1
|
Wang P, Huang J, Wei J, Yu Q, Li G, Yu B, Yang L, Liu Z. Agonist-antagonist myoneural interface surgery on the proprioceptive reconstruction of rat hind limb. Heliyon 2024; 10:e38041. [PMID: 39381245 PMCID: PMC11458991 DOI: 10.1016/j.heliyon.2024.e38041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Currently, prosthesis users rely on visual cues to control their prosthesis. One reason for this is that prostheses cannot provide users with proprioceptive functional signals. For this reason, we propose an agonist-antagonist myoneural interface (AMI) surgery. We examined how this surgery affects the restoration of motor function and proprioceptive reconstruction in the hind limb of Sprague-Dawley rats. The procedure entails grafting the soleus muscle, suturing the two tendon ends of the soleus muscle, and anastomosing the tibial and common peroneal nerves to the soleus muscle. We found that, following surgery, AMI rats exhibited improved neurological repair, shorter walking swings, braking, propulsion, and stance times, and greater compound action potentials than control rats. This means that in rats with neurological impairment of the hind limb, the proposed AMI surgical method significantly improves postoperative walking stability and muscle synergy. AMI surgery may become an option for regaining proprioception in the lost limb.
Collapse
Affiliation(s)
- Ping Wang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan, 25000, China
| | - Jianping Huang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Jingjing Wei
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Qianhengyuan Yu
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Bin Yu
- Biomedical Sensing Engineering and Technology Research Center, Shandong University, Jinan, 25000, China
| | - Lin Yang
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing, 100864, China
| |
Collapse
|
2
|
Cheng YR, Chi CH, Lee CH, Lin SH, Min MY, Chen CC. Probing the Effect of Acidosis on Tether-Mode Mechanotransduction of Proprioceptors. Int J Mol Sci 2023; 24:12783. [PMID: 37628964 PMCID: PMC10454156 DOI: 10.3390/ijms241612783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Proprioceptors are low-threshold mechanoreceptors involved in perceiving body position and strain bearing. However, the physiological response of proprioceptors to fatigue- and muscle-acidosis-related disturbances remains unknown. Here, we employed whole-cell patch-clamp recordings to probe the effect of mild acidosis on the mechanosensitivity of the proprioceptive neurons of dorsal root ganglia (DRG) in mice. We cultured neurite-bearing parvalbumin-positive (Pv+) DRG neurons on a laminin-coated elastic substrate and examined mechanically activated currents induced through substrate deformation-driven neurite stretch (SDNS). The SDNS-induced inward currents (ISDNS) were indentation depth-dependent and significantly inhibited by mild acidification (pH 7.2~6.8). The acid-inhibiting effect occurred in neurons with an ISDNS sensitive to APETx2 (an ASIC3-selective antagonist) inhibition, but not in those with an ISNDS resistant to APETx2. Detailed subgroup analyses revealed ISDNS was expressed in 59% (25/42) of Parvalbumin-positive (Pv+) DRG neurons, 90% of which were inhibited by APETx2. In contrast, an acid (pH 6.8)-induced current (IAcid) was expressed in 76% (32/42) of Pv+ DRG neurons, 59% (21/32) of which were inhibited by APETx2. Together, ASIC3-containing channels are highly heterogenous and differentially contribute to the ISNDS and IAcid among Pv+ proprioceptors. In conclusion, our findings highlight the importance of ASIC3-containing ion channels in the physiological response of proprioceptors to acidic environments.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Hung Chi
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, National Taiwan University, Taipei 10090, Taiwan;
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
3
|
Bornstein B, Heinemann-Yerushalmi L, Krief S, Adler R, Dassa B, Leshkowitz D, Kim M, Bewick G, Banks RW, Zelzer E. Molecular characterization of the intact mouse muscle spindle using a multi-omics approach. eLife 2023; 12:81843. [PMID: 36744866 PMCID: PMC9931388 DOI: 10.7554/elife.81843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular MedicineBerlinGermany,Team of syncytial cell biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Guy Bewick
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Robert W Banks
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Dietrich S, Company C, Song K, Lowenstein ED, Riedel L, Birchmeier C, Gargiulo G, Zampieri N. Molecular identity of proprioceptor subtypes innervating different muscle groups in mice. Nat Commun 2022; 13:6867. [PMID: 36369193 PMCID: PMC9652284 DOI: 10.1038/s41467-022-34589-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The precise execution of coordinated movements depends on proprioception, the sense of body position in space. However, the molecular underpinnings of proprioceptive neuron subtype identities are not fully understood. Here we used a single-cell transcriptomic approach to define mouse proprioceptor subtypes according to the identity of the muscle they innervate. We identified and validated molecular signatures associated with proprioceptors innervating back (Tox, Epha3), abdominal (C1ql2), and hindlimb (Gabrg1, Efna5) muscles. We also found that proprioceptor muscle identity precedes acquisition of receptor character and comprise programs controlling wiring specificity. These findings indicate that muscle-type identity is a fundamental aspect of proprioceptor subtype differentiation that is acquired during early development and includes molecular programs involved in the control of muscle target specificity.
