1
|
Boedts M, Buechner A, Khoo SG, Gjaltema W, Moreels F, Lesinski-Schiedat A, Becker P, MacMahon H, Vixseboxse L, Taghavi R, Lim HH, Lenarz T. Combining sound with tongue stimulation for the treatment of tinnitus: a multi-site single-arm controlled pivotal trial. Nat Commun 2024; 15:6806. [PMID: 39160146 PMCID: PMC11333749 DOI: 10.1038/s41467-024-50473-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Bimodal neuromodulation is emerging as a nonsurgical treatment for tinnitus. Bimodal treatment combining sound therapy with electrical tongue stimulation using the Lenire device is evaluated in a controlled pivotal trial (TENT-A3, NCT05227365) consisting of 6-weeks of sound-only stimulation (Stage 1) followed by 6-weeks of bimodal treatment (Stage 2) with 112 participants serving as their own control. The primary endpoint compares the responder rate observed in Stage 2 versus Stage 1, where a responder exceeds 7 points in the Tinnitus Handicap Inventory. In participants with moderate or more severe tinnitus, there is a clinically superior performance of bimodal treatment (58.6%; 95% CI: 43.5%, 73.6%; p = 0.022) compared to sound therapy alone (43.2%; 95% CI: 29.7%, 57.8%), which is not observed in the full cohort across all severity groups. Consistent results are observed for the secondary endpoint based on the Tinnitus Functional Index (bimodal treatment: 45.5%; 95% CI: 31.7%, 59.9%; sound-only stimulation: 29.6%; 95% CI: 18.2%, 44.2%; p = 0.010), where a responder exceeds 13 points. There are no device related serious adverse events. These positive outcomes led to FDA De Novo approval of the Lenire device for tinnitus treatment.
Collapse
Affiliation(s)
- Michael Boedts
- BRAI3N Clinic, Gent, Belgium
- Maria Middelares General Hospital, Gent, Belgium
| | - Andreas Buechner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover Medical School, Hannover, Germany
| | - S Guan Khoo
- St. James's Hospital, Dublin, Ireland
- St. Vincent's Hospital, Dublin, Ireland
| | | | | | - Anke Lesinski-Schiedat
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover Medical School, Hannover, Germany
| | - Philipp Becker
- German Hearing Center (DHZ), Hannover Medical School, Hannover, Germany
| | | | | | | | - Hubert H Lim
- Neuromod Devices Limited, Dublin, Ireland.
- Department of Otolaryngology-Head & Neck Surgery, University of Minnesota, Minneapolis, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- German Hearing Center (DHZ), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Morse K, Vander Werff KR. Cortical Auditory Evoked Potential Indices of Impaired Sensory Gating in People With Chronic Tinnitus. Ear Hear 2024; 45:730-741. [PMID: 38273451 DOI: 10.1097/aud.0000000000001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES The primary aim of this study was to evaluate whether there is cortical auditory evoked potential (CAEP) evidence of impaired sensory gating in individuals with tinnitus. On the basis of the proposed mechanism of tinnitus generation, including a thalamocortical inhibitory deficit, it was hypothesized that individuals with tinnitus would lack the normal inhibitory effect on the second CAEP response in a paired-click sensory gating paradigm, resulting in larger sensory gating ratios in individuals with tinnitus relative to age-, sex-, and hearing-matched controls. Further, this study assessed the relative predictive influence of tinnitus presence versus other related individual characteristics (hearing loss, age, noise exposure history, and speech perception in noise) on sensory gating. DESIGN A paired-click CAEP paradigm was used to measure sensory gating outcomes in an independent group's experimental design. Adults who perceived chronic unilateral or bilateral tinnitus were matched with control group counterparts without tinnitus by age, hearing, and sex (n = 18; 10 females, eight males in each group). Amplitude, area, and latency sensory gating ratios were determined for measured P1, N1, and P2 responses evoked by the first and second click in the paradigm and compared between groups by independent t tests. The relative influence of tinnitus (presence/absence), age (in years), noise exposure history (subjective self-report), hearing loss (pure-tone audiometric thresholds), and speech perception in noise (signal to noise ratio-50) on sensory gating was determined based on the proportional reduction in error associated with each variable using multiple regression. RESULTS A significantly larger was identified in the tinnitus group relative to the control group, consistent with the hypothesis of poorer sensory gating and poorer thalamocortical inhibition in individuals with chronic tinnitus. On the basis of the proportional reduction in error, the influence of tinnitus presence better predicted compared with other related individual characteristics (age, noise exposure history, hearing loss, and speech perception in noise). CONCLUSIONS Results consistent with poorer sensory gating, including a larger , were found for the tinnitus group compared with the controls. This finding supported a thalamocortical inhibitory deficit in the tinnitus group and suggests that individuals with tinnitus may have poorer sensory gating. However, the tinnitus group did differ from controls in meaningful ways including having worse pure-tone thresholds in the extended high-frequency region, lower high-frequency distortion product otoacoustic emissions, and poorer speech perception in noise. Although tinnitus best predicted sensory gating outcomes, the specific effects of tinnitus presence versus absence and other individual characteristics on sensory gating cannot be completely separated.
Collapse
Affiliation(s)
- Kenneth Morse
- Division of Communication Sciences and Disorders, West Virginia University, Morgantown, West Virginia, USA
| | - Kathy R Vander Werff
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
3
|
Kukreja Y, Lee H, Morsy M, Niraj G. Intermediate Cervical Plexus Block in the Management of Refractory Somatosensory Tinnitus Following Whiplash: Prospective Series in 30 Patients. Otol Neurotol 2024; 45:223-226. [PMID: 38361291 DOI: 10.1097/mao.0000000000004118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
OBJECTIVE Whiplash-associated disorder comprises of a constellation of persistent symptoms after neck trauma. Tinnitus that develops postwhiplash is termed somatosensory tinnitus. The objective is to assess the role of intermediate cervical plexus block (iCPB) in patients with somatosensory tinnitus secondary to whiplash. METHODS Prospective service evaluation in adults with whiplash-associated disorder and concomitant somatosensory tinnitus. Patients underwent specialist otorhinolaryngology review before pain clinic referral. Patients were offered ultrasound-guided iCPB with steroids. Intensity of tinnitus was recorded on a numerical rating scale at baseline, 3 and 6 months posttreatment. Brief Pain Inventory Short Form and Hospital Anxiety Depression Scale questionnaires were also completed. RESULTS Over a 36-month period, 32 patients with refractory somatosensory tinnitus following whiplash were offered iCPB(s). Two patients refused because of needle phobia. iCPB(s) was performed in 30 patients as an outpatient procedure. One patient (1/30, 3.3%) was lost to follow-up. Twenty-three patients (23/30, 77%) reported clinically significant reduction in intensity of tinnitus at 3 months postprocedure. Nineteen patients (19/30, 63%) reported ongoing benefit at 6-month follow-up. Six patients failed to report any benefit (6/30, 20%). CONCLUSION The cervical plexus could play a significant role in the development of somatosensory tinnitus after whiplash. iCPB may have a role in the management of somatosensory tinnitus in this cohort.
