1
|
Maddineni P, Kodati B, Kaipa BR, Kesavan K, Cameron Millar J, Yacoub S, Kasetti RB, Clark AF, Zode GS. Genetic and pharmacological correction of impaired mitophagy in retinal ganglion cells rescues glaucomatous neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638142. [PMID: 39990391 PMCID: PMC11844533 DOI: 10.1101/2025.02.13.638142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Progressive loss of retinal ganglion cells (RGCs) and degeneration of optic nerve axons are the pathological hallmarks of glaucoma. Ocular hypertension (OHT) and mitochondrial dysfunction are linked to neurodegeneration and vision loss in glaucoma. However, the exact mechanism of mitochondrial dysfunction leading to glaucomatous neurodegeneration is poorly understood. Using multiple mouse models of OHT and human eyes from normal and glaucoma donors, we show that OHT induces impaired mitophagy in RGCs, resulting in the accumulation of dysfunctional mitochondria and contributing to glaucomatous neurodegeneration. Using mitophagy reporter mice, we show that impaired mitophagy precedes glaucomatous neurodegeneration. Notably, the pharmacological rescue of impaired mitophagy via Torin-2 or genetic upregulation of RGC-specific Parkin expression restores the structural and functional integrity of RGCs and their axons in mouse models of glaucoma and ex-vivo human retinal-explant cultures. Our study indicates that impaired mitophagy contributes to mitochondrial dysfunction and oxidative stress, leading to glaucomatous neurodegeneration. Enhancing mitophagy in RGCs represents a promising therapeutic strategy to prevent glaucomatous neurodegeneration.
Collapse
|
2
|
Hu X, Zhang J, Ma H, Lian W, Song W, Du C, Chen S, Wang D, Wei J, Lu Q. The broad-spectrum deubiquitinating enzyme inhibitor PR-619 protects retinal ganglion cell and augments parkin-mediated mitophagy in experimental glaucoma. Sci Rep 2024; 14:24654. [PMID: 39428410 PMCID: PMC11491476 DOI: 10.1038/s41598-024-75562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Glaucoma is a leading cause of irreversible visual impairment worldwide, characterized by the progressive death of retinal ganglion cells (RGCs). Deubiquitinating enzyme (DUB) inhibitors have shown promise as pharmacological interventions for neurodegenerative disorders. Our study focuses on the pan-DUB inhibitor PR-619 and its potential neuroprotective effects on RGCs through modulation of parkin-mediated mitophagy in experimental glaucoma models. The results show that impaired mitophagy exists in RGCs of our experimental glaucomatous model. In vivo, PR-619 increased RGCs survival in glaucomatous rats. In vitro, it protected RGCs against excitotoxicity and reduced ubiquitin-specific protease (USP) 15 expression. Additionally, PR-619 upregulated parkin expression, increased LC3-II/LC3-I ratios, and elevated LAMP1 levels, indicating enhanced mitophagy in vivo and in vitro. Moreover, numbers of mitophagosomes were increased in optic nerves of PR-619-treated ocular hypertensive rats in vivo. Furthermore, parkin knockdown negated the salutary effects of PR-619 and attenuated expression of parkin-dependent mitophagy effectors in RGCs subjected to glutamate excitotoxicity in vitro. Collectively, these findings implicate augmented parkin-mediated mitophagy as the mechanistic substrate underscoring the neuroprotective capacity of PR-619 in experimental glaucoma. These revelations engender the prospect that pharmacological agents or biotherapeutics augmenting parkin-mediated mitophagy may proffer viable therapeutic modalities for glaucomatous neurodegeneration characterized by impaired mitophagy.
Collapse
Affiliation(s)
- Xinxin Hu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Haixia Ma
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Wei Lian
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Wenqiu Song
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Chao Du
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Shengcan Chen
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Dandan Wang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Jiaqi Wei
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China.
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China.
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China.
