1
|
Trost L, Gahr M, ter Maat A. Neural Activity During Call Production in the Female Zebra Finch Homolog of the Male Forebrain Song System. Eur J Neurosci 2025; 61:e70123. [PMID: 40304281 PMCID: PMC12042645 DOI: 10.1111/ejn.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Female zebra finches (Taeniopygia guttata) are unable to sing because of the vestigial development of forebrain song control areas such as the RA (nucleus robustus archistriatalis), a premotor nucleus of the song control pathway. In male zebra finches, RA is also involved in call-based vocal communication in addition to song control. Here, we monitored the activity of RA neurons during vocal communication in freely behaving females using a miniaturized telemetric recording device combined with telemetric audio recording. Neurons in the RA region showed premotor activity associated with stack and tet calls, two innate short-range social calls produced by both sexes. RA units were active when females called to respond to a male partner's call or to initiate a partner's call. However, spontaneous, regularly firing units, typical of male RA, were very rare in females or, when found, showed no association with vocal output. Despite the small number of adult female RA neurons, these neurons are not functionless, but are involved in call-based communication.
Collapse
Affiliation(s)
- Lisa Trost
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Manfred Gahr
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| | - Andries ter Maat
- Department of Behavioural NeurobiologyMax Planck Institute for Biological IntelligenceSeewiesenGermany
| |
Collapse
|
2
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Robotka H, Thomas L, Yu K, Wood W, Elie JE, Gahr M, Theunissen FE. Sparse ensemble neural code for a complete vocal repertoire. Cell Rep 2023; 42:112034. [PMID: 36696266 PMCID: PMC10363576 DOI: 10.1016/j.celrep.2023.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The categorization of animal vocalizations into distinct behaviorally relevant groups for communication is an essential operation that must be performed by the auditory system. This auditory object recognition is a difficult task that requires selectivity to the group identifying acoustic features and invariance to renditions within each group. We find that small ensembles of auditory neurons in the forebrain of a social songbird can code the bird's entire vocal repertoire (∼10 call types). Ensemble neural discrimination is not, however, correlated with single unit selectivity, but instead with how well the joint single unit tunings to characteristic spectro-temporal modulations span the acoustic subspace optimized for the discrimination of call types. Thus, akin to face recognition in the visual system, call type recognition in the auditory system is based on a sparse code representing a small number of high-level features and not on highly selective grandmother neurons.
Collapse
Affiliation(s)
- H Robotka
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - L Thomas
- University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - K Yu
- University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - W Wood
- University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - J E Elie
- University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - M Gahr
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - F E Theunissen
- Max Planck Institute for Ornithology, Seewiesen, Germany; University of California, Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA; Department of Psychology and Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
4
|
Brecht KF, Westendorff S, Nieder A. Neural correlates of cognitively controlled vocalizations in a corvid songbird. Cell Rep 2023; 42:112113. [PMID: 36821443 DOI: 10.1016/j.celrep.2023.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/24/2023] Open
Abstract
The neuronal basis of the songbird's song system is well understood. However, little is known about the neuronal correlates of the executive control of songbird vocalizations. Here, we record single-unit activity from the pallial endbrain region "nidopallium caudolaterale" (NCL) of crows that vocalize to the presentation of a visual go-cue but refrain from vocalizing during trials without a go-cue. We find that the preparatory activity of single vocalization-correlated neurons, but also of the entire population of NCL neurons, before vocal onset predicts whether or not the crows will produce an instructed vocalization. Fluctuations in baseline neuronal activity prior to the go-cue influence the premotor activity of such vocalization-correlated neurons and seemingly bias the crows' decision to vocalize. Neuronal response modulation significantly differs between volitional and task-unrelated vocalizations. This suggests that the NCL can take control over the vocal motor network during the production of volitional vocalizations in a corvid songbird.
Collapse
Affiliation(s)
- Katharina F Brecht
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Stephanie Westendorff
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
A feedforward inhibitory premotor circuit for auditory-vocal interactions in zebra finches. Proc Natl Acad Sci U S A 2022; 119:e2118448119. [PMID: 35658073 PMCID: PMC9191632 DOI: 10.1073/pnas.2118448119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Significance During conversations, we frequently alternate between listening and speaking. This involves withholding responses while the other person is vocalizing and rapidly initiating a reply once they stop. Similar exchanges also occur in other animals, such as songbirds, yet little is known about how brain areas responsible for vocal production are influenced by areas dedicated to listening. Here, we combined neural recordings and mathematical modeling of a sensorimotor circuit to show that input-dependent inhibition can both suppress vocal responses and regulate the onset latencies of vocalizations. Our resulting model provides a simple generalizable circuit mechanism by which inhibition precisely times vocal output and integrates auditory input within a premotor nucleus.
