1
|
Vallesi A. Credibility revolution: pursuing a balanced and sustainable approach, without dogmas, without magic elixirs. Front Psychol 2025; 16:1581160. [PMID: 40309213 PMCID: PMC12041089 DOI: 10.3389/fpsyg.2025.1581160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Antonino Vallesi
- Department of Neuroscience, Università degli Studi di Padova, Padova, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
2
|
Fjell AM, Sneve MH, Amlien IK, Grydeland H, Mowinckel AM, Vidal-Piñeiro D, Sørensen Ø, Walhovd KB. Stable hippocampal correlates of high episodic memory function across adulthood. Sci Rep 2025; 15:8816. [PMID: 40087328 PMCID: PMC11909197 DOI: 10.1038/s41598-025-92278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Some older adults show high episodic memory performance compared to same-age peers. It is not known whether their high function is caused by special brain features in aging, or whether superior memory has the same brain foundation throughout adult life. To address this, we measured hippocampal volume and atrophy, microstructural integrity by diffusion tensor imaging, and activity during an episodic memory encoding and retrieval task in cognitively healthy adults (n = 277, age 20.1-81.5 years). Atrophy was quantified by repeated MRIs (2-7 examinations, mean max follow-up time 9.3 years). Superior memory was associated with higher retrieval activity in the anterior hippocampus and less hippocampal atrophy. There were no significant age-interactions, suggesting stable correlates of superior memory function. Age-memory performance curves across the full age-range were similar for participants with high memory performance compared to those with normal and low performance. These trajectories were based on cross-sectional data but did not indicate preserved memory among the superior functioning older adults. In conclusion, the results confirm that aspects of hippocampal structure and function are related to superior memory, without evidence to suggest that the best performing older adults are characterized by special hippocampal features compared to their younger counterparts.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway.
- Center for Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424, Oslo, Norway.
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Athanasia M Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Center for Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
3
|
Kalpouzos G, Persson J. Structure-function relationships in the human aging brain: An account of cross-sectional and longitudinal multimodal neuroimaging studies. Cortex 2025; 183:274-289. [PMID: 39756333 DOI: 10.1016/j.cortex.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
The patterns of brain activation and functional connectivity, task-related and task-free, as a function of age have been well documented over the past 30 years. However, the aging brain undergoes structural changes that are likely to affect the functional properties of the brain. The relationship between brain structure and function started to be investigated more recently. Brain structure and brain function can influence behavioral outcomes independently, and several studies highlight independent contribution of structure and function on cognition. Here, a central assumption is that brain structure also affects behavior indirectly through its influence on brain function. In such a model, structure supports function. Although findings generally suggest that structure may indeed influence function, the direction of the associations, the variability in terms of regional effects and age windows when associations are observed vary greatly. Also, a certain number of studies highlight the independent contribution of structure and function on cognition. A critical aspect of studying aging is the necessity of longitudinal designs, allowing to observe true aging effects - as compared with age differences in cross-sectional designs. This review aims to give an updated account on research dealing with multimodal neuroimaging in aging, and more specifically on the links between structure and function and associated cognitive outcomes, putting in parallel findings from cross-sectional and longitudinal studies. Additionally, we discuss potential mechanisms by which age-related changes in structure may affect function, but also factors (sample characteristics, methodology) that may contribute to the heterogeneity of the findings and the lack of consensus on the associations between structure, function, cognition and aging.
Collapse
Affiliation(s)
- Grégoria Kalpouzos
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Center for Lifespan Developmental Research (LEADER), School of Behavioral, Social and Legal Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
4
|
Festini SB, Kegler G, Reuter-Lorenz PA. Hemispheric organization of the brain and its prevailing impact on the neuropsychology of aging. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:169-180. [PMID: 40074395 DOI: 10.1016/b978-0-443-15646-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Age differences in brain hemispheric asymmetry have figured prominently in the neuropsychology of aging. Here, a broad overview of these empirical and theoretical approaches is provided that dates back to the 1970s and continues to the present day. Methodological advances often brought new evidence to bear on older ideas and promoted the development of new ones. The deficit-focused hypothesis of accelerated right-hemisphere aging is reviewed first, followed by subsequent accounts pertaining to compensation, reserve, and their potential hemispheric underpinnings. Structural and functional neuroimaging reveal important and consistent age-related patterns, including indications of reduced brain asymmetry in older relative to younger adults. While not mutually exclusive, different neuropsychologic theories of aging offer divergent interpretations of such patterns, including age-related reductions in neural specificity (dedifferentiation) and age-related compensatory bilateral recruitment [e.g., Hemispheric Asymmetry Reduction in Older Adults (HAROLD); Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH)]. Further, recent neurobehavioral evidence suggests that the right hemisphere plays a unique role in resisting the neurocognitive effects of aging via brain reserve. Future advances in human cognitive neuroscience, including neurostimulation methods for targeted interventions, along with analytic techniques informed by machine learning promise new insights into the neuropsychology of aging and the role of hemispheric processes in resilience and decline.
Collapse
|
5
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
6
|
Wu LY, Hsu HC, Ni LF, Yan YJ, Hwang RJ. Effect of Physical Exercise on Executive Functions Using the Emotional Stroop Task in Perimenopausal Women: A Pilot Study. Behav Sci (Basel) 2024; 14:338. [PMID: 38667134 PMCID: PMC11047564 DOI: 10.3390/bs14040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Exercise has beneficial effects on emotional cognitive control for the majority of the population. However, the impact of exercise on cognitive processes in perimenopausal women remains unclear. Therefore, this study investigated the effect of aerobic exercise on the cognitive processes of perimenopausal women using an emotional Stroop task (EST). METHOD A quasi-experimental pilot study was conducted involving 14 perimenopausal women (Peri-MG) and 13 healthy young women (YG) who completed an EST before and after an aerobic cycling exercise. Mixed-effects models for repeated measures were used to analyze reaction times (RTs) and error rates (ERs) during emotional word processing (positive, negative, and neutral) for both groups. RESULTS Compared with the YG, the Peri-MG showed significantly shortened RTs for positive and negative emotions (p < 0.05) post-exercise, but not for neutral words. In addition, the Peri-MG exhibited significantly increased ERs for negative words at baseline compared with the YG (p < 0.05), but this difference was not observed during the post-exercise test. CONCLUSION The findings suggest that aerobic exercise can enhance executive control performance in perimenopausal women. The Peri-MG exhibited marked behavioral plasticity in the form of reduced bias to salient cues that were significantly more sensitive to alterations due to exercise. This new evidence enhances the understanding of emotional vulnerability and beneficial susceptibility to exercise in perimenopausal women.
Collapse
Affiliation(s)
- Li-Yu Wu
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan; (L.-Y.W.); (L.-F.N.); (Y.-J.Y.)
| | - Hsiu-Chin Hsu
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan;
- Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Lee-Fen Ni
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan; (L.-Y.W.); (L.-F.N.); (Y.-J.Y.)
