories Are Retrieved. J Neurosci 2020; 40:2510-2518. [PMID: 32034067 PMCID: PMC7083536 DOI: 10.1523/jneurosci.1982-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
Memories for past experiences can range from vague recognition to full-blown recall of associated details. Electroencephalography has shown that recall signals unfold a few hundred milliseconds after simple recognition, but has only provided limited insights into the underlying brain networks. Functional magnetic resonance imaging (fMRI) has revealed a “core recollection network” (CRN) centered on posterior parietal and medial temporal lobe regions, but the temporal dynamics of these regions during retrieval remain largely unknown. Here we used Magnetoencephalography in a memory paradigm assessing correct rejection (CR) of lures, item recognition (IR) and associative recall (AR) in human participants of both sexes. We found that power decreases in the alpha frequency band (10–12 Hz) systematically track different mnemonic outcomes in both time and space: Over left posterior sensors, alpha power decreased in a stepwise fashion from 500 ms onward, first from CR to IR and then from IR to AR. When projecting alpha power into source space, the CRN known from fMRI studies emerged, including posterior parietal cortex (PPC) and hippocampus. While PPC showed a monotonic change across conditions, hippocampal effects were specific to recall. These region-specific effects were corroborated by a separate fMRI dataset. Importantly, alpha power time courses revealed a temporal dissociation between item and associative memory in hippocampus and PPC, with earlier AR effects in hippocampus. Our data thus link engagement of the CRN to the temporal dynamics of episodic memory and highlight the role of alpha rhythms in revealing when and where different types of memories are retrieved. SIGNIFICANCE STATEMENT Our ability to remember ranges from the vague feeling of familiarity to vivid recollection of associated details. Scientific understanding of episodic memory thus far relied upon separate lines of research focusing on either temporal (via electroencephalography) or spatial (via functional magnetic resonance imaging) dimensions. However, both techniques have limitations that have hindered understanding of when and where memories are retrieved. Capitalizing on the enhanced temporal and spatial resolution of magnetoencephalography, we show that changes in alpha power reveal both when and where different types of memory are retrieved. Having access to the temporal and spatial characteristics of successful retrieval provided new insights into the cross-regional dynamics in the hippocampus and parietal cortex.
Collapse
|
49
|
Reactivated Spatial Context Guides Episodic Recall. J Neurosci 2020; 40:2119-2128. [PMID: 31974207 DOI: 10.1523/jneurosci.1640-19.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/01/2023] Open
Abstract
The medial temporal lobe (MTL) is known as the locus of spatial coding and episodic memory, but the interaction between these cognitive domains as well as the extent to which they rely on common neurophysiological mechanisms is poorly understood. Here, we use intracranial electroencephalography and a hybrid spatial-episodic memory task (29 subjects, 15 female) to determine how spatial information is dynamically reactivated in subregions of the human MTL and how this reactivation guides recall of episodic information. Our results implicate theta oscillations across the MTL as a common neurophysiological substrate for spatial coding in navigation and episodic recall. We further show that our index of retrieved spatial context is high in the hippocampus (HC) in an early time window preceding recall. Closer to recall, it decreases in the HC and increases in the parahippocampal gyrus. Finally, we demonstrate that hippocampal theta phase modulates parahippocampal gamma amplitude during retrieval of spatial context, suggesting a role for cross-frequency coupling in coding and transmitting retrieved spatial information.SIGNIFICANCE STATEMENT By recording from the human medial temporal lobe (MTL) while subjects recall items experienced in a virtual environment, we establish a direct relation between the strength of theta activity during memory search and the extent to which memories are organized by their spatial locations. We thereby pinpoint a role for theta oscillations in accessing the "cognitive map" during episodic retrieval and further highlight the dynamic interplay of hippocampus and extrahippocampal MTL in representing retrieved spatial context. Our results provide an important step toward a unified theory of MTL function encompassing its role in spatial navigation and episodic memory.
Collapse
|
50
|
Solomon EA, Stein JM, Das S, Gorniak R, Sperling MR, Worrell G, Inman CS, Tan RJ, Jobst BC, Rizzuto DS, Kahana MJ. Dynamic Theta Networks in the Human Medial Temporal Lobe Support Episodic Memory. Curr Biol 2019; 29:1100-1111.e4. [PMID: 30905609 DOI: 10.1016/j.cub.2019.02.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/06/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
The medial temporal lobe (MTL) is a locus of episodic memory in the human brain. It is comprised of cytologically distinct subregions that, in concert, give rise to successful encoding and retrieval of context-dependent memories. However, the functional connections between these subregions are poorly understood. To determine functional connectivity among MTL subregions, we had 131 subjects fitted with indwelling electrodes perform a verbal memory task and asked how encoding or retrieval correlated with inter-regional synchronization. Using phase-based measures of connectivity, we found that synchronous theta (4-8 Hz) activity underlies successful episodic memory. During encoding, we observed a dynamic pattern of connections converging on the left entorhinal cortex, beginning with the perirhinal cortex and shifting through hippocampal subfields. Retrieval-associated networks demonstrated enhanced involvement of the subiculum and CA1, reflecting a substantial reorganization of the encoding network. We posit that coherent theta activity within the MTL marks periods of successful memory, but distinct patterns of connectivity dissociate key stages of memory processing.
Collapse
Affiliation(s)
- Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu Das
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard Gorniak
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Gregory Worrell
- Department of Neurology, Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Cory S Inman
- Department of Neurosurgery, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Ryan J Tan
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth Medical Center, Lebanon, NH 03756, USA
| | - Daniel S Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|