Collapse
|
6
|
Schwark RW, Fuxjager MJ, Schmidt MF. Proposing a neural framework for the evolution of elaborate courtship displays. eLife 2022; 11:e74860. [PMID: 35639093 PMCID: PMC9154748 DOI: 10.7554/elife.74860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals' neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled 'voice boxes' to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.
Collapse
Affiliation(s)
- Ryan W Schwark
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown UniversityProvidenceUnited States
| | - Marc F Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
7
|
Loning H, Griffith SC, Naguib M. Zebra finch song is a very short-range signal in the wild: evidence from an integrated approach. Behav Ecol 2022; 33:37-46. [PMID: 35197805 PMCID: PMC8857932 DOI: 10.1093/beheco/arab107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Birdsong is typically seen as a long-range signal functioning in mate attraction and territory defense. Among birds, the zebra finch is the prime model organism in bioacoustics, yet almost exclusively studied in the lab. In the wild, however, zebra finch song differs strikingly from songbirds commonly studied in the wild as zebra finch males sing most after mating and in the absence of territoriality. Using data from the wild, we here provide an ecological context for a wealth of laboratory studies. By integrating calibrated sound recordings, sound transmission experiments and social ecology of zebra finches in the wild with insights from hearing physiology we show that wild zebra finch song is a very short-range signal with an audible range of about nine meters and that even the louder distance calls do not carry much farther (up to about fourteen meters). These integrated findings provide an ecological context for the interpretation of laboratory studies of this species and indicate that the vocal communication distance of the main laboratory species for avian acoustics contrasts strikingly with songbirds that use their song as a long-range advertisement signal.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
8
|
Vocal learning and flexible rhythm pattern perception are linked: Evidence from songbirds. Proc Natl Acad Sci U S A 2021; 118:2026130118. [PMID: 34272278 PMCID: PMC8307534 DOI: 10.1073/pnas.2026130118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We can recognize the cadence of a friend’s voice or the rhythm of a familiar song across a wide range of tempi. This shows that our perception of temporal patterns relies strongly on the relative timing of events rather than on specific absolute durations. This tendency is foundational to speech and music perception, but to what extent is it shared by other species? We hypothesize that animals that learn their vocalizations are more likely to share this tendency. Here, we show that a vocal learning songbird robustly recognizes a basic rhythmic pattern independent of rate. Our findings pave the way for neurobiological studies to identify how the brain represents and perceives the temporal structure of auditory sequences. Rhythm perception is fundamental to speech and music. Humans readily recognize a rhythmic pattern, such as that of a familiar song, independently of the tempo at which it occurs. This shows that our perception of auditory rhythms is flexible, relying on global relational patterns more than on the absolute durations of specific time intervals. Given that auditory rhythm perception in humans engages a complex auditory–motor cortical network even in the absence of movement and that the evolution of vocal learning is accompanied by strengthening of forebrain auditory–motor pathways, we hypothesize that vocal learning species share our perceptual facility for relational rhythm processing. We test this by asking whether the best-studied animal model for vocal learning, the zebra finch, can recognize a fundamental rhythmic pattern—equal timing between event onsets (isochrony)—based on temporal relations between intervals rather than on absolute durations. Prior work suggests that vocal nonlearners (pigeons and rats) are quite limited in this regard and are biased to attend to absolute durations when listening to rhythmic sequences. In contrast, using naturalistic sounds at multiple stimulus rates, we show that male zebra finches robustly recognize isochrony independent of absolute time intervals, even at rates distant from those used in training. Our findings highlight the importance of comparative studies of rhythmic processing and suggest that vocal learning species are promising animal models for key aspects of human rhythm perception. Such models are needed to understand the neural mechanisms behind the positive effect of rhythm on certain speech and movement disorders.
Collapse
|
9
|
Hauber ME, Louder MI, Griffith SC. Neurogenomic insights into the behavioral and vocal development of the zebra finch. eLife 2021; 10:61849. [PMID: 34106827 PMCID: PMC8238503 DOI: 10.7554/elife.61849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The zebra finch (Taeniopygia guttata) is a socially monogamous and colonial opportunistic breeder with pronounced sexual differences in singing and plumage coloration. Its natural history has led to it becoming a model species for research into sex differences in vocal communication, as well as behavioral, neural and genomic studies of imitative auditory learning. As scientists tap into the genetic and behavioral diversity of both wild and captive lineages, the zebra finch will continue to inform research into culture, learning, and social bonding, as well as adaptability to a changing climate.
Collapse
Affiliation(s)
- Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, United States
| | - Matthew Im Louder
- International Research Center for Neurointelligence, University of Tokyo, Tokyo, Japan.,Department of Biology, Texas A&M University, College Station, United States
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|