- Department of Nursing, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Clinical Competency Center, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan
| | - Yu-Jia Yan
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan; (L.-Y.W.); (L.-F.N.); (Y.-J.Y.)
- Intellectual Property Office, MOEA, Taipei City 100210, Taiwan
| | - Ren-Jen Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan; (L.-Y.W.); (L.-F.N.); (Y.-J.Y.)
- Department of Nursing, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Clinical Competency Center, Chang Gung University of Science and Technology, Taoyuan 333424, Taiwan
| |
Collapse
|
7
|
Zhu X, Zhou Y, Zhong W, Li Y, Wang J, Chen Y, Zhang R, Sun J, Sun Y, Lou M. Higher Functional Connectivity of Ventral Attention and Visual Network to Maintain Cognitive Performance in White Matter Hyperintensity. Aging Dis 2023:AD.2022.1206. [PMID: 37163435 PMCID: PMC10389834 DOI: 10.14336/ad.2022.1206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 05/12/2023] Open
Abstract
Ventral attention network (VAN), associated with cognitive performance, is one of the functional networks that are most vulnerable in white matter hyperintensity (WMH). Considering the global interaction of networks for cognitive performance, we hypothesized that VAN-related between-network connectivity might play a role in maintaining cognition in patients with WMH. We included 139 participants for both cross-sectional and longitudinal analysis from CIRCLE study (ClinicalTrials.gov ID: NCT03542734) between January 2014 and January 2021. Differences of VAN-related between-network connectivity were compared between normal-cognition (NC) and cognitive-impairment (CI) groups cross-sectionally, and between cognitive-decline (CD) and cognitive non-decline (CND) groups longitudinally by using t-test. False Discovery Rate was used for multiple comparison correction. The relationship between the network connectivity and WMH was tested on linear and quadratic models. Subgroup analysis of different WMH burdens were performed to test the difference of network connectivity between NC and CI groups. Among VAN-related between-network connectivity, only VAN-Visual Network (VN) connectivity was higher both in NC (n = 106) and CND (n = 113) groups versus CI (n = 33) and CD groups (n = 26), respectively. There was an inverted U-shaped relation between periventricular WMH (PWMH) burden and VAN-VN connectivity. Normal-cognition participants had higher VAN-VN connectivity among high, but not low PWMH burden subgroups. These findings suggest that the VAN-VN connectivity plays an important role in maintaining cognitive performance in WMH patients. It may serve as a unique marker for cognitive prediction and a potential target for intervention to prevent cognitive decline in WMH patients.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wansi Zhong
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yifei Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Junjun Wang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yuping Chen
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruoxia Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University, Zhejiang, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Köhncke Y, Kühn S, Düzel S, Sander MC, Brandmaier AM, Lindenberger U. Grey-matter structure in cortical and limbic regions correlates with general cognitive ability in old age. AGING BRAIN 2023; 5:100103. [PMID: 38186748 PMCID: PMC10770753 DOI: 10.1016/j.nbas.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
According to the maintenance hypothesis (Nyberg et al., 2012), structural integrity of the brain's grey matter helps to preserve cognitive functioning into old age. A corollary of this hypothesis that can be tested in cross-sectional data is that grey-matter structural integrity and general cognitive ability are positively associated in old age. Building on Köhncke et al. (2021), who found that region-specific latent factors of grey-matter integrity are positively associated with episodic memory ability among older adults, we examine associations between general factors of grey-matter integrity and a general factor of cognitive ability in a cross-sectional sample of 1466 participants aged 60-88 years, 319 of whom contributed imaging data. Indicator variables based on T1-weighted images (voxel-based morphometry, VBM), magnetization-transfer imaging (MT), and diffusion tensor imaging-derived mean diffusivity (MD) had sufficient portions of variance in common to establish latent factors of grey-matter structure for a comprehensive set of regions of interest (ROI). Individual differences in grey-matter factors were positively correlated across neocortical and limbic areas, allowing for the definition of second-order, general factors for neocortical and limbic ROI, respectively. Both general grey-matter factors were positively correlated with general cognitive ability. For the basal ganglia, the three modality-specific indicators showed heterogenous loading patterns, and no reliable associations of the general grey-matter factor to general cognitive ability were found. To provide more direct tests of the maintenance hypothesis, we recommend applying the present structural modeling approach to longitudinal data, thereby enhancing the physiological validity of latent constructs of brain structure.
Collapse
Affiliation(s)
- Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Myriam C. Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK, & Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK, & Berlin, Germany
| |
Collapse
|
9
|
Liu X, Tyler LK, Cam-Can, Davis SW, Rowe JB, Tsvetanov KA. Cognition's dependence on functional network integrity with age is conditional on structural network integrity. Neurobiol Aging 2023; 129:195-208. [PMID: 37392579 DOI: 10.1016/j.neurobiolaging.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Maintaining good cognitive function is crucial for well-being across the lifespan. We proposed that the degree of cognitive maintenance is determined by the functional interactions within and between large-scale brain networks. Such connectivity can be represented by the white matter architecture of structural brain networks that shape intrinsic neuronal activity into integrated and distributed functional networks. We explored how the function-structure connectivity convergence, and the divergence of functional connectivity from structural connectivity, contribute to the maintenance of cognitive function across the adult lifespan. Multivariate analyses were used to investigate the relationship between function-structure connectivity convergence and divergence with multivariate cognitive profiles, respectively. Cognitive function was increasingly dependent on function-structure connectivity convergence as age increased. The dependency of cognitive function on connectivity was particularly strong for high-order cortical networks and subcortical networks. The results suggest that brain functional network integrity sustains cognitive functions in old age, as a function of the integrity of the brain's structural connectivity.
Collapse
Affiliation(s)
- Xulin Liu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Lorraine K Tyler
- The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Simon W Davis
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Xie C, Fong MCM, Ma MKH, Wang J, Wang WS. The retrogenesis of age-related decline in declarative and procedural memory. Front Psychol 2023; 14:1212614. [PMID: 37575428 PMCID: PMC10413564 DOI: 10.3389/fpsyg.2023.1212614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
The retrogenesis hypothesis proposes that the order of breakdown of cognitive abilities in older adults is the reverse of the developmental order of children. Declarative and procedural memory systems, however, have been empirically understudied regarding this issue. The current study aimed to investigate whether retrogenesis occurs in the developmental and decline order of the declarative and procedural memory systems. Besides, we further investigated whether retrogenesis occurs in declarative memory, which was tested through the recognition of familiar and unfamiliar items. Both questions were investigated by looking at 28 Chinese younger adults and 27 cognitively healthy Chinese older adults. The recognition memory task and the Serial Reaction Time Task were administered on two consecutive days in order to measure their declarative and procedural memory, respectively. The results showed older adults performed significantly worse than younger adults for both tasks on both days, suggesting a decline in both declarative and procedural memory. Moreover, older adults exhibited relatively preserved declarative memory compared to procedural memory. This does not follow the expectations of the retrogenesis hypothesis. However, older adults demonstrated superior performance and a steeper rate of forgetting for recognizing familiar items than unfamiliar items. This reverses the developmental order of different patterns in the declarative memory system. Overall, we conclude that retrogenesis occurs in the declarative memory system, while does not in the decline order of the two memory systems; this understanding can better help inform our broader understanding of memory aging.