Collapse
Affiliation(s)
- Stephan Dietrich
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carlos Company
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Kun Song
- grid.263817.90000 0004 1773 1790Brain Research Center and Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Elijah David Lowenstein
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Levin Riedel
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Carmen Birchmeier
- grid.419491.00000 0001 1014 0849Laboratory of Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany ,grid.418832.40000 0001 0610 524XNeurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité; Charitéplatz 1, 10117 Berlin, Germany
| | - Gaetano Gargiulo
- grid.419491.00000 0001 1014 0849Laboratory of Molecular Oncology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Niccolò Zampieri
- grid.419491.00000 0001 1014 0849Laboratory of Development and Function of Neural Circuits, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
5
|
Özyurt MG, Ojeda-Alonso J, Beato M, Nascimento F. In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice. J Neurophysiol 2022; 128:711-726. [PMID: 35946796 PMCID: PMC9485001 DOI: 10.1152/jn.00184.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro spinal cord preparations have been extensively used to study microcircuits involved in the control of movement. By allowing precise control of experimental conditions coupled with state-of-the-art genetics, imaging, and electrophysiological techniques, isolated spinal cords from mice have been an essential tool in detailing the identity, connectivity, and function of spinal networks. The majority of the research has arisen from in vitro spinal cords of neonatal mice, which are still undergoing important postnatal maturation. Studies from adults have been attempted in transverse slices, however, these have been quite challenging due to the poor motoneuron accessibility and viability, as well as the extensive damage to the motoneuron dendritic trees. In this work, we describe two types of coronal spinal cord preparations with either the ventral or the dorsal horn ablated, obtained from mice of different postnatal ages, spanning from preweaned to 1 mo old. These semi-intact preparations allow recordings of sensory-afferent and motor-efferent responses from lumbar motoneurons using whole cell patch-clamp electrophysiology. We provide details of the slicing procedure and discuss the feasibility of whole cell recordings. The in vitro dorsal and ventral horn-ablated spinal cord preparations described here are a useful tool to study spinal motor circuits in young mice that have reached the adult stages of locomotor development.NEW & NOTEWORTHY In the past 20 years, most of the research into the mammalian spinal circuitry has been limited to in vitro preparations from embryonic and neonatal mice. We describe two in vitro longitudinal lumbar spinal cord preparations from juvenile mice that allow the study of motoneuron properties and respective afferent or efferent spinal circuits through whole cell patch clamp. These preparations will be useful to those interested in the study of microcircuits at mature stages of motor development.