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China.
| |
Collapse
|
3
|
Morgan AB, Fan Y, Inman DM. The ketogenic diet and hypoxia promote mitophagy in the context of glaucoma. Front Cell Neurosci 2024; 18:1409717. [PMID: 38841201 PMCID: PMC11150683 DOI: 10.3389/fncel.2024.1409717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Mitochondrial homeostasis includes balancing organelle biogenesis with recycling (mitophagy). The ketogenic diet protects retinal ganglion cells (RGCs) from glaucoma-associated neurodegeneration, with a concomitant increase in mitochondrial biogenesis. This study aimed to determine if the ketogenic diet also promoted mitophagy. MitoQC mice that carry a pH-sensitive mCherry-GFP tag on the outer mitochondrial membrane were placed on a ketogenic diet or standard rodent chow for 5 weeks; ocular hypertension (OHT) was induced via magnetic microbead injection in a subset of control or ketogenic diet animals 1 week after the diet began. As a measure of mitophagy, mitolysosomes were quantified in sectioned retina immunolabeled with RBPMS for RGCs or vimentin for Müller glia. Mitolysosomes were significantly increased as a result of OHT and the ketogenic diet (KD) in RGCs. Interestingly, the ketogenic diet increased mitolysosome number significantly higher than OHT alone. In contrast, OHT and the ketogenic diet both increased mitolysosome number in Müller glia to a similar degree. To understand if hypoxia could be a stimulus for mitophagy, we quantified mitolysosomes after acute OHT, finding significantly greater mitolysosome number in cells positive for pimonidazole, an adduct formed in cells exposed to hypoxia. Retinal protein analysis for BNIP3 and NIX showed no differences across groups, suggesting that these receptors were equivocal for mitophagy in this model of OHT. Our data indicate that OHT and hypoxia stimulate mitophagy and that the ketogenic diet is an additive for mitophagy in RGCs. The different response across RGCs and Müller glia to the ketogenic diet may reflect the different metabolic needs of these cell types.
Collapse
Affiliation(s)
| | | | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
4
|
You W, Knoops K, Boesten I, Berendschot TTJM, van Zandvoort MAMJ, Benedikter BJ, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. A time window for rescuing dying retinal ganglion cells. Cell Commun Signal 2024; 22:88. [PMID: 38297331 PMCID: PMC10832163 DOI: 10.1186/s12964-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration and death cause vision loss in patients with glaucoma. Regulated cell death, once initiated, is generally considered to be an irreversible process. Recently, we showed that, by timely removing the cell death stimulus, stressed neuronal PC12 cells can recover from phosphatidylserine (PS) exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation, mitochondrial membrane potential loss, and retraction of neurites, all hallmarks of an activated cell death program. Whether the cell death process can be reversed in neurons of the central nervous system, like RGCs, is still unknown. Here, we studied reversibility of the activated cell death program in primary rat RGCs (prRGCs). METHODS prRGCs were exposed to ethanol (5%, vol/vol) to induce cell death. At different stages of the cell death process, ethanol was removed by washing and injured prRGCs were further cultured in fresh medium to see whether they recovered. The dynamics of single cells were monitored by high-resolution live-cell spinning disk microscopy. PS exposure, mitochondrial structure, membrane potential, and intracellular Ca2+ were revealed by annexin A5-FITC, Mito-tracker, TMRM, and Fluo 8-AM staining, respectively. The distribution of cytochrome c was investigated by immunofluorescence. The ultrastructure of mitochondria was studied by electron microscopy. RESULTS Analysis of temporal relationships between mitochondrial changes and PS exposure showed that fragmentation of the mitochondrial network and loss of mitochondrial membrane potential occurred before PS exposure. Mitochondrial changes proceeded caspase-independently, while PS exposure was caspase dependent. Interestingly, prRGCs recovered quickly from these mitochondrial changes but not from PS exposure at the plasma membrane. Correlative light and electron microscopy showed that stress-induced decrease in mitochondrial area, length and cristae number was reversible. Intracellular Ca2+ was elevated during this stage of reversible mitochondrial injury, but there was no sign of mitochondrial cytochrome c release. CONCLUSIONS Our study demonstrates that RGCs with impaired mitochondrial structure and function can fully recover if there is no mitochondrial cytochrome c release yet, and no PS is exposed at the plasma membrane. This finding indicates that there is a time window for rescuing dying or injured RGCs, by simply removing the cell death stimulus. Video Abstract.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Kèvin Knoops
- The Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Iris Boesten
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Institute of Molecular Cardiovascular Research (IMCAR), Universitätsklinikum Aachen, 52074, Aachen, Germany
| | - Birke J Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands.