Collapse
Affiliation(s)
- Chenwei Xie
- Department of Chinese and Bilingual Studies, Research Centre for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Manson Cheuk-Man Fong
- Department of Chinese and Bilingual Studies, Research Centre for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Matthew King-Hang Ma
- Department of Chinese and Bilingual Studies, Research Centre for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Juliahna Wang
- Department of Chinese and Bilingual Studies, Research Centre for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - William Shiyuan Wang
- Department of Chinese and Bilingual Studies, Research Centre for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Josefsson M, Sundström A, Pudas S, Nordin Adolfsson A, Nyberg L, Adolfsson R. Memory profiles predict dementia over 23-28 years in normal but not successful aging. Int Psychogeriatr 2023; 35:351-359. [PMID: 31762427 DOI: 10.1017/s1041610219001844] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Prospective studies suggest that memory deficits are detectable decades before clinical symptoms of dementia emerge. However, individual differences in long-term memory trajectories prior to diagnosis need to be further elucidated. The aim of the current study was to investigate long-term dementia and mortality risk for individuals with different memory trajectory profiles in a well-characterized population-based sample. METHODS 1062 adults (aged 45-80 years) who were non-demented at baseline were followed over 23-28 years. Dementia and mortality risk were studied for three previously classified episodic memory trajectory groups: maintained high performance (Maintainers; 26%), average decline (Averages; 64%), and accelerated decline (Decliners; 12%), using multistate modeling to characterize individuals' transitions from an initial non-demented state, possibly to a state of dementia and/or death. RESULTS The memory groups showed considerable intergroup variability in memory profiles, starting 10-15 years prior to dementia diagnosis, and prior to death. A strong relationship between memory trajectory group and dementia risk was found. Specifically, Decliners had more than a fourfold risk of developing dementia compared to Averages. In contrast, Maintainers had a 2.6 times decreased dementia risk compared to Averages, and in addition showed no detectable memory decline prior to dementia diagnosis. A similar pattern of association was found for the memory groups and mortality risk, although only among non-demented. CONCLUSION There was a strong relationship between accelerated memory decline and dementia, further supporting the prognostic value of memory decline. The intergroup differences, however, suggest that mechanisms involved in successful memory aging may delay symptom onset.
Collapse
Affiliation(s)
- Maria Josefsson
- Centre for Demographic and Ageing Research at Umeå University (CEDAR), Umeå, Sweden
| | - Anna Sundström
- Centre for Demographic and Ageing Research at Umeå University (CEDAR), Umeå, Sweden
- Department of Psychology, Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå, Sweden
| | | | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Håglin S, Koch E, Schäfer Hackenhaar F, Nyberg L, Kauppi K. APOE ɛ4, but not polygenic Alzheimer's disease risk, is related to longitudinal decrease in hippocampal brain activity in non-demented individuals. Sci Rep 2023; 13:8433. [PMID: 37225733 DOI: 10.1038/s41598-023-35316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
The hippocampus is affected early in Alzheimer's disease (AD) and altered hippocampal functioning influences normal cognitive aging. Here, we used task-based functional MRI to assess if the APOE ɛ4 allele or a polygenic risk score (PRS) for AD was linked to longitudinal changes in memory-related hippocampal activation in normal aging (baseline age 50-95, n = 292; n = 182 at 4 years follow-up, subsequently non-demented for at least 2 years). Mixed-models were used to predict level and change in hippocampal activation by APOE ɛ4 status and PRS based on gene variants previously linked to AD at p ≤ 1, p < 0.05, or p < 5e-8 (excluding APOE). APOE ɛ4 and PRSp<5e-8 significantly predicted AD risk in a larger sample from the same study population (n = 1542), while PRSp≤1 predicted memory decline. APOE ɛ4 was linked to decreased hippocampal activation over time, with the most prominent effect in the posterior hippocampi, while PRS was unrelated to hippocampal activation at all p-thresholds. These results suggests a link for APOE ɛ4, but not for AD genetics in general, on functional changes of the hippocampi in normal aging.
Collapse
Affiliation(s)
- Sofia Håglin
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Division of Mental Health and Addiction, NORMENT, Centre for Mental Disorders Research, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Fernanda Schäfer Hackenhaar
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden.
| |
Collapse
|
13
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Čepukaitytė G, Thom JL, Kallmayer M, Nobre AC, Zokaei N. The Relationship between Short- and Long-Term Memory Is Preserved across the Age Range. Brain Sci 2023; 13:106. [PMID: 36672087 PMCID: PMC9856639 DOI: 10.3390/brainsci13010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Both short- and long-term memories decline with healthy ageing. The aims of the current study were twofold: firstly, to build on previous studies and investigate the presence of a relationship between short- and long-term memories and, secondly, to examine cross-sectionally whether there are changes in this relationship with age. In two experiments, participants across the age range were tested on contextual-spatial memories after short and long memory durations. Experimental control in stimulus materials and task demands enabled the analogous encoding and probing for both memory durations, allowing us to examine the relationship between the two memory systems. Across two experiments, in line with previous studies, we found both short-term memory and long-term memory declined from early to late adulthood. Additionally, there was a significant relationship between short- and long-term memory performance, which, interestingly, persisted throughout the age range. Our findings suggest a significant degree of common vulnerability to healthy ageing for short- and long-term memories sharing the same spatial-contextual associations. Furthermore, our tasks provide a sensitive and promising framework for assessing and comparing memory function at different timescales in disorders with memory deficits at their core.
Collapse
Affiliation(s)
- Giedrė Čepukaitytė
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Jude L. Thom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Melvin Kallmayer
- Department of Psychology, Goethe University, 60323 Frankfurt, Germany
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
15
|
Schäfer Hackenhaar F, Josefsson M, Nordin Adolfsson A, Landfors M, Kauppi K, Porter T, Milicic L, Laws SM, Hultdin M, Adolfsson R, Degerman S, Pudas S. Sixteen-Year Longitudinal Evaluation of Blood-Based DNA Methylation Biomarkers for Early Prediction of Alzheimer's Disease. J Alzheimers Dis 2023; 94:1443-1464. [PMID: 37393498 PMCID: PMC10473121 DOI: 10.3233/jad-230039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND DNA methylation (DNAm), an epigenetic mark reflecting both inherited and environmental influences, has shown promise for Alzheimer's disease (AD) prediction. OBJECTIVE Testing long-term predictive ability (>15 years) of existing DNAm-based epigenetic age acceleration (EAA) measures and identifying novel early blood-based DNAm AD-prediction biomarkers. METHODS EAA measures calculated from Illumina EPIC data from blood were tested with linear mixed-effects models (LMMs) in a longitudinal case-control sample (50 late-onset AD cases; 51 matched controls) with prospective data up to 16 years before clinical onset, and post-onset follow-up. Novel DNAm biomarkers were generated with epigenome-wide LMMs, and Sparse Partial Least Squares Discriminant Analysis applied at pre- (10-16 years), and post-AD-onset time-points. RESULTS EAA did not differentiate cases from controls during the follow-up time (p > 0.05). Three new DNA biomarkers showed in-sample predictive ability on average 8 years pre-onset, after adjustment for age, sex, and white blood cell proportions (p-values: 0.022-<0.00001). Our longitudinally-derived panel replicated nominally (p = 0.012) in an external cohort (n = 146 cases, 324 controls). However, its effect size and discriminatory accuracy were limited compared to APOEɛ4-carriership (OR = 1.38 per 1 SD DNAm score increase versus OR = 13.58 for ɛ4-allele carriage; AUCs = 77.2% versus 87.0%). Literature review showed low overlap (n = 4) across 3275 AD-associated CpGs from 8 published studies, and no overlap with our identified CpGs.