Collapse
Affiliation(s)
| | - Hayun Lee
- Specialist Trainee in Anesthesia, United Kingdom
| | | | - G Niraj
- Department of Pain Medicine, University Hospitals of Leciester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
4
|
Gninenko N, Trznadel S, Daskalou D, Gramatica L, Vanoy J, Voruz F, Robyn CL, Spadazzi A, Yulzari A, Sitaram R, Van De Ville D, Senn P, Haller S. Functional MRI Neurofeedback Outperforms Cognitive Behavioral Therapy for Reducing Tinnitus Distress: A Prospective Randomized Clinical Trial. Radiology 2024; 310:e231143. [PMID: 38349241 DOI: 10.1148/radiol.231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Background Cognitive behavioral therapy (CBT) is the current standard treatment for chronic severe tinnitus; however, preliminary evidence suggests that real-time functional MRI (fMRI) neurofeedback therapy may be more effective. Purpose To compare the efficacy of real-time fMRI neurofeedback against CBT for reducing chronic tinnitus distress. Materials and Methods In this prospective controlled trial, participants with chronic severe tinnitus were randomized from December 2017 to December 2021 to receive either CBT (CBT group) for 10 weekly group sessions or real-time fMRI neurofeedback (fMRI group) individually during 15 weekly sessions. Change in the Tinnitus Handicap Inventory (THI) score (range, 0-100) from baseline to 6 or 12 months was assessed. Secondary outcomes included four quality-of-life questionnaires (Beck Depression Inventory, Pittsburgh Sleep Quality Index, State-Trait Anxiety Inventory, and World Health Organization Disability Assessment Schedule). Questionnaire scores between treatment groups and between time points were assessed using repeated measures analysis of variance and the nonparametric Wilcoxon signed rank test. Results The fMRI group included 21 participants (mean age, 49 years ± 11.4 [SD]; 16 male participants) and the CBT group included 22 participants (mean age, 53.6 years ± 8.8; 16 male participants). The fMRI group showed a greater reduction in THI scores compared with the CBT group at both 6 months (mean score change, -28.21 points ± 18.66 vs -12.09 points ± 18.86; P = .005) and 12 months (mean score change, -30 points ± 25.44 vs -4 points ± 17.2; P = .01). Compared with baseline, the fMRI group showed improved sleep (mean score, 8.62 points ± 4.59 vs 7.25 points ± 3.61; P = .006) and trait anxiety (mean score, 44 points ± 11.5 vs 39.84 points ± 10.5; P = .02) at 1 month and improved depression (mean score, 13.71 points ± 9.27 vs 6.53 points ± 5.17; P = .01) and general functioning (mean score, 24.91 points ± 17.05 vs 13.06 points ± 10.1; P = .01) at 6 months. No difference in these metrics over time was observed for the CBT group (P value range, .14 to >.99). Conclusion Real-time fMRI neurofeedback therapy led to a greater reduction in tinnitus distress than the current standard treatment of CBT. ClinicalTrials.gov registration no.: NCT05737888; Swiss Ethics registration no.: BASEC2017-00813 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Nicolas Gninenko
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Stéphanie Trznadel
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Dimitrios Daskalou
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Luca Gramatica
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Julie Vanoy
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - François Voruz
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Claudia Lardi Robyn
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Anne Spadazzi
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Aude Yulzari
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Ranganatha Sitaram
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Dimitri Van De Ville
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Pascal Senn
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| | - Sven Haller
- From the Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva 1202, Switzerland (N.G., D.V.D.V.); Department of Radiology and Medical Informatics (N.G., D.V.D.V.) and Department of Medicine (S.H.), University of Geneva, Geneva, Switzerland; Department of Neurology, Psychosomatic Medicine Unit, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland (N.G.); Wyss Center for Bio and Neuroengineering, Campus Biotech, Geneva, Switzerland (S.T., A.Y.); Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences (D.D., L.G., J.V., F.V., P.S.) and Department of Psychiatry (C.L.R., A.S.), Geneva University Hospitals, Geneva, Switzerland; Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tenn (R.S.); Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland (S.H.); and Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H.)
| |
Collapse
|
5
|
Brunelle DL, Llano DA. Role of auditory-somatosensory corticothalamic circuit integration in analgesia. Cell Calcium 2023; 111:102717. [PMID: 36931195 PMCID: PMC10755628 DOI: 10.1016/j.ceca.2023.102717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Our sensory environment is permeated by a diverse array of auditory and somatosensory stimuli. The pairing of acoustic signals with concurrent or forthcoming tactile cues are abundant in everyday life and various survival contexts across species, thus deeming the ability to integrate sensory inputs arising from the combination of these stimuli as crucial. The corticothalamic system plays a critical role in orchestrating the construction, integration and distribution of the information extracted from these sensory modalities. In this mini-review, we provide a circuit-level description of the auditory corticothalamic pathway in conjunction with adjacent corticothalamic somatosensory projections. Although the extent of the functional interactions shared by these pathways is not entirely elucidated, activation of each of these systems appears to modulate sensory perception in the complementary domain. Several specific issues are reviewed. Under certain environmental noise conditions, the spectral information of a sound could induce modulations in nociception and even induce analgesia. We begin by discussing recent findings by Zhou et al. (2022) implicating the corticothalamic system in mediating sound-induced analgesia. Next, we describe relevant components of the corticothalamic pathway's functional organization. Additionally, we describe an emerging body of literature pointing to intrathalamic circuitry being optimal for controlling and selecting sensory signals across modalities, with the thalamic reticular nucleus being a candidate mechanism for directing cross-modal interactions. Finally, Ca2+ bursting in thalamic neurons evoked by the thalamic reticular nucleus is explored.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
6
|
Schultheiβ H, Zulfiqar I, Verardo C, Jolivet RB, Moerel M. Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus. Neuroimage 2023; 271:119987. [PMID: 36940510 DOI: 10.1016/j.neuroimage.2023.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/22/2023] Open
Abstract
Tinnitus is a clinical condition where a sound is perceived without an external sound source. Homeostatic plasticity (HSP), serving to increase neural activity as compensation for the reduced input to the auditory pathway after hearing loss, has been proposed as a mechanism underlying tinnitus. In support, animal models of tinnitus show evidence of increased neural activity after hearing loss, including increased spontaneous and sound-driven firing rate, as well as increased neural noise throughout the auditory processing pathway. Bridging these findings to human tinnitus, however, has proven to be challenging. Here we implement hearing loss-induced HSP in a Wilson-Cowan Cortical Model of the auditory cortex to predict how homeostatic principles operating at the microscale translate to the meso- to macroscale accessible through human neuroimaging. We observed HSP-induced response changes in the model that were previously proposed as neural signatures of tinnitus, but that have also been reported as correlates of hearing loss and hyperacusis. As expected, HSP increased spontaneous and sound-driven responsiveness in hearing-loss affected frequency channels of the model. We furthermore observed evidence of increased neural noise and the appearance of spatiotemporal modulations in neural activity, which we discuss in light of recent human neuroimaging findings. Our computational model makes quantitative predictions that require experimental validation, and may thereby serve as the basis of future human studies of hearing loss, tinnitus, and hyperacusis.
Collapse
Affiliation(s)
- Hannah Schultheiβ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Master Systems Biology, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Isma Zulfiqar
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Claudio Verardo
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Renaud B Jolivet
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Michelle Moerel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
8
|
Different bimodal neuromodulation settings reduce tinnitus symptoms in a large randomized trial. Sci Rep 2022; 12:10845. [PMID: 35773272 PMCID: PMC9246951 DOI: 10.1038/s41598-022-13875-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
More than 10% of the population suffers from tinnitus, which is a phantom auditory condition that is coded within the brain. A new neuromodulation approach to treat tinnitus has emerged that combines sound with electrical stimulation of somatosensory pathways, supported by multiple animal studies demonstrating that bimodal stimulation can elicit extensive neural plasticity within the auditory brain. More recently, in a large-scale clinical trial, bimodal neuromodulation combining sound and tongue stimulation drove significant reductions in tinnitus symptom severity during the first 6 weeks of treatment, followed by diminishing improvements during the second 6 weeks of treatment. The primary objective of the large-scale randomized and double-blinded study presented in this paper was to determine if background wideband noise as used in the previous clinical trial was necessary for bimodal treatment efficacy. An additional objective was to determine if adjusting the parameter settings after 6 weeks of treatment could overcome treatment habituation effects observed in the previous study. The primary endpoint at 6-weeks involved within-arm and between-arm comparisons for two treatment arms with different bimodal neuromodulation settings based on two widely used and validated outcome instruments, Tinnitus Handicap Inventory and Tinnitus Functional Index. Both treatment arms exhibited a statistically significant reduction in tinnitus symptoms during the first 6-weeks, which was further reduced significantly during the second 6-weeks by changing the parameter settings (Cohen’s d effect size for full treatment period per arm and outcome measure ranged from − 0.7 to − 1.4). There were no significant differences between arms, in which tongue stimulation combined with only pure tones and without background wideband noise was sufficient to reduce tinnitus symptoms. These therapeutic effects were sustained up to 12 months after the treatment ended. The study included two additional exploratory arms, including one arm that presented only sound stimuli during the first 6 weeks of treatment and bimodal stimulation in the second 6 weeks of treatment. This arm revealed the criticality of combining tongue stimulation with sound for treatment efficacy. Overall, there were no treatment-related serious adverse events and a high compliance rate (83.8%) with 70.3% of participants indicating benefit. The discovery that adjusting stimulation parameters overcomes previously observed treatment habituation can be used to drive greater therapeutic effects and opens up new opportunities for optimizing stimuli and enhancing clinical outcomes for tinnitus patients with bimodal neuromodulation.