| |
Collapse
|
5
|
Brooks CD, Kodati B, Stankowska DL, Krishnamoorthy RR. Role of mitophagy in ocular neurodegeneration. Front Neurosci 2023; 17:1299552. [PMID: 37965225 PMCID: PMC10641468 DOI: 10.3389/fnins.2023.1299552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
6
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
7
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Tang Y, Chen Y, Chen D. The heterogeneity of astrocytes in glaucoma. Front Neuroanat 2022; 16:995369. [PMID: 36466782 PMCID: PMC9714578 DOI: 10.3389/fnana.2022.995369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness with progressive degeneration of retinal ganglion cells. Aging and increased intraocular pressure (IOP) are major risk factors. Lowering IOP does not always stop the disease progression. Alternative ways of protecting the optic nerve are intensively studied in glaucoma. Astrocytes are macroglia residing in the retina, optic nerve head (ONH), and visual brain, which keep neuronal homeostasis, regulate neuronal activities and are part of the immune responses to the retina and brain insults. In this brief review, we discuss the activation and heterogeneity of astrocytes in the retina, optic nerve head, and visual brain of glaucoma patients and animal models. We also discuss some recent transgenic and gene knockout studies using glaucoma mouse models to clarify the role of astrocytes in the pathogenesis of glaucoma. Astrocytes are heterogeneous and play crucial roles in the pathogenesis of glaucoma, especially in the process of neuroinflammation and mitochondrial dysfunction. In astrocytes, overexpression of Stat3 or knockdown of IκKβ/p65, caspase-8, and mitochondrial uncoupling proteins (Ucp2) can reduce ganglion cell loss in glaucoma mouse models. Based on these studies, therapeutic strategies targeting the heterogeneity of reactive astrocytes by enhancing their beneficial reactivity or suppressing their detrimental reactivity are alternative options for glaucoma treatment in the future.
Collapse
Affiliation(s)
- Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
10
|
Tang J, Zhuo Y, Li Y. Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Front Cell Dev Biol 2021; 9:720288. [PMID: 34447755 PMCID: PMC8383321 DOI: 10.3389/fcell.2021.720288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Glaucoma is the most substantial cause of irreversible blinding, which is accompanied by progressive retinal ganglion cell damage. Retinal ganglion cells are energy-intensive neurons that connect the brain and retina, and depend on mitochondrial homeostasis to transduce visual information through the brain. As cofactors that regulate many metabolic signals, iron and zinc have attracted increasing attention in studies on neurons and neurodegenerative diseases. Here, we summarize the research connecting iron, zinc, neuronal mitochondria, and glaucomatous injury, with the aim of updating and expanding the current view of how retinal ganglion cells degenerate in glaucoma, which can reveal novel potential targets for neuroprotection.
Collapse
Affiliation(s)
- Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
New Insights of SF1 Neurons in Hypothalamic Regulation of Obesity and Diabetes. Int J Mol Sci 2021; 22:ijms22126186. [PMID: 34201257 PMCID: PMC8229730 DOI: 10.3390/ijms22126186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the substantial role played by the hypothalamus in the regulation of energy balance and glucose homeostasis, the exact mechanisms and neuronal circuits underlying this regulation remain poorly understood. In the last 15 years, investigations using transgenic models, optogenetic, and chemogenetic approaches have revealed that SF1 neurons in the ventromedial hypothalamus are a specific lead in the brain’s ability to sense glucose levels and conduct insulin and leptin signaling in energy expenditure and glucose homeostasis, with minor feeding control. Deletion of hormonal receptors, nutritional sensors, or synaptic receptors in SF1 neurons triggers metabolic alterations mostly appreciated under high-fat feeding, indicating that SF1 neurons are particularly important for metabolic adaptation in the early stages of obesity. Although these studies have provided exciting insight into the implications of hypothalamic SF1 neurons on whole-body energy homeostasis, new questions have arisen from these results. Particularly, the existence of neuronal sub-populations of SF1 neurons and the intricate neurocircuitry linking these neurons with other nuclei and with the periphery. In this review, we address the most relevant studies carried out in SF1 neurons to date, to provide a global view of the central role played by these neurons in the pathogenesis of obesity and diabetes.