Collapse
Affiliation(s)
- Fernanda Schäfer Hackenhaar
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Maria Josefsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Statistics, USBE, Umeå University, Umeå, Sweden
- Center for Ageing and Demographic Research, Umeå University, Umeå, Sweden
| | | | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Lidija Milicic
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Simon M. Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | | |
Collapse
|
16
|
Longitudinal stability in working memory and frontal activity in relation to general brain maintenance. Sci Rep 2022; 12:20957. [PMID: 36470934 PMCID: PMC9722656 DOI: 10.1038/s41598-022-25503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64-68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.
Collapse
|
17
|
McDonough IM, Nolin SA, Visscher KM. 25 years of neurocognitive aging theories: What have we learned? Front Aging Neurosci 2022; 14:1002096. [PMID: 36212035 PMCID: PMC9539801 DOI: 10.3389/fnagi.2022.1002096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The past 25 years have provided a rich discovery of at least four fundamental patterns that represent structural and functional brain aging across multiple cognitive domains. Of the many potential patterns of brain aging, few are ever examined simultaneously in a given study, leading one to question their mutual exclusivity. Moreover, more studies are emerging that note failures to replicate some brain aging patterns, thereby questioning the universality and prevalence of these patterns. Although some attempts have been made to create unifying theories incorporating many of these age-related brain patterns, we propose that the field’s understanding of the aging brain has been hindered due to a large number of influential models with little crosstalk between them. We briefly review these brain patterns, the influential domain-general theories of neurocognitive aging that attempt to explain them, and provide examples of recent challenges to these theories. Lastly, we elaborate on improvements that can be made to lead the field to more comprehensive and robust models of neurocognitive aging.
Collapse
Affiliation(s)
- Ian M. McDonough
- Department of Psychology, Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL, United States
- *Correspondence: Ian M. McDonough,
| | - Sara A. Nolin
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina M. Visscher
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Patel R, Mackay CE, Jansen MG, Devenyi GA, O'Donoghue MC, Kivimäki M, Singh-Manoux A, Zsoldos E, Ebmeier KP, Chakravarty MM, Suri S. Inter- and intra-individual variation in brain structural-cognition relationships in aging. Neuroimage 2022; 257:119254. [PMID: 35490915 PMCID: PMC9393406 DOI: 10.1016/j.neuroimage.2022.119254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 01/21/2023] Open
Abstract
The sources of inter- and intra-individual variability in age-related cognitive decline remain poorly understood. We examined the association between 20-year trajectories of cognitive decline and multimodal brain structure and morphology in older age. We used the Whitehall II Study, an extensively characterised cohort with 3T brain magnetic resonance images acquired at older age (mean age = 69.52 ± 4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 ±4.9 years) and late-life (mean age = 67.7 ± 4.9). Using non-negative matrix factorization, we identified 10 brain components integrating cortical thickness, surface area, fractional anisotropy, and mean and radial diffusivities. We observed two latent variables describing distinct brain-cognition associations. The first describes variations in 5 structural components associated with low mid-life performance across multiple cognitive domains, decline in reasoning, but maintenance of fluency abilities. The second describes variations in 6 structural components associated with low mid-life performance in fluency and memory, but retention of multiple abilities. Expression of latent variables predicts future cognition 3.2 years later (mean age = 70.87 ± 4.9). This data-driven approach highlights brain-cognition relationships wherein individuals degrees of cognitive decline and maintenance across diverse cognitive functions are both positively and negatively associated with markers of cortical structure.
Collapse
Affiliation(s)
- Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Clare E Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Michelle G Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - M Clare O'Donoghue
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom; Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, 7501020, Paris, France
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom.
| |
Collapse
|
19
|
Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, McNulty C, Riklund K, Wåhlin A, Papenberg G, Kalpouzos G, Bäckman L, Salami A. DyNAMiC: A prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res 2022; 100:1296-1320. [PMID: 35293013 PMCID: PMC9313590 DOI: 10.1002/jnr.25039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Abstract
Concomitant exploration of structural, functional, and neurochemical brain mechanisms underlying age-related cognitive decline is crucial in promoting healthy aging. Here, we present the DopamiNe, Age, connectoMe, and Cognition (DyNAMiC) project, a multimodal, prospective 5-year longitudinal study spanning the adult human lifespan. DyNAMiC examines age-related changes in the brain's structural and functional connectome in relation to changes in dopamine D1 receptor availability (D1DR), and their associations to cognitive decline. Critically, due to the complete lack of longitudinal D1DR data, the true trajectory of one of the most age-sensitive dopamine systems remains unknown. The first DyNAMiC wave included 180 healthy participants (20-80 years). Brain imaging included magnetic resonance imaging assessing brain structure (white matter, gray matter, iron), perfusion, and function (during rest and task), and positron emission tomography (PET) with the [11 C]SCH23390 radioligand. A subsample (n = 20, >65 years) was additionally scanned with [11 C]raclopride PET measuring D2DR. Age-related variation was evident for multiple modalities, such as D1DR; D2DR, and performance across the domains of episodic memory, working memory, and perceptual speed. Initial analyses demonstrated an inverted u-shaped association between D1DR and resting-state functional connectivity across cortical network nodes, such that regions with intermediate D1DR levels showed the highest levels of nodal strength. Evident within each age group, this is the first observation of such an association across the adult lifespan, suggesting that emergent functional architecture depends on underlying D1DR systems. Taken together, DyNAMiC is the largest D1DR study worldwide, and will enable a comprehensive examination of brain mechanisms underlying age-related cognitive decline.