Collapse
Affiliation(s)
- Mustafa Görkem Özyurt
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julia Ojeda-Alonso
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Marco Beato
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Filipe Nascimento
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Wilkinson KA. Molecular determinants of mechanosensation in the muscle spindle. Curr Opin Neurobiol 2022; 74:102542. [PMID: 35430481 PMCID: PMC9815952 DOI: 10.1016/j.conb.2022.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Collapse
|
7
|
de Nooij JC. Influencers in the Somatosensory System: Extrinsic Control of Sensory Neuron Phenotypes. Neuroscientist 2022:10738584221074350. [DOI: 10.1177/10738584221074350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatosensory neurons in dorsal root ganglia (DRG) comprise several main subclasses: high threshold nociceptors/thermoceptors, high- and low-threshold mechanoreceptors, and proprioceptors. Recent years have seen an explosion in the identification of molecules that underlie the functional diversity of these sensory modalities. They also have begun to reveal the developmental mechanisms that channel the emergence of this subtype diversity, solidifying the importance of peripheral instructive signals. Somatic sensory neurons collectively serve numerous essential physiological and protective roles, and as such, an increased understanding of the processes that underlie the specialization of these sensory subtypes is not only biologically interesting but also clinically relevant.
Collapse
|
8
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Walters MC, Ladle DR. Calcium homeostasis in parvalbumin DRG neurons is altered after sciatic nerve crush and sciatic nerve transection injuries. J Neurophysiol 2021; 126:1948-1958. [PMID: 34758279 PMCID: PMC8715049 DOI: 10.1152/jn.00707.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined postinjury calcium transients in a subpopulation of dorsal root ganglion (DRG) neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex vivo preparations of animals at one of three postsurgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days postinjury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.NEW & NOTEWORTHY This study examines calcium homeostasis after peripheral nerve injury in dorsal root ganglion (DRG) neurons expressing parvalbumin, a group of large-diameter afferents primarily consisting of proprioceptors, using two-photon calcium imaging in the intact DRG. Our findings identify aberrant calcium homeostasis as an additional source of sensory neuron dysfunction following peripheral nerve injury, uncover differences between two injury models, and track how these changes develop and resolve over the course of recovery.
Collapse
Affiliation(s)
- Marie C Walters
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - David R Ladle
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
10
|
Diehm YF, Haug V, Thomé J, Kotsougiani-Fischer D, Böcker A, Bickert B, Kneser U, Fischer S. The Impact of Digital Nerve Injury on the Outcome of Flexor Tendon Tenolysis: A Retrospective Case-Control Study. Ann Plast Surg 2021; 87:514-517. [PMID: 34699431 DOI: 10.1097/sap.0000000000002870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tenolysis is an established treatment for flexor tendon adhesions at the hand. Concomitant finger nerve injuries with incomplete reinnervation may negatively influence outcomes. This study investigates the impact of finger nerve injuries on outcomes of flexor tendon tenolysis. METHODS A retrospective pair-matched study was conducted, including patients undergoing tenolysis for flexor tendon adhesion after primary repair of isolated superficial and deep flexor tendon injury and both finger nerves (test group [TG]). These were compared with patients (control group [CG]) with similar injuries without affection of nerves and pair-matched in age, zone of injury and follow-up. Patients' demographics, finger sensitivity, total active range of motion (TAM) before and after tenolysis and complications were retrieved. RESULTS For both study groups, 10 patients each were included in this study. There were no significant differences regarding patients' demographics and follow-up. Mean follow-up was 37 (CG) and 41 (TG) months. Total active range of motion was preoperatively 81 ± 47° (CG) and 68 ± 54° (TG) and reached postoperatively 125 ± 57° (CG) and 79 ± 43° (TG). Hence, TAM improvement was significantly higher in patients without nerve damage (58 ± 16 vs 21 ± 11%; P > 0.05). Tendon ruptures occurred significantly more frequent in patients with nerve injury (n = 0.4 ± 0.52) compared with patients of the CG (n = 0; P < 0.05). CONCLUSIONS This study shows that finger nerve injury with incomplete recovery after combined flexor tendon and nerve injuries of the finger negatively influences the outcomes of flexor tendon tenolysis.