Collapse
|
12
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
13
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
14
|
Madreiter-Sokolowski CT, Gottschalk B, Sokolowski AA, Malli R, Graier WF. Dynamic Control of Mitochondrial Ca 2+ Levels as a Survival Strategy of Cancer Cells. Front Cell Dev Biol 2021; 9:614668. [PMID: 33614647 PMCID: PMC7889948 DOI: 10.3389/fcell.2021.614668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells have increased energy requirements due to their enhanced proliferation activity. This energy demand is, among others, met by mitochondrial ATP production. Since the second messenger Ca2+ maintains the activity of Krebs cycle dehydrogenases that fuel mitochondrial respiration, proper mitochondrial Ca2+ uptake is crucial for a cancer cell survival. However, a mitochondrial Ca2+ overload induces mitochondrial dysfunction and, ultimately, apoptotic cell death. Because of the vital importance of balancing mitochondrial Ca2+ levels, a highly sophisticated machinery of multiple proteins manages mitochondrial Ca2+ homeostasis. Notably, mitochondria sequester Ca2+ preferentially at the interaction sites between mitochondria and the endoplasmic reticulum (ER), the largest internal Ca2+ store, thus, pointing to mitochondrial-associated membranes (MAMs) as crucial hubs between cancer prosperity and cell death. To investigate potential regulatory mechanisms of the mitochondrial Ca2+ uptake routes in cancer cells, we modulated mitochondria-ER tethering and the expression of UCP2 and analyzed mitochondrial Ca2+ homeostasis under the various conditions. Hence, the expression of contributors to mitochondrial Ca2+ regulation machinery was quantified by qRT-PCR. We further used data from The Cancer Genome Atlas (TCGA) to correlate these in vitro findings with expression patterns in human breast invasive cancer and human prostate adenocarcinoma. ER-mitochondrial linkage was found to support a mitochondrial Ca2+ uptake route dependent on uncoupling protein 2 (UCP2) in cancer cells. Notably, combined overexpression of Rab32, a protein kinase A-anchoring protein fostering the ER-mitochondrial tethering, and UCP2 caused a significant drop in cancer cells' viability. Artificially enhanced ER-mitochondrial tethering further initiated a sudden decline in the expression of UCP2, probably as an adaptive response to avoid mitochondrial Ca2+ overload. Besides, TCGA analysis revealed an inverse expression correlation between proteins stabilizing mitochondrial-ER linkage and UCP2 in tissues of human breast invasive cancer and prostate adenocarcinoma. Based on these results, we assume that cancer cells successfully manage mitochondrial Ca2+ uptake to stimulate Ca2+-dependent mitochondrial metabolism while avoiding Ca2+-triggered cell death by fine-tuning ER-mitochondrial tethering and the expression of UCP2 in an inversed manner. Disruption of this equilibrium yields cancer cell death and may serve as a treatment strategy to specifically kill cancer cells.
Collapse
Affiliation(s)
- Corina T. Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Armin A. Sokolowski
- Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
15
|
Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res 2021; 83:100941. [PMID: 33422637 DOI: 10.1016/j.preteyeres.2021.100941] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family. Of the UCPs, UCP2 shows a widespread distribution and has been shown to uncouple oxidative phosphorylation, with concomitant decreases in ROS production. Genetic studies using transgenic and knockout mice have documented the ability of increased UCP2 activity to provide neuroprotection in models of a number of diseases, including retinal diseases, indicating that it is a strong candidate for a therapeutic target. Molecular studies have identified the structural mechanism of action of UCP2 and have detailed the ways in which its expression and activity can be controlled at the transcriptional, translational and posttranslational levels. These studies suggest a number of ways in control of UCP2 expression and activity can be used therapeutically for both acute and chronic conditions. The development of such therapeutic approaches will greatly increase the tools available to combat a broad range of serious retinal diseases.