Collapse
Affiliation(s)
- Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Present address:
Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholm11330Sweden
| | - Tetiana Gorbach
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Umeå School of Business, Economics and StatisticsUmeå UniversityUmeåSweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Vania Panes Lundmark
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jarkko Johansson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Charlotte McNulty
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
| | - Katrine Riklund
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Radiation SciencesUmeå UniversityUmeåSweden
| | - Goran Papenberg
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Grégoria Kalpouzos
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Lars Bäckman
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI)Umeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular MedicineUmeå UniversityUmeåSweden
- Aging Research CenterKarolinska Institutet & Stockholm UniversityStockholmSweden
| |
Collapse
|
20
|
Chen X, Rundle MM, Kennedy KM, Moore W, Park DC. Functional activation features of memory in successful agers across the adult lifespan. Neuroimage 2022; 257:119276. [PMID: 35523368 PMCID: PMC9364925 DOI: 10.1016/j.neuroimage.2022.119276] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 11/01/2022] Open
Abstract
Much neuroimaging research has explored the neural mechanisms underlying successful cognitive aging. Two different patterns of functional activation, maintenance of youth-like activity and compensatory novel recruitment, have been proposed to represent different brain functional features underlying individual differences in cognitive aging. In this study, we investigated the functional features in individuals across the adult lifespan who appeared to resist age-related cognitive decline, in comparison to those with typical age-related declines, over the course of four years. We first implemented latent mixture modeling, a data-driven approach, to classify participants as successful and average agers in middle-aged, young-old, and very old groups, based on their baseline and longitudinal cognitive performance. Then, using fMRI with a subsequent memory paradigm at the follow-up visit, brain activation specifically related to successful encoding (i.e., subsequent memory effect: subsequently remembered with high confidence > subsequently forgotten) was compared between people who established successful cognitive aging versus average aging in the three age groups. Several differences in the subsequent memory effect were revealed. First, across core task-related regions commonly used during successful encoding, successful agers exhibited high subsequent memory effect, at a level comparable to the young control group, until very old age; in contrast, average agers showed reduced subsequent memory effect, compared to successful agers, beginning in young-old age when memory performance also reduced in average agers, compared to successful agers. Second, additional recruitment in prefrontal clusters, distant from the core task-related regions, were identified in the left superior frontal and right orbitofrontal cortices in successful agers of young-old age, possibly reflecting functional compensation in successful aging. In summary, successful agers demonstrate a pattern of youth-like activation spanning from middle age to young-old age, as well as novel frontal recruitment in young-old age. Overall, our study demonstrated evidence of two neural patterns related to successful cognitive aging, offering an integrated view of functional features underlying successful aging, and suggests the importance of studying individuals across the lifespan to understand brain changes occurring in mid and early-late life.
Collapse
Affiliation(s)
- Xi Chen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA.
| | - Melissa M Rundle
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| | - William Moore
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Unit 800, Dallas, TX, 75235, USA
| |
Collapse
|
21
|
Johansson J, Wåhlin A, Lundquist A, Brandmaier AM, Lindenberger U, Nyberg L. Model of brain maintenance reveals specific change-change association between medial-temporal lobe integrity and episodic memory. AGING BRAIN 2022; 2:100027. [PMID: 36908884 PMCID: PMC9999442 DOI: 10.1016/j.nbas.2021.100027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/15/2022] Open
Abstract
Brain maintenance has been identified as a major determinant of successful memory aging. However, the extent to which brain maintenance in support of successful memory aging is specific to memory-related brain regions or forms part of a brain-wide phenomenon is unresolved. Here, we used longitudinal brain-wide gray matter MRI volumes in 262 healthy participants aged 55 to 80 years at baseline to investigate separable dimensions of brain atrophy, and explored the links of these dimensions to different dimensions of cognitive change. We statistically adjusted for common causes of change in both brain and cognition to reveal a potentially unique signature of brain maintenance related to successful memory aging. Critically, medial temporal lobe (MTL)/hippocampal change and episodic memory change were characterized by unique, residual variance beyond general factors of change in brain and cognition, and a reliable association between these two residualized variables was established (r = 0.36, p < 0.01). The present study is the first to provide solid evidence for a specific association between changes in (MTL)/hippocampus and episodic memory in normal human aging. We conclude that hippocampus-specific brain maintenance relates to the specific preservation of episodic memory in old age, in line with the notion that brain maintenance operates at both general and domain-specific levels.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Statistics, USBE, Umeå University, S-90187 Umeå, Sweden
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin Germany and London, UK
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, D-14195 Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin Germany and London, UK
| | - Lars Nyberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-90187 Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.,Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Park CH, Kim BR, Park HK, Lim SM, Kim E, Jeong JH, Kim GH. Predicting Superagers by Machine Learning Classification Based on the Functional Brain Connectome Using Resting-State Functional Magnetic Resonance Imaging. Cereb Cortex 2021; 32:4183-4190. [PMID: 34969093 DOI: 10.1093/cercor/bhab474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023] Open
Abstract
Superagers are defined as older adults who have youthful memory performance comparable to that of middle-aged adults. Classifying superagers based on the brain connectome using machine learning modeling can provide important insights on the physiology underlying successful aging. We aimed to investigate the unique patterns of functional brain connectome of superagers and develop predictive models to differentiate superagers from typical agers based on machine learning methods. We obtained resting-state functional magnetic resonance imaging (rsfMRI) data and cognitive measures from 32 superagers and 58 typical agers. The accuracies of three machine learning methods including the linear support vector machine classifier (SV), the random forest classifier (RF), and the logistic regression classifier (LR) in predicting superagers were comparable (SV = 0.944, RF = 0.944, LR = 0.944); however, RF achieved the highest area under the curve (AUC; 0.979). An ensemble learning method combining the three classifiers achieved the highest AUC (0.986). The most discriminative nodes for predicting superagers encompassed areas in the precuneus; posterior cingulate gyrus; insular cortex; and superior, middle, and inferior frontal gyrus, which were located in default, salient, and multiple-demand networks. Thus, rsfMRI data can provide high accuracy for predicting superagers, thereby capturing and describing the unique characteristics of their functional brain connectome.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Department of Radiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea.,Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland
| | - Bori R Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea.,Ewha Medical Research Institute, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hee Kyung Park
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Eunhee Kim
- Department of Radiology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea
| |
Collapse
|
23
|
Tagliabue CF, Mazza V. What Can Neural Activity Tell Us About Cognitive Resources in Aging? Front Psychol 2021; 12:753423. [PMID: 34733219 PMCID: PMC8558238 DOI: 10.3389/fpsyg.2021.753423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
A reduction in cognitive resources has been originally proposed to account for age-related decrements in several cognitive domains. According to this view, aging limits the pool of available cognitive supplies: Compared to younger adults, elderly exhaust the resources more rapidly as task difficulty increases, hence a dramatic performance drop. Neurophysiological indexes (e.g., BOLD response and EEG activity) may be instrumental to quantify the amount of such cognitive resources in the brain and to pinpoint the stage of stimulus processing where the decrement in age-related resources is evident. However, as we discuss in this mini-review, the most recent studies on the neurophysiological markers of age-related changes lack a consistent coupling between neural and behavioral effects, which casts doubt on the advantage of measuring neural indexes to study resource deployment in aging. For instance, in the working memory (WM) domain, recent cross-sectional studies found varying patterns of concurrent age-related brain activity, ranging from equivalent to reduced and increased activations of old with respect to younger adults. In an attempt to reconcile these seemingly inconsistent findings of brain-behavior coupling, we focus on the contribution of confounding sources of variability and propose ways to control for them. Finally, we suggest an alternative perspective to explain age-related effects that implies a qualitative (instead of or along with a quantitative) difference in the deployment of cognitive resources in aging.