Collapse
|
9
|
Schilling A, Gerum R, Metzner C, Maier A, Krauss P. Intrinsic Noise Improves Speech Recognition in a Computational Model of the Auditory Pathway. Front Neurosci 2022; 16:908330. [PMID: 35757533 PMCID: PMC9215117 DOI: 10.3389/fnins.2022.908330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023] Open
Abstract
Noise is generally considered to harm information processing performance. However, in the context of stochastic resonance, noise has been shown to improve signal detection of weak sub- threshold signals, and it has been proposed that the brain might actively exploit this phenomenon. Especially within the auditory system, recent studies suggest that intrinsic noise plays a key role in signal processing and might even correspond to increased spontaneous neuronal firing rates observed in early processing stages of the auditory brain stem and cortex after hearing loss. Here we present a computational model of the auditory pathway based on a deep neural network, trained on speech recognition. We simulate different levels of hearing loss and investigate the effect of intrinsic noise. Remarkably, speech recognition after hearing loss actually improves with additional intrinsic noise. This surprising result indicates that intrinsic noise might not only play a crucial role in human auditory processing, but might even be beneficial for contemporary machine learning approaches.
Collapse
Affiliation(s)
- Achim Schilling
- Laboratory of Sensory and Cognitive Neuroscience, Aix-Marseille University, Marseille, France
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Richard Gerum
- Department of Physics and Center for Vision Research, York University, Toronto, ON, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Linguistics Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
10
|
Symptom dimensions to address heterogeneity in tinnitus. Neurosci Biobehav Rev 2022; 134:104542. [PMID: 35051524 DOI: 10.1016/j.neubiorev.2022.104542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 01/10/2023]
Abstract
Tinnitus, the auditory phantom percept, is a well-known heterogenous disorder with multiple subtypes. Researchers and clinicians have tried to classify these subtypes according to clinical profiles, aetiologies, and response to treatment with little success. The occurrence of overlapping tinnitus subtypes suggests that the disorder exists along a continuum of severity, with no clear distinct boundaries. In this perspective, we propose a neuro-mechanical framework, viewing tinnitus as a dimensional disorder which is a complex interplay of its behavioural, biological and neurophysiological phenotypes. Moreover, we explore the potential of these dimensions as interacting networks without a common existing cause, giving rise to tinnitus. Considering tinnitus as partially overlapping, dynamically changing, interacting networks, each representing a different aspect of the unified tinnitus percept, suggests that the interaction of these networks determines the phenomenology of the tinnitus, ultimately leading to a dimensional spectrum, rather than a categorical subtyping. A combination of a robust theoretical framework and strong empirical evidence can advance our understanding of the functional mechanisms underlying tinnitus and ultimately, improve treatment strategies.
Collapse
|
11
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
12
|
Chen F, Zhao F, Mahafza N, Lu W. Detecting Noise-Induced Cochlear Synaptopathy by Auditory Brainstem Response in Tinnitus Patients With Normal Hearing Thresholds: A Meta-Analysis. Front Neurosci 2021; 15:778197. [PMID: 34987358 PMCID: PMC8721093 DOI: 10.3389/fnins.2021.778197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.
Collapse
Affiliation(s)
- Feifan Chen
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Fei Zhao
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
- Department of Hearing and Speech Science, Guangzhou Xinhua College, Guangzhou, China
| | - Nadeem Mahafza
- Centre for Speech and Language Therapy and Hearing Science, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Wei Lu
- Department of Otolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
OIsen T, Capurro A, Švent M, Pilati N, Large C, Hartell N, Hamann M. Sparsely Distributed, Pre-synaptic Kv3 K + Channels Control Spontaneous Firing and Cross-Unit Synchrony via the Regulation of Synaptic Noise in an Auditory Brainstem Circuit. Front Cell Neurosci 2021; 15:721371. [PMID: 34539351 PMCID: PMC8446535 DOI: 10.3389/fncel.2021.721371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus. The most prominent contribution to subthreshold noise is spontaneous synaptic transmission (synaptic noise). Although numerous studies have examined the role of synaptic noise on single cell excitability, little is known about its pre-synaptic modulation owing in part to the difficulties of combining noise modulation with monitoring synaptic release. Here we study synaptic noise in the auditory brainstem dorsal cochlear nucleus (DCN) of mice and show that pharmacological potentiation of Kv3 K+ currents reduces the level of synaptic bombardment onto DCN principal fusiform cells. Using a transgenic mouse line (SyG37) expressing SyGCaMP2-mCherry, a calcium sensor that targets pre-synaptic terminals, we show that positive Kv3 K+ current modulation decreases calcium influx in a fifth of pre-synaptic boutons. Furthermore, while maintaining rapid and precise spike timing, positive Kv3 K+ current modulation increases the synchronization of local circuit neurons by reducing spontaneous activity. In conclusion, our study identifies a unique pre-synaptic mechanism which reduces synaptic noise at auditory synapses and contributes to the coherent activation of neurons in a local auditory brainstem circuit. This form of modulation highlights a new therapeutic target, namely the pre-synaptic bouton, for ameliorating the effects of hearing disorders which are dependent on aberrant spontaneous activity within the central auditory system.
Collapse
Affiliation(s)
- Timothy OIsen
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Alberto Capurro
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maša Švent
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Charles Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Nick Hartell
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Martine Hamann
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Saeed S, Khan QU. The Pathological Mechanisms and Treatments of Tinnitus. Discoveries (Craiova) 2021; 9:e137. [PMID: 35350720 PMCID: PMC8956333 DOI: 10.15190/d.2021.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022] Open
Abstract
Tinnitus is defined as the ringing, hissing, clicking or roaring sounds an individual consciously perceives in the absence of an external auditory stimulus. Currently, the literature on the mechanism of tinnitus pathology is multifaceted, ranging from tinnitus generation at the cellular level to its perception at the system level. Cellular level mechanisms include increased neuronal synchrony, neurotransmission changes and maladaptive plasticity. At the system level, the role of auditory structures, non-auditory structures, changes in the functional connectivities in higher regions and tinnitus networks have been investigated. The exploration of all these mechanisms creates a holistic view on understanding the changes the pathophysiology of tinnitus undertakes. Although tinnitus percept may start at the level of cochlear nerve deafferentation, the neuronal changes in the central auditory system to the neuronal and connectivity changes in non-auditory regions, such as the limbic system, become cardinal in chronic tinnitus generation. At the present moment, some tinnitus generation mechanisms are well established (e.g., increased neuronal synchrony) whereas other mechanisms have gained more traction recently (e.g., tinnitus networks, tinnitus-distress networks) and therefore, require additional investigation to solidify their role in tinnitus pathology.
The treatments and therapeutics designed for tinnitus are numerous, with varied levels of success. They are generally two-fold: some treatments focus on tinnitus cessation (including cochlear implants, deep brain stimulation, transcranial direct current stimulation and transcranial magnetic stimulation) whereas the other set focuses on tinnitus reduction or masking (including hearing aids, sound therapy, cognitive behavioral therapy, tinnitus retraining therapy, and tailor made notched musical training). Tinnitus management has focused on implementing tinnitus masking/reducing therapies more than tinnitus cessation, since cessation treatments are still lacking in streamlined treatment protocols and long-term sustainability and efficacy of the treatment.
This review will focus on concisely exploring the current and most relevant tinnitus pathophysiology mechanisms, treatments and therapeutics.