Collapse
Affiliation(s)
- Daniel T Hass
- Department of Biochemistry, The University of Washington, Seattle, WA, 98109, USA
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
16
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
17
|
Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46:1707-1720. [PMID: 32901846 PMCID: PMC7521588 DOI: 10.3892/ijmm.2020.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L-Opa1/S-Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L-Opa1/S-Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Kaibao Ji
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Ruihan Xiao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Sun
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xinghui Pan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Youngblood H, Cai J, Drewry MD, Helwa I, Hu E, Liu S, Yu H, Mu H, Hu Y, Perkumas K, Aboobakar IF, Johnson WM, Stamer WD, Liu Y. Expression of mRNAs, miRNAs, and lncRNAs in Human Trabecular Meshwork Cells Upon Mechanical Stretch. Invest Ophthalmol Vis Sci 2020; 61:2. [PMID: 32392310 PMCID: PMC7405621 DOI: 10.1167/iovs.61.5.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose Intraocular pressure (IOP), the primary risk factor for primary open-angle glaucoma, is determined by resistance to aqueous outflow through the trabecular meshwork (TM). IOP homeostasis relies on TM responses to mechanical stretch. To model the effects of elevated IOP on the TM, this study sought to identify coding and non-coding RNAs differentially expressed in response to mechanical stretch. Methods Monolayers of TM cells from non-glaucomatous donors (n = 5) were cultured in the presence or absence of 15% mechanical stretch, 1 cycle/second, for 24 hours using a computer-controlled Flexcell unit. We profiled mRNAs and lncRNAs with stranded total RNA sequencing and microRNA (miRNA) expression with NanoString-based miRNA assays. We used two-tailed paired t-tests for mRNAs and long non-coding RNAs (lncRNAs) and the Bioconductor limma package for miRNAs. Gene ontology and pathway analyses were performed with WebGestalt. miRNA-mRNA interactions were identified using Ingenuity Pathway Analysis Integrative miRNA Target Finder software. Validation of differential expression was conducted using droplet digital PCR. Results We identified 219 mRNAs, 42 miRNAs, and 387 lncRNAs with differential expression in TM cells upon cyclic mechanical stretch. Pathway analysis indicated significant enrichment of genes involved in steroid biosynthesis, glycerolipid metabolism, and extracellular matrix-receptor interaction. We also identified several miRNA master regulators (miR-125a-5p, miR-30a-5p, and miR-1275) that regulate several mechanoresponsive genes. Conclusions To our knowledge, this is the first demonstration of the differential expression of coding and non-coding RNAs in a single set of cells subjected to cyclic mechanical stretch. Our results validate previously identified, as well as novel, genes and pathways.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Michelle D. Drewry
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Inas Helwa
- Department of Histopathology, Misr International University, Cairo, Egypt
| | - Eric Hu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Sabrina Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Hongfang Yu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Hongmei Mu
- Kaifeng Key Lab of Cataract and Myopia, Institute of Eye Diseases, Kaifeng Centre Hospital, Kaifeng, Henan, China
| | - Yanzhong Hu
- Department of Cell Biology and Genetics, Henan University School of Medicine, Kaifeng, Henan, China
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Inas F. Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - William M. Johnson
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
19
|
B. Domènech E, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E347. [PMID: 32340220 PMCID: PMC7222416 DOI: 10.3390/antiox9040347] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal cell survival requires an equilibrium between oxygen, reactive oxygen species, and antioxidant molecules that counteract oxidative stress damage. Oxidative stress alters cell homeostasis and elicits a protective cell response, which is most relevant in photoreceptors and retinal ganglion cells, neurons with a high metabolic rate that are continuously subject to light/oxidative stress insults. We analyze how the alteration of cellular endogenous pathways for protection against oxidative stress leads to retinal dysfunction in prevalent (age-related macular degeneration, glaucoma) as well as in rare genetic visual disorders (Retinitis pigmentosa, Leber hereditary optic neuropathy). We also highlight some of the key molecular actors and discuss potential therapies using antioxidants agents, modulators of gene expression and inducers of cytoprotective signaling pathways to treat damaging oxidative stress effects and ameliorate severe phenotypic symptoms in multifactorial and rare retinal dystrophies.