Collapse
Affiliation(s)
- Chiara F Tagliabue
- Center for Mind/Brain Sciences (CIMeC) - University of Trento, Rovereto, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC) - University of Trento, Rovereto, Italy
| |
Collapse
|
24
|
Johnson AJ, Wilson AT, Laffitte Nodarse C, Montesino-Goicolea S, Valdes-Hernandez PA, Somerville J, Peraza JA, Fillingim RB, Bialosky J, Cruz-Almeida Y. Age Differences in Multimodal Quantitative Sensory Testing and Associations With Brain Volume. Innov Aging 2021; 5:igab033. [PMID: 34616958 PMCID: PMC8489433 DOI: 10.1093/geroni/igab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Somatosensory function is critical for successful aging. Prior studies have shown declines in somatosensory function with age; however, this may be affected by testing site, modality, and biobehavioral factors. While somatosensory function declines are associated with peripheral nervous system degradation, little is known regarding correlates with the central nervous system and brain structure in particular. The objectives of this study were to examine age-related declines in somatosensory function using innocuous and noxious stimuli, across 2 anatomical testing sites, with considerations for affect and cognitive function, and associations between somatosensory function and brain structure in older adults. RESEARCH DESIGN AND METHODS A cross-sectional analysis included 84 "younger" (n = 22, age range: 19-24 years) and "older" (n = 62, age range: 60-94 years) healthy adults who participated in the Neuromodulatory Examination of Pain and Mobility Across the Lifespan study. Participants were assessed on measures of somatosensory function (quantitative sensory testing), at 2 sites (metatarsal and thenar) using standardized procedures, and completed cognitive and psychological function measures and structural magnetic resonance imaging. RESULTS Significant age × test site interaction effects were observed for warmth detection (p = .018,η p 2 = 0.10) and heat pain thresholds (p = .014,η p 2 = 0.12). Main age effects were observed for mechanical, vibratory, cold, and warmth detection thresholds (ps < .05), with older adults displaying a loss of sensory function. Significant associations between somatosensory function and brain gray matter structure emerged in the right occipital region, the right temporal region, and the left pericallosum. DISCUSSION AND IMPLICATIONS Our findings indicate healthy older adults display alterations in sensory responses to innocuous and noxious stimuli compared to younger adults and, furthermore, these alterations are uniquely affected by anatomical site. These findings suggest a nonuniform decline in somatosensation in older adults, which may represent peripheral and central nervous system alterations part of aging processes.
Collapse
Affiliation(s)
- Alisa J Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Abigail T Wilson
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Brooks Rehabilitation–College of Public Health and Health Professions Research Collaboration, Gainesville, Florida, USA
| | - Chavier Laffitte Nodarse
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Soamy Montesino-Goicolea
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Pedro A Valdes-Hernandez
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Jessie Somerville
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Julio A Peraza
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Roger B Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Joel Bialosky
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Brooks Rehabilitation–College of Public Health and Health Professions Research Collaboration, Gainesville, Florida, USA
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida, USA
- Department of Community Dentistry & Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Halaas NB, Henjum K, Blennow K, Dakhil S, Idland AV, Nilsson LN, Sederevicius D, Vidal-Piñeiro D, Walhovd KB, Wyller TB, Zetterberg H, Watne LO, Fjell AM. CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults. Cereb Cortex 2021; 30:2295-2306. [PMID: 31812991 DOI: 10.1093/cercor/bhz240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aβ42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n = 95) and 4 (n = 62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aβ42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.
Collapse
Affiliation(s)
- Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Kristi Henjum
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden
| | - Shams Dakhil
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Lars Ng Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway.,Oslo University Hospital, 0424 Oslo, Norway
| | - Donatas Sederevicius
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Didac Vidal-Piñeiro
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway
| | - Kristine B Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Torgeir Brunn Wyller
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Henrik Zetterberg
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 431 41 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG London, UK.,UK Dementia Research Institute at UCL, WC1E 6BT London, UK
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders M Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, 0373 Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
26
|
Quantifying Age-Related Changes in Brain and Behavior: A Longitudinal versus Cross-Sectional Approach. eNeuro 2021; 8:ENEURO.0273-21.2021. [PMID: 34281979 PMCID: PMC8354716 DOI: 10.1523/eneuro.0273-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Cross-sectional versus longitudinal comparisons of age-related change have often revealed differing results. In the current study, we used within-subject task-based fMRI to investigate changes in voxel-based activations and behavioral performance across the life span in the Reference Ability Neural Network cohort, at both baseline and 5 year follow-up. We analyzed fMRI data from between 127 and 159 participants (20–80 years) on a battery of tests relating to each of four cognitive reference abilities. We applied a Gaussian age kernel to capture continuous change across the life span using a 5 year sliding window centered on each age in our participant sample, with a subsequent division into young, middle, and old age brackets. This method was applied separately to both cross-sectional approximations of change and real longitudinal changes adopting a comparative approach. We then focused on longitudinal measurements of neural change to identify regions expressing peak changes and fluctuations of sign change across our sample. Our results revealed several regions expressing divergence between cross-sectional and longitudinal measurements in each domain and age bracket; behavioral comparisons between measurements showed differences in change curves for all four domains, with processing speed displaying the steepest declines. In the longitudinal change measurement, we found lack of support for age-related frontal increases across analysis types, instead finding more posterior regions displaying peak increases in activation, particularly in the old age bracket. Our findings encourage greater focus on longitudinal measurements of age-related changes, which display appreciable differences from cross-sectional approximations.