Collapse
Affiliation(s)
- Sana Saeed
- CMH Lahore Medical College & Institute of Dentistry, Lahore, Pakistan
| | | |
Collapse
|
15
|
Han KH, Cho H, Han KR, Mun SK, Kim YK, Park I, Chang M. Role of microRNA‑375‑3p‑mediated regulation in tinnitus development. Int J Mol Med 2021; 48:136. [PMID: 34036397 PMCID: PMC8148091 DOI: 10.3892/ijmm.2021.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in the dorsal cochlear nucleus (DCN) following exposure to noise play an important role in the development of tinnitus. As the development of several diseases is known to be associated with microRNAs (miRNAs/miRs), the aim of the present study was to identify the miRNAs that may be implicated in pathogenic changes in the DCN, resulting in tinnitus. A previously developed tinnitus animal model was used for this study. The study consisted of four stages, including identification of candidate miRNAs involved in tinnitus development using miRNA microarray analysis, validation of miRNA expression using reverse transcription-quantitative PCR (RT-qPCR), evaluation of the effects of candidate miRNA overexpression on tinnitus development through injection of a candidate miRNA mimic or mimic negative control, and target prediction of candidate miRNAs using mRNA microarray analysis and western blotting. The miRNA microarray and RT-qPCR analyses revealed that miR-375-3p expression was significantly reduced in the tinnitus group compared with that in the non-tinnitus group. Additionally, miR-375-3p overexpression via injection of miR-375-3p mimic reduced the proportion of animals with persistent tinnitus. Based on mRNA microarray and western blot analyses, connective tissue growth factor (CTG.) was identified as a potential target for miR-375-3p. Thus, it was inferred that CTGF downregulation by miR-375-3p may weaken with the decrease in miRNA expression, and the increased pro-apoptotic activity of CTGF may result in more severe neuronal damage, contributing to tinnitus development. These findings are expected to contribute significantly to the development of a novel therapeutic approach to tinnitus, thereby bringing about a significant breakthrough in the treatment of this potentially debilitating condition.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, National Medical Center, Seoul 04564, Republic of Korea
| | - Hyeeun Cho
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kyeo-Rye Han
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do 58128, Republic of Korea
| | - Ilyong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, Chungcheongnam-do 16890, Republic of Korea
| | - Munyoung Chang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Cheng YF, Xirasagar S, Yang TH, Wu CS, Kuo NW, Lin HC. A population-based case-control study of the association between cervical spondylosis and tinnitus. Int J Audiol 2021; 60:227-231. [PMID: 32930015 DOI: 10.1080/14992027.2020.1817996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This population-based study aimed to study the association between tinnitus and cervical spondylosis. DESIGN A case-control study. STUDY SAMPLE We retrieved data from the Taiwan Longitudinal Health Insurance Database. We identified 2465 patients with tinnitus (cases) and 7395 comparison patients by propensity score matching. Multivariable logistic regressions were conducted to estimate the odds (OR) of a diagnosis of cervical spondylosis preceding the tinnitus diagnosis relative to controls. RESULTS We found that 1596 (16.19%) of 9860 sample patients had received a diagnosis of cervical spondylosis before the index date, significantly different between the tinnitus group and control group (17.20% vs. 15.85%, p < 0.001). Logistic regression analysis showed an adjusted OR for prior cervical spondylosis of 1.235 for cases vs. controls (95% confidence interval [CI]: 1.088-1.402). Further, the adjusted ORs were 1.246 (95% CI: 1.041-1.491) and 1.356 (95% CI: 1.016-1.811), respectively, among patients aged 45 ∼ 64 and >64 groups. No difference in cervical spondylosis likelihood between cases and controls was found among patients aged 18 ∼ 44 groups. CONCLUSIONS In conclusion, the study shows a positive association between cervical spondylosis and tinnitus. The findings call for greater awareness among physicians about a possible somatosensory component of cervical spine function which may contribute to tinnitus.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sudha Xirasagar
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Tzong-Hann Yang
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei, Taiwan
- Department of Speech Language Pathology and Audiology, National Taipei University of Nursing Health Sciences, Taipei, Taiwan
| | - Chuan-Song Wu
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Nai-Wen Kuo
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Herng-Ching Lin
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Lu J, West MB, Du X, Cai Q, Ewert DL, Cheng W, Nakmali D, Li W, Huang X, Kopke RD. Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS One 2021; 16:e0243903. [PMID: 33411811 PMCID: PMC7790300 DOI: 10.1371/journal.pone.0243903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the “central gain theory” posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.
Collapse
Affiliation(s)
- Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Qunfeng Cai
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Don Nakmali
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiangping Huang
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
18
|
Riffle TL, Martel DT, Jones GR, Shore SE. Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies. Curr Top Behav Neurosci 2021; 51:295-323. [PMID: 33083999 PMCID: PMC8058117 DOI: 10.1007/7854_2020_180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tinnitus, or the phantom perception of sound, arises from pathological neural activity. Neurophysiological research has shown increased spontaneous firing rates and synchronization along the auditory pathway correlate strongly with behavioral measures of tinnitus. Auditory neurons are plastic, enabling external stimuli to be utilized to elicit long-term changes to spontaneous firing and synchrony. Pathological plasticity can thus be reversed using bimodal auditory plus nonauditory stimulation to reduce tinnitus. This chapter discusses preclinical and clinical evidence for efficacy of bimodal stimulation treatments of tinnitus, with highlights on sham-controlled, double-blinded clinical trials. The results from these studies have shown some efficacy in reducing the severity of tinnitus, based on subjective and objective outcome measures including tinnitus questionnaires and psychophysical tinnitus measurements. While results of some studies have been positive, the degree of benefit and the populations that respond to treatment vary across the studies. Directions and implications of future studies are discussed.
Collapse
Affiliation(s)
- Travis L Riffle
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - David T Martel
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Gerilyn R Jones
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Kresge Hearing Research Institute, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Sci Rep 2020; 10:20594. [PMID: 33244141 PMCID: PMC7693270 DOI: 10.1038/s41598-020-77754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.
Collapse
|
20
|
Conlon B, Langguth B, Hamilton C, Hughes S, Meade E, Connor CO, Schecklmann M, Hall DA, Vanneste S, Leong SL, Subramaniam T, D’Arcy S, Lim HH. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med 2020; 12:12/564/eabb2830. [DOI: 10.1126/scitranslmed.abb2830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
Tinnitus is a phantom auditory perception coded in the brain that can be bothersome or debilitating, affecting 10 to 15% of the population. Currently, there is no clinically recommended drug or device treatment for this major health condition. Animal research has revealed that sound paired with electrical somatosensory stimulation can drive extensive plasticity within the brain for tinnitus treatment. To investigate this bimodal neuromodulation approach in humans, we evaluated a noninvasive device that delivers sound to the ears and electrical stimulation to the tongue in a randomized, double-blinded, exploratory study that enrolled 326 adults with chronic subjective tinnitus. Participants were randomized into three parallel arms with different stimulation settings. Clinical outcomes were evaluated over a 12-week treatment period and a 12-month posttreatment phase. For the primary endpoints, participants achieved a statistically significant reduction in tinnitus symptom severity at the end of treatment based on two commonly used outcome measures, Tinnitus Handicap Inventory (Cohen’s d effect size: −0.87 to −0.92 across arms; P < 0.001) and Tinnitus Functional Index (−0.77 to −0.87; P < 0.001). Therapeutic improvements continued for 12 months after treatment for specific bimodal stimulation settings, which had not previously been demonstrated in a large cohort for a tinnitus intervention. The treatment also achieved high compliance and satisfaction rates with no treatment-related serious adverse events. These positive therapeutic and long-term results motivate further clinical trials toward establishing bimodal neuromodulation as a clinically recommended device treatment for tinnitus.