Collapse
Affiliation(s)
| | - Valentin Haug
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julia Thomé
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Dimitra Kotsougiani-Fischer
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Arne Böcker
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Berthold Bickert
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Fischer
- From the Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, Ludwigshafen, Germany; Hand and Plastic Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Gartych M, Jackowiak H, Bukowska D, Celichowski J. Evaluating Sexual Dimorphism of the Muscle Spindles and Intrafusal Muscle Fibers in the Medial Gastrocnemius of Male and Female Rats. Front Neuroanat 2021; 15:734555. [PMID: 34658799 PMCID: PMC8517148 DOI: 10.3389/fnana.2021.734555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
This study sought to investigate the sexual dimorphism of muscle spindles in rat medial gastrocnemius muscle. The muscles were cut transversely into 5–10 and 20 μm thick serial sections and the number, density, and morphometric properties of the muscle spindles were determined. There was no significant difference (p > 0.05) in the number of muscle spindles of male (14.45 ± 2.77) and female (15.00 ± 3.13) rats. Muscle mass was 38.89% higher in males (1.08 vs. 0.66 g in females), making the density of these receptors significantly higher (p < 0.01) in females (approximately one spindle per 51.14 mg muscle mass vs. one per 79.91 mg in males). There were no significant differences between the morphometric properties of intrafusal muscle fibers or muscle spindles in male and female rats (p > 0.05): 5.16 ± 2.43 and 5.37 ± 2.27 μm for male and female intrafusal muscle fiber diameter, respectively; 5.57 ± 2.20 and 5.60 ± 2.16 μm for male and female intrafusal muscle fiber number, respectively; 25.85 ± 10.04 and 25.30 ± 9.96 μm for male and female shorter muscle spindle diameter, respectively; and 48.99 ± 20.73 and 43.97 ± 16.96 μm for male and female longer muscle spindle diameter, respectively. These findings suggest that sexual dimorphism in the muscle spindles of rat medial gastrocnemius is limited to density, which contrasts previous findings reporting differences in extrafusal fibers diameter.
Collapse
Affiliation(s)
- Magdalena Gartych
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Hanna Jackowiak
- Department of Histology and Embryology, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Bukowska
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
12
|
The cellular and molecular basis of somatosensory neuron development. Neuron 2021; 109:3736-3757. [PMID: 34592169 DOI: 10.1016/j.neuron.2021.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
Primary somatosensory neurons convey salient information about our external environment and internal state to the CNS, allowing us to detect, perceive, and react to a wide range of innocuous and noxious stimuli. Pseudo-unipolar in shape, and among the largest (longest) cells of most mammals, dorsal root ganglia (DRG) somatosensory neurons have peripheral axons that extend into skin, muscle, viscera, or bone and central axons that innervate the spinal cord and brainstem, where they synaptically engage the central somatosensory circuitry. Here, we review the diversity of mammalian DRG neuron subtypes and the intrinsic and extrinsic mechanisms that control their development. We describe classical and contemporary advances that frame our understanding of DRG neurogenesis, transcriptional specification of DRG neurons, and the establishment of morphological, physiological, and synaptic diversification across somatosensory neuron subtypes.
Collapse
|
13
|
Than K, Kim E, Navarro C, Chu S, Klier N, Occiano A, Ortiz S, Salazar A, Valdespino SR, Villegas NK, Wilkinson KA. Vesicle-released glutamate is necessary to maintain muscle spindle afferent excitability but not dynamic sensitivity in adult mice. J Physiol 2021; 599:2953-2967. [PMID: 33749829 DOI: 10.1113/jp281182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that report muscle length and movement information critical for motor control and proprioception. The rapidly adapting cation channel PIEZO2 has been identified as necessary for muscle spindle afferent stretch sensitivity, although the properties of this channel suggest that additional molecular elements are necessary for mediating the complex slowly adapting response of muscle spindle afferents. We report that glutamate increases muscle spindle afferent static sensitivity in an ex vivo mouse muscle nerve preparation, although blocking glutamate packaging into vesicles by the sole vesicular glutamate transporter, VGLUT1, either pharmacologically or by transgenic knockout of one allele of VGLUT1 decreases muscle spindle afferent static but not dynamic sensitivity. Our results confirm that vesicle-released glutamate is an important contributor to maintained muscle spindle afferent excitability and may suggest a therapeutic target for normalizing muscle spindle afferent function. ABSTRACT Muscle spindle afferents are slowly adapting low threshold mechanoreceptors that have both dynamic and static sensitivity to muscle stretch. The exact mechanism by which these