Collapse
|
27
|
Borelli WV, Leal-Conceição E, Andrade MA, Esper NB, Feltes PK, Soder RB, Matushita CS, Hartmann LM, Radaelli G, Schilling LP, Moriguchi-Jeckel C, Marques da Silva AM, Portuguez MW, Franco AR, da Costa JC. Increased Glucose Activity in Subgenual Anterior Cingulate and Hippocampus of High Performing Older Adults, Despite Amyloid Burden. J Alzheimers Dis 2021; 81:1419-1428. [PMID: 33935091 DOI: 10.3233/jad-210063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Individuals at 80 years of age or above with exceptional memory are considered SuperAgers (SA), an operationalized definition of successful cognitive aging. SA showed increased thickness and altered functional connectivity in the anterior cingulate cortex as a neurobiological signature. However, their metabolic alterations are yet to be uncovered. OBJECTIVE Herein, a metabolic (FDG-PET), amyloid (PIB-PET), and functional (fMRI) analysis of SA were conducted. METHODS Ten SA, ten age-matched older adults (C80), and ten cognitively normal middle-aged (C50) adults underwent cognitive testing and multimodal neuroimaging examinations. Anterior and posterior regions of the cingulate cortex and hippocampal areas were primarily examined, then subregions of anterior cingulate were segregated. RESULTS The SA group showed increased metabolic activity in the left and right subgenual anterior cingulate cortex (sACC, p < 0.005 corrected, bilateral) and bilateral hippocampi (right: p < 0.0005 and left: p < 0.005, both corrected) as compared to that in the C80 group. Amyloid deposition was above threshold in 30% of SA and C80 (p > 0.05). The SA group also presented decreased connectivity between right sACC and posterior cingulate (p < 0.005, corrected) as compared to that of the C80 group. CONCLUSION These results support the key role of sACC and hippocampus in SA, even in the presence of amyloid deposition. It also suggests that sACC may be used as a potential biomarker in older adults for exceptional memory ability. Further longitudinal studies measuring metabolic biomarkers may help elucidate the interaction between these areas in the cognitive aging process.
Collapse
Affiliation(s)
- Wyllians Vendramini Borelli
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Medicine, PUCRS, Porto Alegre, Brazil
| | | | - Michele Alberton Andrade
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Science, PUCRS, Porto Alegre, Brazil
| | - Nathalia Bianchini Esper
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Paula Kopschina Feltes
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ricardo Bernardi Soder
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Medicine, PUCRS, Porto Alegre, Brazil
| | | | | | - Graciane Radaelli
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil
| | | | | | - Ana Maria Marques da Silva
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Science, PUCRS, Porto Alegre, Brazil
| | - Mirna Wetters Portuguez
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Medicine, PUCRS, Porto Alegre, Brazil
| | - Alexandre Rosa Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), PUCRS, Porto Alegre, Brazil.,School of Medicine, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
28
|
Dunås T, Wåhlin A, Nyberg L, Boraxbekk CJ. Multimodal Image Analysis of Apparent Brain Age Identifies Physical Fitness as Predictor of Brain Maintenance. Cereb Cortex 2021; 31:3393-3407. [PMID: 33690853 PMCID: PMC8196254 DOI: 10.1093/cercor/bhab019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Maintaining a youthful brain structure and function throughout life may be the single most important determinant of successful cognitive aging. In this study, we addressed heterogeneity in brain aging by making image-based brain age predictions and relating the brain age prediction gap (BAPG) to cognitive change in aging. Structural, functional, and diffusion MRI scans from 351 participants were used to train and evaluate 5 single-modal and 4 multimodal prediction models, based on 7 regression methods. The models were compared on mean absolute error and whether they were related to physical fitness and cognitive ability, measured both currently and longitudinally, as well as study attrition and years of education. Multimodal prediction models performed at a similar level as single-modal models, and the choice of regression method did not significantly affect the results. Correlation with the BAPG was found for current physical fitness, current cognitive ability, and study attrition. Correlations were also found for retrospective physical fitness, measured 10 years prior to imaging, and slope for cognitive ability during a period of 15 years. The results suggest that maintaining a high physical fitness throughout life contributes to brain maintenance and preserved cognitive ability.
Collapse
Affiliation(s)
- Tora Dunås
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Centre for Demographic and Ageing Research (CEDAR), Umeå University, S-901 87 Umeå, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, S-901 87 Umeå, Sweden.,Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, DK-2650 Hvidovre, Denmark.,Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, DK-2400 Copenhagen, Denmark
| |
Collapse
|
29
|
Pudas S, Josefsson M, Nordin Adolfsson A, Landfors M, Kauppi K, Veng-Taasti LM, Hultdin M, Adolfsson R, Degerman S. Short Leukocyte Telomeres, But Not Telomere Attrition Rates, Predict Memory Decline in the 20-Year Longitudinal Betula Study. J Gerontol A Biol Sci Med Sci 2020; 76:955-963. [PMID: 33367599 PMCID: PMC8140048 DOI: 10.1093/gerona/glaa322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Leukocyte telomere length (LTL) is a proposed biomarker for aging-related disorders, including cognitive decline and dementia. Long-term longitudinal studies measuring intra-individual changes in both LTL and cognitive outcomes are scarce, precluding strong conclusions about a potential aging-related relationship between LTL shortening and cognitive decline. This study investigated associations between baseline levels and longitudinal changes in LTL and memory performance across an up to 20-year follow-up in 880 dementia-free participants from a population-based study (mean baseline age: 56.8 years, range: 40–80; 52% female). Shorter baseline LTL significantly predicted subsequent memory decline (r = .34, 95% confidence interval: 0.06, 0.82), controlling for age, sex, and other relevant covariates. No significant associations were however observed between intra-individual changes in LTL and memory, neither concurrently nor with a 5-year time-lag between LTL shortening and memory decline. These results support the notion of short LTL as a predictive factor for aging-related memory decline, but suggest that LTL dynamics in adulthood and older age may be less informative of cognitive outcomes in aging. Furthermore, the results highlight the importance of long-term longitudinal evaluation of outcomes in biomarker research.
Collapse
Affiliation(s)
- Sara Pudas
- Department of Integrative Medical Biology, Umeå University, Sweden
| | - Maria Josefsson
- Center for Ageing and Demographic Research, Umeå University, Sweden
| | | | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Sweden.,Department of Clinical Microbiology, Umeå University, Sweden
| |
Collapse
|
30
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
31
|
McDonough IM, Madan CR. Structural complexity is negatively associated with brain activity: a novel multimodal test of compensation theories of aging. Neurobiol Aging 2020; 98:185-196. [PMID: 33302180 DOI: 10.1016/j.neurobiolaging.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Fractal dimensionality (FD) measures the complexity within the folds and ridges of cortical and subcortical structures. We tested the degree that FD might provide a new perspective on the atrophy-compensation hypothesis: age or disease-related atrophy causes a compensatory neural response in the form of increased brain activity in the prefrontal cortex to maintain cognition. Brain structural and functional data were collected from 63 middle-aged and older adults and 18 young-adult controls. Two distinct patterns of FD were found that separated cortical from subcortical structures. Subcortical FD was more strongly negatively correlated with age than cortical FD, and cortical FD was negatively associated with brain activity during memory retrieval in medial and lateral parietal cortices uniquely in middle-aged and older adults. Multivariate analyses revealed that the lower FD/higher brain activity pattern was associated with poorer cognition-patterns not present in young adults, consistent with compensation. Bayesian analyses provide further evidence against the modal interpretation of the atrophy-compensation hypothesis in the prefrontal cortex-a key principle found in some neurocognitive theories of aging.