Collapse
Affiliation(s)
- Brendan Conlon
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- School of Medicine, Trinity College, Dublin D02 R590, Ireland
- Department of Otolaryngology, St. James’s Hospital, Dublin D08 NHY1, Ireland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | | | | | - Emma Meade
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | | | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | - Deborah A. Hall
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
- Hearing Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2RD, UK
- University of Nottingham Malaysia, Selangor 43500, Malaysia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Sook Ling Leong
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | | | - Shona D’Arcy
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | - Hubert H. Lim
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Department of Otolaryngology—Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Cheng YF, Xirasagar S, Yang TH, Wu CS, Kao YW, Shia BC, Lin HC. Increased risk of tinnitus following a trigeminal neuralgia diagnosis: a one-year follow-up study. J Headache Pain 2020; 21:46. [PMID: 32375642 PMCID: PMC7203585 DOI: 10.1186/s10194-020-01121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background Tinnitus due to hyperactivity across neuronal ensembles along the auditory pathway is reported. We hypothesized that trigeminal neuralgia patients may subsequently suffer from tinnitus. Using nationwide, population-based data and a retrospective cohort study design, we investigated the risk of tinnitus within 1 year following trigeminal neuralgia. Methods We used the Taiwan National Health Insurance Research Dataset, a claims database, to identify all patients diagnosed with trigeminal neuralgia from January 2001 to December 2014, 12,587 patients. From the remaining patients, we identified 12,587 comparison patients without trigeminal neuralgia by propensity score matching, using sex, age, monthly income, geographic region, residential urbanization level, and tinnitus-relevant comorbidities (hyperlipidemia, diabetes, coronary heart disease, hypertension, cervical spondylosis, temporomandibular joint disorders and injury to head and neck and index year). All study patients (n = 25,174) were tracked for a one-year period to identify those with a subsequent diagnosis of tinnitus over 1-year follow-up. Results Among total 25,174 sample patients, the incidence of tinnitus was 18.21 per 100 person-years (95% CI = 17.66 ~ 18.77), the rate being 23.57 (95% CI = 22.68 ~ 24.49) among patients with trigeminal neuralgia and 13.17 (95% CI = 12.53 ~ 13.84) among comparison patients. Furthermore, the adjusted Cox proportional hazard ratio for tinnitus in the trigeminal neuralgia group was 1.68 (95% CI = 1.58 ~ 1.80) relative to the comparison cohort. Conclusions We found a significantly increased risk of tinnitus within 1 year of trigeminal neuralgia diagnosis compared to those without the diagnosis. Further studies in other countries and ethnicities are needed to explore the relationship between trigeminal neuralgia and subsequent tinnitus.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sudha Xirasagar
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Tzong-Han Yang
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Chuan-Song Wu
- Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Wei Kao
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ben-Chang Shia
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan
| | - Herng-Ching Lin
- Department of Health Care Administration, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan. .,Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
22
|
Transient Conductive Hearing Loss Regulates Cross-Modal VGLUT Expression in the Cochlear Nucleus of C57BL/6 Mice. Brain Sci 2020; 10:brainsci10050260. [PMID: 32365514 PMCID: PMC7287693 DOI: 10.3390/brainsci10050260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Auditory nerve fibers synapse onto the cochlear nucleus (CN) and are labeled using the vesicular glutamate transporter-1 (VGLUT-1), whereas non-auditory inputs are labeled using the VGLUT-2. However, the underlying regulatory mechanism of VGLUT expression in the CN remains unknown. We examined whether a sound level decrease, without primary neural damage, induces cellular and VGLUT expression change in the CN, and examined the potential for neural plasticity of the CN using unilateral conductive hearing loss models. We inserted earplugs in 8-week-old mice unilaterally for 4 weeks and subsequently removed them for another 4 weeks. Although the threshold of an auditory brainstem response significantly increased across all tested frequencies following earplug insertion, it completely recovered after earplug removal. Auditory deprivation had no significant impact on spiral ganglion and ventral CN (VCN) neurons’ survival. Conversely, although the cell size and VGLUT-1 expression in the VCN significantly decreased after earplug insertion, VGLUT-2 expression in the granule cell lamina significantly increased. These cell sizes decreased and the alterations in VGLUT-1 and -2 expression almost completely recovered at 1 month after earplug removal. Our results suggested that the cell size and VGLUT expression in the CN have a neuroplasticity capacity, which is regulated by increases and decreases in sound levels. Restoration of the sound levels might partly prevent cell size decrease and maintain VGLUT expression in the CN.
Collapse
|
23
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
24
|
Shore SE, Wu C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019; 103:8-20. [PMID: 31271756 DOI: 10.1016/j.neuron.2019.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/21/2023]
Abstract
Tinnitus, sound perception in the absence of physical stimuli, occurs in 15% of the population and is the top-reported disability for soldiers after combat. Noise overexposure is a major factor associated with tinnitus but does not always lead to tinnitus. Furthermore, people with normal audiograms can get tinnitus. In animal models, equivalent cochlear damage occurs in animals with and without behavioral evidence of tinnitus. But cochlear-nerve-recipient neurons in the brainstem demonstrate distinct, synchronized spontaneous firing patterns only in animals that develop tinnitus, driving activity in central brain regions and ultimately giving rise to phantom perception. Examining tinnitus-specific changes in single-cell populations enables us to begin to distinguish neural changes due to tinnitus from those that are due to hearing loss.
Collapse
Affiliation(s)
- Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Han KH, Mun SK, Sohn S, Piao XY, Park I, Chang M. Axonal sprouting in the dorsal cochlear nucleus affects gap‑prepulse inhibition following noise exposure. Int J Mol Med 2019; 44:1473-1483. [PMID: 31432095 PMCID: PMC6713418 DOI: 10.3892/ijmm.2019.4316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
One of the primary theories of the pathogenesis of tinnitus involves maladaptive auditory-somatosensory plasticity in the dorsal cochlear nucleus (DCN), which is assumed to be due to axonal sprouting. Although a disrupted balance between auditory and somatosensory inputs may occur following hearing damage and may induce tinnitus, examination of this phenomenon employed a model of hearing damage that does not account for the causal relationship between these changes and tinnitus. The present study aimed to investigate changes in auditory-somatosensory innervation and the role that axonal sprouting serves in this process by comparing results between animals with and without tinnitus. Rats were exposed to a noise-inducing temporary threshold shift and were subsequently divided into tinnitus and non-tinnitus groups based on the results of gap prepulse inhibition of the acoustic startle reflex. DCNs were collected from rats divided into three sub-groups according to the number of weeks (1, 2 or 3) following noise exposure, and the protein levels of vesicular glutamate transporter 1 (VGLUT1), which is associated with auditory input to the DCN, and VGLUT2, which is in turn primarily associated with somatosensory inputs, were assessed. In addition, factors related to axonal sprouting, including growth-associated protein 43 (GAP43), postsynaptic density protein 95, synaptophysin, α-thalassemia/mental retardation syndrome X-linked homolog (ATRX), growth differentiation factor 10 (GDF10), and leucine-rich repeat and immunoglobulin domain-containing 1, were measured by western blot analyses. Compared to the non-tinnitus group, the tinnitus group exhibited a significant decrease in VGLUT1 at 1 week and a significant increase in VGLUT2 at 3 weeks post-exposure. In addition, rats in the tinnitus group exhibited significant increases in GAP43 and GDF10 protein expression levels in their DCN at 3 weeks following noise exposure. Results from the present study provided further evidence that changes in the neural input distribution to the DCN may cause tinnitus and that axonal sprouting underlies these alterations.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology, National Medical Center, Seoul 04564, Republic of Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Seonyong Sohn
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Xian-Yu Piao
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ilyong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| | - Munyoung Chang
- Department of Otorhinolaryngology‑Head and Neck Surgery, Chung‑Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Zhang L, Wu C, Martel DT, West M, Sutton MA, Shore SE. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus 2019; 29:669-682. [PMID: 30471164 PMCID: PMC7357289 DOI: 10.1002/hipo.23058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/12/2023]
Abstract
Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap-prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude-intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2-weeks following noise-exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20-60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus-specific changes were particularly prominent in hippocampal synapse-rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus-specific changes occurred in synapse-rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.
Collapse
Affiliation(s)
- Liqin Zhang
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - David T. Martel
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael West
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Sutton
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| | - Susan E. Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| |
Collapse
|
27
|
Abstract
BACKGROUND AND OBJECTIVE Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing. MATERIALS AND METHODS Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis. RESULTS Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients. DISCUSSION AND CONCLUSION The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.
Collapse
|
28
|
Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R. Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 2019; 407:192-199. [DOI: 10.1016/j.neuroscience.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
29
|
Cima RFF, Mazurek B, Haider H, Kikidis D, Lapira A, Noreña A, Hoare DJ. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment. HNO 2019; 67:10-42. [DOI: 10.1007/s00106-019-0633-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Cederroth CR, Dyhrfjeld-Johnsen J, Langguth B. An update: emerging drugs for tinnitus. Expert Opin Emerg Drugs 2018; 23:251-260. [DOI: 10.1080/14728214.2018.1555240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Interdisciplinary Tinnitus Clinic, University of Regensburg, Regensburg, Germany
| |
Collapse
|
31
|
Shaheen LA, Liberman MC. Cochlear Synaptopathy Changes Sound-Evoked Activity Without Changing Spontaneous Discharge in the Mouse Inferior Colliculus. Front Syst Neurosci 2018; 12:59. [PMID: 30559652 PMCID: PMC6286982 DOI: 10.3389/fnsys.2018.00059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Tinnitus and hyperacusis are life-disrupting perceptual abnormalities that are often preceded by acoustic overexposure. Animal models of overexposure have suggested a link between these phenomena and neural hyperactivity, i.e., elevated spontaneous rates (SRs) and sound-evoked responses. Prior work has focused on changes in central auditory responses, with less attention paid to the exact nature of the associated cochlear damage. The demonstration that acoustic overexposure can cause cochlear neuropathy without permanent threshold elevation suggests cochlear neuropathy per se may be a key elicitor of neural hyperactivity. We addressed this hypothesis by recording responses in the mouse inferior colliculus (IC) following a bilateral, neuropathic noise exposure. One to three weeks post-exposure, mean SRs were unchanged in mice recorded while awake, or under anesthesia. SRs were also unaffected by more intense, or unilateral exposures. These results suggest that neither neuropathy nor hair cell loss are sufficient to raise SRs in the IC, at least in 7-week-old mice, 1-3 weeks post exposure. However, it is not clear whether our mice had tinnitus. Tone-evoked rate-level functions at the CF were steeper following exposure, specifically in the region of maximal neuropathy. Furthermore, suppression driven by off-CF tones and by ipsilateral noise were reduced. Both changes were especially pronounced in neurons of awake mice. This neural hypersensitivity may manifest as behavioral hypersensitivity to sound - prior work reports that this same exposure causes elevated acoustic startle. Together, these results indicate that neuropathy may initiate a compensatory response in the central auditory system leading to the genesis of hyperacusis.