neurons translate muscle movement into action potentials is not well understood, although the PIEZO2 mechanically sensitive cation channel is essential for stretch sensitivity. PIEZO2 is rapidly adapting, suggesting the requirement for additional molecular elements to maintain firing during stretch. Spindle afferent sensory endings contain glutamate-filled synaptic-like vesicles that are released in a stretch- and calcium-dependent manner. Previous work has shown that glutamate can increase and a phospholipase-D coupled metabotropic glutamate antagonist can abolish firing during static stretch. Here, we test the hypothesis that vesicle-released glutamate is necessary for maintaining muscle spindle afferent excitability during static but not dynamic stretch. To test this hypothesis, we used a mouse muscle-nerve ex vivo preparation to measure identified muscle spindle afferent responses to stretch and vibration. In C57BL/6 adult mice, bath applied glutamate significantly increased the firing rate during the plateau phase of stretch but not during the dynamic phase of stretch. Blocking the packaging of glutamate into vesicles by the sole vesicular glutamate transporter, VGLUT1, either with xanthurenic acid or by using a transgenic mouse with only one copy of the VGLUT1 gene (VGLUT1+/- ), decreased muscle spindle afferent firing during sustained stretch but not during vibration. Our results suggest a model of mechanotransduction where calcium entering the PIEZO2 channel can cause the release of glutamate from synaptic-like vesicles, which then helps to maintain afferent depolarization and firing.
Collapse
Affiliation(s)
- Kimberly Than
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Enoch Kim
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Cebrina Navarro
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Sarah Chu
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Nikola Klier
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alyssa Occiano
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Alexandra Salazar
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Steven R Valdespino
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Natanya K Villegas
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | | |
Collapse
|
14
|
Bornstein B, Konstantin N, Alessandro C, Tresch MC, Zelzer E. More than movement: the proprioceptive system as a new regulator of musculoskeletal biology. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
16
|
Shadrach JL, Gomez-Frittelli J, Kaltschmidt JA. Proprioception revisited: where do we stand? CURRENT OPINION IN PHYSIOLOGY 2021; 21:23-28. [PMID: 34222735 DOI: 10.1016/j.cophys.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Originally referred to as 'muscle sense', the notion that skeletal muscle held a peripheral sensory function was first described early in the 19th century. Foundational experiments by Sherrington in the early 20th century definitively demonstrated that proprioceptors contained within skeletal muscle, tendons, and joints are innervated by sensory neurons and play an important role in the control of movement. In this review, we will highlight several recent advances in the ongoing effort to further define the molecular diversity underlying the proprioceptive sensorimotor system. Together, the work summarized here represents our current understanding of sensorimotor circuit formation during development and the mechanisms that regulate the integration of proprioceptive feedback into the spinal circuits that control locomotion in both normal and diseased states.
Collapse
Affiliation(s)
- Jennifer L Shadrach
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nat Commun 2021; 12:1451. [PMID: 33649316 PMCID: PMC7977083 DOI: 10.1038/s41467-021-21880-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Proprioceptive feedback mainly derives from groups Ia and II muscle spindle (MS) afferents and group Ib Golgi tendon organ (GTO) afferents, but the molecular correlates of these three afferent subtypes remain unknown. We performed single cell RNA sequencing of genetically identified adult proprioceptors and uncovered five molecularly distinct neuronal clusters. Validation of cluster-specific transcripts in dorsal root ganglia and skeletal muscle demonstrates that two of these clusters correspond to group Ia MS afferents and group Ib GTO afferent proprioceptors, respectively, and suggest that the remaining clusters could represent group II MS afferents. Lineage analysis between proprioceptor transcriptomes at different developmental stages provides evidence that proprioceptor subtype identities emerge late in development. Together, our data provide comprehensive molecular signatures for groups Ia and II MS afferents and group Ib GTO afferents, enabling genetic interrogation of the role of individual proprioceptor subtypes in regulating motor output. Coordinated movement critically depends on sensory feedback from muscle spindles (MSs) and Golgi tendon organs (GTOs) but the afferents supplying this proprioceptive feedback have remained genetically inseparable. Here the authors use single cell transcriptome analysis to reveal the molecular basis of MS (groups Ia and II) and GTO (group Ib) afferent identities in the mouse.