Collapse
Affiliation(s)
- Elena B. Domènech
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Meyer DN, Crofts EJ, Akemann C, Gurdziel K, Farr R, Baker BB, Weber D, Baker TR. Developmental exposure to Pb 2+ induces transgenerational changes to zebrafish brain transcriptome. CHEMOSPHERE 2020; 244:125527. [PMID: 31816550 PMCID: PMC7015790 DOI: 10.1016/j.chemosphere.2019.125527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 05/24/2023]
Abstract
Lead (Pb2+) is a major public health hazard for urban children, with profound and well-characterized developmental and behavioral implications across the lifespan. The ability of early Pb2+ exposure to induce epigenetic changes is well-established, suggesting that Pb2+-induced neurobehavioral deficits may be heritable across generations. Understanding the long-term and multigenerational repercussions of lead exposure is crucial for clarifying both the genotypic alterations behind these behavioral outcomes and the potential mechanism of heritability. To study this, zebrafish (Danio rerio) embryos (<2 h post fertilization; EK strain) were exposed for 24 h to waterborne Pb2+ at a concentration of 10 μM. This exposed F0 generation was raised to adulthood and spawned to produce the F1 generation, which was subsequently spawned to produce the F2 generation. Previous avoidance conditioning studies determined that a 10 μM Pb2+ dose resulted in learning impairments persisting through the F2 generation. RNA was extracted from control- and 10 μM Pb2+-lineage F2 brains, (n = 10 for each group), sequenced, and transcript expression was quantified utilizing Quant-Seq. 648 genes were differentially expressed in the brains of F2 lead-lineage fish versus F2 control-lineage fish. Pathway analysis revealed altered genes in processes including synaptic function and plasticity, neurogenesis, endocrine homeostasis, and epigenetic modification, all of which are implicated in lead-induced neurobehavioral deficits and/or their inheritance. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational health effects of developmental lead exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Rebecca Farr
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA; Division of Laboratory Animal Resources, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Daniel Weber
- Children's Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
21
|
The mito-QC Reporter for Quantitative Mitophagy Assessment in Primary Retinal Ganglion Cells and Experimental Glaucoma Models. Int J Mol Sci 2020; 21:ijms21051882. [PMID: 32164182 PMCID: PMC7084520 DOI: 10.3390/ijms21051882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.
Collapse
|
22
|
Adornetto A, Parisi V, Morrone LA, Corasaniti MT, Bagetta G, Tonin P, Russo R. The Role of Autophagy in Glaucomatous Optic Neuropathy. Front Cell Dev Biol 2020; 8:121. [PMID: 32211404 PMCID: PMC7066980 DOI: 10.3389/fcell.2020.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a conserved lysosomal-dependent pathway responsible for the degradation of cytoplasmic macromolecules. Based on the mechanism of cargo delivery to lysosomes, mammalian cells can undergo micro, macro, and chaperone-mediated autophagy. Other than physiological turnover of proteins and organelles, autophagy regulates cellular adaptation to different metabolic states and stressful conditions by allowing cellular survival or, when overactivated, participating to cell death. Due to their structure and function, neurons are highly dependent on autophagy efficiency and dysfunction of the pathway has been associated with neurodegenerative disorders. Glaucomatous optic neuropathies, a leading cause of blindness, are characterized by the progressive loss of a selective population of retinal neurons, i.e., the retinal ganglion cells (RGCs). Here we review the current literature on the role of autophagy in the pathogenic process that leads to the degeneration of RGC in various experimental models of glaucoma exploring the modulation of the pathway as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Vincenzo Parisi
- Visual Neurophysiology and Neurophthalmology Research Unit, IRCCS G.B. Bietti Foundation, Rome, Italy
| | - Luigi Antonio Morrone
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Rende, Italy
| |
Collapse
|