Collapse
Affiliation(s)
- Luke A. Shaheen
- Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, United States
| | - M. Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Heeringa AN, Wu C, Chung C, West M, Martel D, Liberman L, Liberman MC, Shore SE. Glutamatergic Projections to the Cochlear Nucleus are Redistributed in Tinnitus. Neuroscience 2018; 391:91-103. [PMID: 30236972 PMCID: PMC6191338 DOI: 10.1016/j.neuroscience.2018.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Tinnitus alters auditory-somatosensory plasticity in the cochlear nucleus (CN). Correspondingly, bimodal auditory-somatosensory stimulation treatment attenuates tinnitus, both in animals and humans (Marks et al., 2018). Therefore, we hypothesized that tinnitus is associated with altered somatosensory innervation of the CN. Here, we studied the expression of vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) in the CN, which reveals glutamatergic projections from the cochlea as well as somatosensory systems to this brainstem auditory center. Guinea pigs were unilaterally exposed to narrowband noise and behaviorally tested for tinnitus using gap-prepulse inhibition of the acoustic startle. Following physiological and behavioral measures, brain sections were immunohistochemically stained for VGLUT1 or VGLUT2. Puncta density was determined for each region of the ipsilateral and contralateral CN. Tinnitus was associated with an ipsilateral upregulation of VGLUT2 puncta density in the granule cell domain (GCD) and anteroventral CN (AVCN). Furthermore, there was a tinnitus-associated interaural asymmetry for VGLUT1 expression in the AVCN and deep layer of the dorsal CN (DCN3), due to contralateral downregulation of VGLUT1 expression. These tinnitus-related glutamatergic imbalances were reversed upon bimodal stimulation treatment. Tinnitus-associated ipsilateral upregulation of VGLUT2-positive projections likely derives from somatosensory projections to the GCD and AVCN. This upregulation may underlie the neurophysiological hallmarks of tinnitus in the CN. Reversing the increased ipsilateral glutamatergic innervation in the CN is likely a key mechanism in treating tinnitus.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Calvin Wu
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Christopher Chung
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Michael West
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA
| | - David Martel
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Leslie Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary and Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary and Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Otolaryngology, University of Michigan, Ann Arbor, MI 48104, USA.
| |
Collapse
|
33
|
Martel DT, Pardo-Garcia TR, Shore SE. Dorsal Cochlear Nucleus Fusiform-cell Plasticity is Altered in Salicylate-induced Tinnitus. Neuroscience 2018; 407:170-181. [PMID: 30217755 DOI: 10.1016/j.neuroscience.2018.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Following noise overexposure and tinnitus-induction, fusiform cells of the dorsal cochlear nucleus (DCN) show increased spontaneous firing rates (SFR), increased spontaneous synchrony and altered stimulus-timing-dependent plasticity (StDP), which correlate with behavioral measures of tinnitus. Sodium salicylate, the active ingredient in aspirin, which is commonly used to induce tinnitus, increases SFR and activates NMDA receptors in the ascending auditory pathway. NMDA receptor activation is required for StDP in many brain regions, including the DCN. Blocking NMDA receptors can alter StDP timing rules and decrease synchrony in DCN fusiform cells. Thus, systemic activation of NMDA receptors with sodium salicylate should elicit pathological changes to StDP, thereby increasing SFR and synchrony and induce tinnitus. Herein, we examined the action of salicylate in tinnitus generation in guinea pigs in vivo by measuring tinnitus using two behavioral measures and recording single-unit responses from DCN fusiform cells pre- and post-salicylate administration in the same animals. First, we show that animals administered salicylate show evidence of tinnitus using both behavioral paradigms, cross-validating the tests. Second, fusiform cells in animals with tinnitus showed increased SFR, synchrony and altered StDP timing rules, like animals with noise-induced tinnitus. These findings suggest that alterations to fusiform-cell plasticity are an essential component of tinnitus, regardless of induction technique.
Collapse
Affiliation(s)
- David T Martel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thibaut R Pardo-Garcia
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Susan E Shore
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, United States; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
34
|
Gault R, Mcginnity TM, Coleman S. A Computational Model of Thalamocortical Dysrhythmia in People With Tinnitus. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1845-1857. [PMID: 30106678 DOI: 10.1109/tnsre.2018.2863740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tinnitus is a problem that affects a diverse range of people. One common trait amongst people with tinnitus is the presence of hearing loss, which is apparent in over 90% of the cohort. It is postulated that the remainder of people with tinnitus have hidden hearing loss in the form of cochlear synaptopathy. The loss of hearing sensation is thought to cause a reduction in the bottom-up excitatory signals of the auditory pathway leading to a change in the frequency of thalamocortical oscillations known as thalamocortical dysrhythmia (TCD). The downward shift in oscillatory behavior, characteristic of TCD, has been recorded experimentally but the underlying mechanisms responsible for TCD in tinnitus subjects cannot be directly observed. This paper investigates these underlying mechanisms by creating a biologically faithful model of the auditory periphery and thalamocortical network, called the central auditory processing (CAP) model. The proposed model replicates tinnitus related activity in the presence of hearing loss and hidden hearing loss in the form of cochlear synaptopathy. The results of this paper show that, both the bottom-up and top-down changes are required in the auditory system for tinnitus related hyperactivity to coexist with TCD, contrary to the theoretical model for TCD. The CAP model provides a novel modeling approach to account for tinnitus related activity with and without hearing loss. Moreover, the results provide additional clarity to the understanding of TCD and tinnitus and provide direction for future approaches to treating tinnitus.
Collapse
|
35
|
Anderson LA, Hesse LL, Pilati N, Bakay WM, Alvaro G, Large CH, McAlpine D, Schaette R, Linden JF. Increased spontaneous firing rates in auditory midbrain following noise exposure are specifically abolished by a Kv3 channel modulator. Hear Res 2018; 365:77-89. [DOI: 10.1016/j.heares.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
|
36
|
Mun SK, Han KH, Baek JT, Ahn SW, Cho HS, Chang MY. Losartan Prevents Maladaptive Auditory-Somatosensory Plasticity After Hearing Loss via Transforming Growth Factor-β Signaling Suppression. Clin Exp Otorhinolaryngol 2018; 12:33-39. [PMID: 30021416 PMCID: PMC6315212 DOI: 10.21053/ceo.2018.00542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/30/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Hearing loss disrupts the balance of auditory-somatosensory inputs in the cochlear nucleus (CN) of the brainstem, which has been suggested to be a mechanism of tinnitus. This disruption results from maladaptive auditory-somatosensory plasticity, which is a form of axonal sprouting. Axonal sprouting is promoted by transforming growth factor (TGF)-β signaling, which can be inhibited by losartan. We investigated whether losartan prevents maladaptive auditory-somatosensory plasticity after hearing loss. METHODS The study consisted of two stages: determining the time course of auditory-somatosensory plasticity following hearing loss and preventing auditory-somatosensory plasticity using losartan. In the first stage, rats were randomly divided into two groups: a control group that underwent a sham operation and a deaf group that underwent cochlea ablation on the left side. CNs were harvested 1 and 2 weeks after surgery. In the second stage, rats were randomly divided into either a saline group that underwent cochlear ablation on the left side and received normal saline or a losartan group that underwent cochlear ablation on the left side and received losartan. CNs were harvested 2 weeks after surgery. Hearing was estimated with auditory brainstem responses (ABRs). Western blotting was performed for vesicular glutamate transporter 1 (VGLUT1), reflecting auditory input; vesicular glutamate transporter 2 (VGLUT2), reflecting somatosensory input; growth-associated protein 43 (GAP-43), reflecting axonal sprouting; and p-Smad2/3. RESULTS Baseline ABR thresholds before surgery ranged from 20 to 35 dB sound pressure level. After cochlear ablation, ABR thresholds were higher than 80 dB. In the first experiment, VGLUT2/VGLUT1 ratios did not differ significantly between the control and deaf groups 1 week after surgery. At 2 weeks after surgery, the deaf group had a significantly higher VGLUT2/VGLUT1 ratio compared to the control group. In the second experiment, the losartan group had a significantly lower VGLUT2/VGLUT1 ratio along with significantly lower p-Smad3 and GAP-43 levels compared to the saline group. CONCLUSION Losartan might prevent axonal sprouting after hearing loss by blocking TGF-β signaling thereby preventing maladaptive auditory-somatosensory plasticity.