Collapse
|
18
|
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nat Commun 2021; 12:1026. [PMID: 33589589 PMCID: PMC7884389 DOI: 10.1038/s41467-021-21173-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 11/26/2022] Open
Abstract
Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice. Molecular diversity of proprioceptive neuron types (Ia, Ib and II PNs) is unclear. Here, the authors characterized the functional organization and development of eight subtypes of PNs in mice. Importantly, Ia subtypes are plastic, suggesting a role in adaptive proprioception during motor behavior.
Collapse
|
19
|
Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021; 22:1467. [PMID: 33540567 PMCID: PMC7867206 DOI: 10.3390/ijms22031467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Locomotion is a fundamental animal behavior required for survival and has been the subject of neuroscience research for centuries. In terrestrial mammals, the rhythmic and coordinated leg movements during locomotion are controlled by a combination of interconnected neurons in the spinal cord, referred as to the central pattern generator, and sensory feedback from the segmental somatosensory system and supraspinal centers such as the vestibular system. How segmental somatosensory and the vestibular systems work in parallel to enable terrestrial mammals to locomote in a natural environment is still relatively obscure. In this review, we first briefly describe what is known about how the two sensory systems control locomotion and use this information to formulate a hypothesis that the weight of the role of segmental feedback is less important at slower speeds but increases at higher speeds, whereas the weight of the role of vestibular system has the opposite relation. The new avenues presented by the latest developments in molecular sciences using the mouse as the model system allow the direct testing of the hypothesis.
Collapse
Affiliation(s)
- Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Science Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
20
|
Zampieri N, de Nooij JC. Regulating muscle spindle and Golgi tendon organ proprioceptor phenotypes. CURRENT OPINION IN PHYSIOLOGY 2021; 19:204-210. [PMID: 33381667 PMCID: PMC7769215 DOI: 10.1016/j.cophys.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proprioception is an essential part of motor control. The main sensory subclasses that underlie this feedback control system - muscle spindle and Golgi tendon organ afferents - have been extensively characterized at a morphological and physiological level. More recent studies are beginning to reveal the molecular foundation for distinct proprioceptor subtypes, offering new insights into their developmental ontogeny and phenotypic diversity. This review intends to highlight some of these new findings.
Collapse
Affiliation(s)
- Niccolò Zampieri
- Max-Delbrück-Center for Molecular Medicine Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joriene C. de Nooij
- Dept. of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Columbia University Motor Neuron Center, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032.,Corresponding author:
| |
Collapse
|
21
|
Shin MM, Catela C, Dasen J. Intrinsic control of neuronal diversity and synaptic specificity in a proprioceptive circuit. eLife 2020; 9:56374. [PMID: 32808924 PMCID: PMC7467731 DOI: 10.7554/elife.56374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.
Collapse
Affiliation(s)
- Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| | - Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Jeremy Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
| |
Collapse
|
22
|
Wang Y, Wu H, Zelenin P, Fontanet P, Wanderoy S, Petitpré C, Comai G, Bellardita C, Xue-Franzén Y, Huettl RE, Huber AB, Tajbakhsh S, Kiehn O, Ernfors P, Deliagina TG, Lallemend F, Hadjab S. Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development 2019; 146:dev.181750. [PMID: 31575648 PMCID: PMC6826036 DOI: 10.1242/dev.181750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.
Collapse
Affiliation(s)
- Yiqiao Wang
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Haohao Wu
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Pavel Zelenin
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Simone Wanderoy
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Glenda Comai
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, Paris 75015, France
| | - Carmelo Bellardita
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Rosa-Eva Huettl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg 85764, Germany
| | - Andrea B Huber
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg 85764, Germany
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, Paris 75015, France
| | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.,Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - François Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden .,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm 17177, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|