Collapse
Affiliation(s)
- Seog-Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyu-Hee Han
- Department of Otorhinolaryngology, National Medical Center, Seoul, Korea
| | - Jong Tae Baek
- Department of Otorhinolaryngology, National Medical Center, Seoul, Korea
| | - Suk-Won Ahn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hyun Sang Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Korea
| | - Mun Young Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
37
|
Enhancement of Endocannabinoid-dependent Depolarization-induced Suppression of Excitation in Glycinergic Neurons by Prolonged Exposure to High Doses of Salicylate. Neuroscience 2018; 376:72-79. [DOI: 10.1016/j.neuroscience.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
|
38
|
Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med 2018; 10:eaal3175. [PMID: 29298868 PMCID: PMC5863907 DOI: 10.1126/scitranslmed.aal3175] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/16/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023]
Abstract
The dorsal cochlear nucleus is the first site of multisensory convergence in mammalian auditory pathways. Principal output neurons, the fusiform cells, integrate auditory nerve inputs from the cochlea with somatosensory inputs from the head and neck. In previous work, we developed a guinea pig model of tinnitus induced by noise exposure and showed that the fusiform cells in these animals exhibited increased spontaneous activity and cross-unit synchrony, which are physiological correlates of tinnitus. We delivered repeated bimodal auditory-somatosensory stimulation to the dorsal cochlear nucleus of guinea pigs with tinnitus, choosing a stimulus interval known to induce long-term depression (LTD). Twenty minutes per day of LTD-inducing bimodal (but not unimodal) stimulation reduced physiological and behavioral evidence of tinnitus in the guinea pigs after 25 days. Next, we applied the same bimodal treatment to 20 human subjects with tinnitus using a double-blinded, sham-controlled, crossover study. Twenty-eight days of LTD-inducing bimodal stimulation reduced tinnitus loudness and intrusiveness. Unimodal auditory stimulation did not deliver either benefit. Bimodal auditory-somatosensory stimulation that induces LTD in the dorsal cochlear nucleus may hold promise for suppressing chronic tinnitus, which reduces quality of life for millions of tinnitus sufferers worldwide.
Collapse
Affiliation(s)
- Kendra L Marks
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David T Martel
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory J Basura
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Larry E Roberts
- Department of Psychology, Neuroscience and Behavior McMaster University, Hamilton, Ontario, Canada
| | - Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
|
40
|
Takacs JD, Forrest TJ, Basura GJ. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation. Hear Res 2017; 356:1-15. [DOI: 10.1016/j.heares.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/04/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
|
41
|
D’Arcy S, Hamilton C, Hughes S, Hall DA, Vanneste S, Langguth B, Conlon B. Bi-modal stimulation in the treatment of tinnitus: a study protocol for an exploratory trial to optimise stimulation parameters and patient subtyping. BMJ Open 2017; 7:e018465. [PMID: 29074518 PMCID: PMC5665258 DOI: 10.1136/bmjopen-2017-018465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Tinnitus is the perception of sound in the absence of a corresponding external acoustic stimulus. Bimodal neuromodulation is emerging as a promising treatment for this condition. The main objectives of this study are to investigate the relevance of interstimulus timing and the choices of acoustic and tongue stimuli for a proprietary bimodal (auditory and somatosensory) neuromodulation device, as well as to explore whether specific subtypes of patients are differentially responsive to this novel intervention for reducing the symptoms of chronic tinnitus. METHODS AND ANALYSIS This is a two-site, randomised, triple-blind, exploratory study of a proprietary neuromodulation device with a pre-post and 12-month follow-up design. Three different bimodal stimulation parameter sets will be examined. The study will enrol 342 patients, split 80:20 between two sites (Dublin, Ireland and Regensburg, Germany), to complete 12 weeks of treatment with the device. Patients will be allocated to one of three arms using a stepwise stratification according to four binary categories: tinnitus tonality, sound level tolerance (using loudness discomfort level of <60 dB SL as an indicator for hyperacusis), hearing thresholds and presence of a noise-induced audiometric profile. The main indicators of relative clinical efficacy for the three different parameter sets are two patient-reported outcomes measures, the Tinnitus Handicap Inventory and the Tinnitus Functional Index, after 12 weeks of intervention. Clinical efficacy will be further explored in a series of patient subtypes, split by the stratification variables and by presence of a somatic tinnitus. Evidence for sustained effects on the psychological and functional impact of tinnitus will be followed up for 12 months. Safety data will be collected and reported. A number of feasibility measures to inform future trial design include: reasons for exclusion, completeness of data collection, attrition rates, patient's adherence to the device usage as per manufacturer's instructions and evaluation of alternative methods for estimating tinnitus impact and tinnitus loudness. ETHICS AND DISSEMINATION This study protocol is approved by the Tallaght Hospital/St. James's Hospital Joint Research Ethics Committee in Dublin, Ireland, and by the Ethics Committee of the University Clinic Regensburg, Germany. Findings will be disseminated to relevant research, clinical, health service and patient communities through publications in peer-reviewed and popular science journals and presentations at scientific and clinical conferences. TRIAL REGISTRATION NUMBER The trial is registered on ClinicalTrials.gov (NCT02669069) Pre-results.
Collapse
Affiliation(s)
| | | | | | - Deborah A Hall
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, UK
- Otology and Hearing Group, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Interdisciplinary Tinnitus Center of the University of Regensburg, Regensburg, Germany
| | - Brendan Conlon
- Neuromod Devices Limited, Dublin, Ireland
- ENT, Tallaght Hospital, Dublin, Ireland
- ENT, St. James’s Hospital, Dublin, Ireland
- Department of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
42
|
Tetteh H, Lee M, Lau CG, Yang S, Yang S. Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist 2017; 24:353-367. [PMID: 29283017 DOI: 10.1177/1073858417733415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Collapse
Affiliation(s)
- Hannah Tetteh
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - C Geoffrey Lau
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sunggu Yang
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
43
|
Haider HF, Hoare DJ, Costa RFP, Potgieter I, Kikidis D, Lapira A, Nikitas C, Caria H, Cunha NT, Paço JC. Pathophysiology, Diagnosis and Treatment of Somatosensory Tinnitus: A Scoping Review. Front Neurosci 2017; 11:207. [PMID: 28503129 PMCID: PMC5408030 DOI: 10.3389/fnins.2017.00207] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Somatosensory tinnitus is a generally agreed subtype of tinnitus that is associated with activation of the somatosensory, somatomotor, and visual-motor systems. A key characteristic of somatosensory tinnitus is that is modulated by physical contact or movement. Although it seems common, its pathophysiology, assessment and treatment are not well defined. We present a scoping review on the pathophysiology, diagnosis, and treatment of somatosensory tinnitus, and identify priority directions for further research. Methods: Literature searches were conducted in Google Scholar, PubMed, and EMBASE databases. Additional broad hand searches were conducted with the additional terms etiology, diagnose, treatment. Results: Most evidence on the pathophysiology of somatosensory tinnitus suggests that somatic modulations are the result of altered or cross-modal synaptic activity within the dorsal cochlear nucleus or between the auditory nervous system and other sensory subsystems of central nervous system (e.g., visual or tactile). Presentations of somatosensory tinnitus are varied and evidence for the various approaches to treatment promising but limited. Discussion and Conclusions: Despite the apparent prevalence of somatosensory tinnitus its underlying neural processes are still not well understood. Necessary involvement of multidisciplinary teams in its diagnosis and treatment has led to a large heterogeneity of approaches whereby tinnitus improvement is often only a secondary effect. Hence there are no evidence-based clinical guidelines, and patient care is empirical rather than research-evidence-based. Somatic testing should receive further attention considering the breath of evidence on the ability of patients to modulate their tinnitus through manouvers. Specific questions for further research and review are indicated.
Collapse
Affiliation(s)
- Haúla F. Haider
- ENT Department, Hospital Cuf Infante Santo—Nova Medical SchoolLisbon, Portugal
| | - Derek J. Hoare
- NIHR Nottingham Biomedical Research Centre, Division of Clinical Neuroscience, School of Medicine, University of NottinghamNottingham, UK
| | - Raquel F. P. Costa
- Centro em Rede de Investigação em Antropologia (CRIA), Network Centre for Research in Anthropology, Universidade Nova de LisboaLisbon, Portugal
| | - Iskra Potgieter
- NIHR Nottingham Biomedical Research Centre, Division of Clinical Neuroscience, School of Medicine, University of NottinghamNottingham, UK
| | - Dimitris Kikidis
- First Department of Otorhinolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocrateion General HospitalAthens, Greece
| | - Alec Lapira
- Institute of Health Care, Mater Dei HospitalMsida, Malta
| | - Christos Nikitas
- First Department of Otorhinolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocrateion General HospitalAthens, Greece
| | - Helena Caria
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of LisbonLisbon, Portugal
- ESS/IPS–Biomedical Sciences Department, School of Health, Polytechnic Institute of SetubalLisbon, Portugal
| | - Nuno T. Cunha
- ENT Department, Hospital Pedro Hispano—MatosinhosLisbon, Portugal
| | - João C. Paço
- ENT Department, Hospital Cuf Infante Santo—Nova Medical SchoolLisbon, Portugal
| |
Collapse
|
44
|
Stefanescu RA, Shore SE. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 2016; 117:1229-1238. [PMID: 28003407 DOI: 10.1152/jn.00270.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022] Open
Abstract
Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N-methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology.NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of muscarinic acetylcholine receptors (mAChRs) to in vivo fusiform cell baseline activity and auditory-somatosensory plasticity. We have determined that blocking the mAChRs increases the synchronization of spiking activity across the fusiform cell population and induces a dominant pattern of inversion in their stimulus timing-dependent plasticity. These modifications are consistent with similar changes established in previous tinnitus studies, suggesting that mAChRs might have a critical contribution in mediating the maladaptive alterations associated with tinnitus pathology. Blocking mAChRs also resulted in decreased fusiform cell spontaneous firing rates, which is in contrast with their tinnitus hyperactivity, suggesting that changes in the interactions between the cholinergic and GABAergic systems might also be an underlying factor in tinnitus pathology.
Collapse
Affiliation(s)
- Roxana A Stefanescu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan; .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; and.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Sawtell NB. Neural Mechanisms for Predicting the Sensory Consequences of Behavior: Insights from Electrosensory Systems. Annu Rev Physiol 2016; 79:381-399. [PMID: 27813831 DOI: 10.1146/annurev-physiol-021115-105003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perception of the environment requires differentiating between external sensory inputs and those that are self-generated. Some of the clearest insights into the neural mechanisms underlying this process have come from studies of the electrosensory systems of fish. Neurons at the first stage of electrosensory processing generate negative images of the electrosensory consequences of the animal's own behavior. By canceling out the effects of predictable, self-generated inputs, negative images allow for the selective encoding of unpredictable, externally generated stimuli. Combined experimental and theoretical studies of electrosensory systems have led to detailed accounts of how negative images are formed at the level of synaptic plasticity rules, cells, and circuits. Here, I review these accounts and discuss their implications for understanding how predictions of the sensory consequences of behavior may be generated in other sensory structures and the cerebellum.
Collapse
Affiliation(s)
- Nathaniel B Sawtell
- Department of Neuroscience and Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
46
|
Brotherton H, Plack CJ, Schaette R, Munro KJ. Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hear Res 2016; 341:210-219. [PMID: 27620512 DOI: 10.1016/j.heares.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Auditory deprivation and stimulation can change the threshold of the acoustic reflex, but the mechanisms underlying these changes remain largely unknown. In order to elucidate the mechanism, we sought to characterize the time-course as well as the frequency specificity of changes in acoustic reflex thresholds (ARTs). In addition, we compared ipsilateral and contralateral measurements because the pattern of findings may shed light on the anatomical location of the change in neural gain. Twenty-four normal-hearing adults wore an earplug continuously in one ear for six days. We measured ipsilateral and contralateral ARTs in both ears on six occasions (baseline, after 2, 4 and 6 days of earplug use, and 4 and 24 h after earplug removal), using pure tones at 0.5, 1, 2 and 4 kHz and a broadband noise stimulus, and an experimenter-blinded design. We found that ipsi- as well as contralateral ARTs were obtained at a lower sound pressure level after earplug use, but only when the reflex was elicited by stimulating the treatment ear. Changes in contralateral ARTs were not the same as changes in ipsilateral ARTs when the stimulus was presented to the control ear. Changes in ARTs were present after 2 days of earplug use, and reached statistical significance after 4 days, when the ipsilateral and contralateral ARTs were measured in the treatment ear. The greatest changes in ARTs occurred at 2 and 4 kHz, the frequencies most attenuated by the earplug. After removal of the earplug, ARTs started to return to baseline relatively quickly, and were not significantly different from baseline by 4-24 h. There was a trend for the recovery to occur quicker than the onset. The changes in ARTs are consistent with a frequency-specific gain control mechanism operating around the level of the ventral cochlear nucleus in the treatment ear, on a time scale of hours to days. These findings, specifically the time course of change, could be applicable to other sensory systems, which have also shown evidence of a neural gain control mechanism.
Collapse
Affiliation(s)
- Hannah Brotherton
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom.
| | - Christopher J Plack
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom; Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | - Roland Schaette
- Ear Institute, University College London, London, WC1X 8EE, United Kingdom.
| | - Kevin J Munro
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom; Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WK, United Kingdom.
| |
Collapse
|
47
|
Hesse LL, Bakay W, Ong HC, Anderson L, Ashmore J, McAlpine D, Linden J, Schaette R. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain. Front Neurol 2016; 7:133. [PMID: 27625631 PMCID: PMC5004570 DOI: 10.3389/fneur.2016.00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur without obvious hearing loss and conversely why hearing loss does not always lead to tinnitus.
Collapse
Affiliation(s)
- Lara Li Hesse
- UCL Ear Institute, London, UK; Klinik für HNO, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | | | | | | | - Jonathan Ashmore
- UCL Ear Institute, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | |
Collapse
|
48
|
Gao Y, Manzoor N, Kaltenbach JA. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure. Hear Res 2016; 341:31-42. [PMID: 27490001 DOI: 10.1016/j.heares.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to investigate the immediate effects of acute exposure to intense sound on spontaneous and stimulus-driven activity in the dorsal cochlear nucleus (DCN). We examined the levels of multi- and single-unit spontaneous activity before and immediately following brief exposure (2 min) to tones at levels of either 109 or 85 dB SPL. Exposure frequency was selected to either correspond to the units' best frequency (BF) or fall within the borders of its inhibitory side band. The results demonstrate that these exposure conditions caused significant alterations in spontaneous activity and responses to BF tones. The induced changes have a fast onset (minutes) and are persistent for durations of at least 20 min. The directions of the change were found to depend on the frequency of exposure relative to BF. Transient decreases followed by more sustained increases in spontaneous activity were induced when the exposure frequency was at or near the units' BF, while sustained decreases of activity resulted when the exposure frequency fell inside the inhibitory side band. Follow-up studies at the single unit level revealed that the observed activity changes were found on unit types having properties which have previously been found to represent fusiform cells. The changes in spontaneous activity occurred despite only minor changes in response thresholds. Noteworthy changes also occurred in the strength of responses to BF tones, although these changes tended to be in the direction opposite those of the spontaneous rate changes. We discuss the possible role of activity-dependent plasticity as a mechanism underlying the rapid emergence of increased spontaneous activity after tone exposure and suggest that these changes may represent a neural correlate of acute noise-induced tinnitus.
Collapse
Affiliation(s)
- Y Gao
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - N Manzoor
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - J A Kaltenbach
- Department of Neurosciences, Lerner Research Institute, Head and Neck Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
49
|
Kurioka T, Lee MY, Heeringa AN, Beyer LA, Swiderski DL, Kanicki AC, Kabara LL, Dolan DF, Shore SE, Raphael Y. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience 2016; 332:242-57. [PMID: 27403879 DOI: 10.1016/j.neuroscience.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amarins N Heeringa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ariane C Kanicki
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa L Kabara
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - David F Dolan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Susan E Shore
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Increased Synchrony and Bursting of Dorsal Cochlear Nucleus Fusiform Cells Correlate with Tinnitus. J Neurosci 2016; 36:2068-73. [PMID: 26865628 DOI: 10.1523/jneurosci.3960-15.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures.
Collapse
|