Collapse
Affiliation(s)
- Ian M McDonough
- Department of Psychology, The University of Alabama, Tuscaloosa, AL, USA.
| | | |
Collapse
|
32
|
de Godoy LL, Alves CAPF, Saavedra JSM, Studart-Neto A, Nitrini R, da Costa Leite C, Bisdas S. Understanding brain resilience in superagers: a systematic review. Neuroradiology 2020; 63:663-683. [PMID: 32995945 DOI: 10.1007/s00234-020-02562-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Superagers are older adults presenting excellent memory performance that may reflect resilience to the conventional pathways of aging. Our contribution aims to shape the evidence body of the known distinctive biomarkers of superagers and their connections with the Brain and Cognitive Reserve and Brain Maintenance concepts. METHODS We performed a systematic literature search in PubMed and ScienceDirect with no limit on publication date for studies that evaluated potential biomarkers in superagers classified by validated neuropsychological tests. Methodological quality was assessed using the QUADAS-2 tool. RESULTS Twenty-one studies were included, the majority in neuroimaging, followed by histological, genetic, cognition, and a single one on blood plasma analysis. Superagers exhibited specific regions of cortical preservation, rather than global cortical maintenance, standing out the anterior cingulate and hippocampus regions. Both superagers and controls showed similar levels of amyloid deposition. Moreover, the functional oscillation patterns in superagers resembled those described in young adults. Most of the quality assessment for the included studies showed medium risks of bias. CONCLUSION This systematic review supports selective cortical preservation in superagers, comprehending regions of the default mode, and salience networks, overlapped by stronger functional connectivity. In this context, the anterior cingulate cortex is highlighted as an imaging and histologic signature of these subjects. Besides, the biomarkers included pointed out that the Brain and Cognitive Reserve and Brain Maintenance concepts are independent and complementary in the superagers' setting.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- The National Hospital of Neurology and Neurosurgery, University College London, London, UK. .,Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil.
| | | | | | - Adalberto Studart-Neto
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Ricardo Nitrini
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Department of Radiology and Oncology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Sotirios Bisdas
- The National Hospital of Neurology and Neurosurgery, University College London, London, UK
| |
Collapse
|
33
|
Kim BR, Kwon H, Chun MY, Park KD, Lim SM, Jeong JH, Kim GH. White Matter Integrity Is Associated With the Amount of Physical Activity in Older Adults With Super-aging. Front Aging Neurosci 2020; 12:549983. [PMID: 33192451 PMCID: PMC7525045 DOI: 10.3389/fnagi.2020.549983] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies have introduced the concept of “SuperAgers,” defined as older adults with youthful memory performance associated with the increased cortical thickness of the anterior cingulate cortex. Given that age-related structural brain changes are observed earlier in the white matter (WM) than in the cortical areas, we investigated whether WM integrity is different between the SuperAgers (SA) and typical agers (TA) and whether it is associated with superior memory performance as well as a healthy lifestyle. A total of 35 SA and 55 TA were recruited for this study. Further, 3.0-T magnetic resonance imaging (MRI), neuropsychological tests, and lifestyle factors related to cognitive function, such as physical activity and duration of sleep, were evaluated in all participants. SA was defined as individuals demonstrating the youthful performance of verbal and visual memory, as measured by the Seoul Verbal Learning Test (SVLT) and the Rey-Osterrieth Complex Figure Test (RCFT), respectively. Tract-based spatial statistics (TBSS) analysis was used to compare the diffusion values such as fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) between the SA and TA. SA exhibited better performance in memory, attention, visuospatial, and frontal executive functions than the TA did. SA also exhibited greater amounts of physical activity than the TA did. As compared to TA, SA demonstrated higher FA with lower MD, RD, and AD in the corpus callosum and higher FA and lower RD in the right superior longitudinal fasciculus (SLF), which is significantly associated with memory function. Interestingly, FA values of the body of corpus callosum were correlated with the amount of physical activity. Our findings suggest that WM integrity of the corpus callosum is associated with superior memory function and a higher level of physical activities in SA compared to TA.
Collapse
Affiliation(s)
- Bori R Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea.,Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Hunki Kwon
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Min Young Chun
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Kee Duk Park
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University Seoul Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
34
|
Hou M, de Chastelaine M, Jayakumar M, Donley BE, Rugg MD. Recollection-related hippocampal fMRI effects predict longitudinal memory change in healthy older adults. Neuropsychologia 2020; 146:107537. [PMID: 32569610 DOI: 10.1016/j.neuropsychologia.2020.107537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Prior fMRI studies have reported relationships between memory-related activity in the hippocampus and in-scanner memory performance, but whether such activity is predictive of longitudinal memory change remains unclear. Here, we administered a neuropsychological test battery to a sample of cognitively healthy older adults on three occasions, the second and third sessions occurring one month and three years after the first session. Structural and functional MRI data were acquired between the first two sessions. The fMRI data were derived from an associative recognition procedure and allowed estimation of hippocampal effects associated with both successful associative encoding and successful associative recognition (recollection). Baseline memory performance and memory change were evaluated using memory component scores derived from a principal components analysis of the neuropsychological test scores. Across participants, right hippocampal encoding effects correlated significantly with baseline memory performance after controlling for chronological age. Additionally, both left and right hippocampal associative recognition effects correlated negatively with longitudinal memory decline after controlling for age, and the relationship with the left hippocampal effect remained after also controlling for left hippocampal volume. Thus, in cognitively healthy older adults, the magnitude of hippocampal recollection effects appears to be a robust predictor of future memory change.
Collapse
Affiliation(s)
- Mingzhu Hou
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Manasi Jayakumar
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Brian E Donley
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, 75235, USA; School of Psychology, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
35
|
Sherman DS, Durbin KA, Ross DM. Meta-Analysis of Memory-Focused Training and Multidomain Interventions in Mild Cognitive Impairment. J Alzheimers Dis 2020; 76:399-421. [PMID: 32508325 DOI: 10.3233/jad-200261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Meta-analysis examining the efficacy of cognitive interventions on neuropsychological outcomes have suggested interventions that focus on memory may actually provide greater benefit against the cognitive declines associated with mild cognitive impairment (MCI). However, it remains unclear if memory-based training would be more effective at addressing the cognitive deficits associated with MCI than multidomain forms of intervention. OBJECTIVE A meta-analytic review and subgroup analysis was conducted to examine the effects of cognitive training in individuals diagnosed with MCI and to compare the efficacy of memory-based training with multidomain interventions. METHODS A total of 32 randomized controlled trials met inclusion criteria for the meta-analysis, which included 9 studies on memory-focused training and 17 studies on multidomain interventions. RESULTS We found significant, large effects for memory-focused training (Hedges' g observed = 0.947; 95% CI [-1.668, 3.562]; Z = 2.517; p = 0.012) and significant, moderate effects for multidomain interventions (Hedges' g observed = 0.420; 95% CI [-0.4491, 1.2891]; Z = 3.525; p < 0.001). A subgroup analysis found significant point estimates for memory-based forms of training and multidomain interventions, with memory-based forms of content yielding significantly greater summary effects than multidomain interventions (SMD Z = 2.162; p = 0.031, two-tailed; all outcomes). There was no difference between effect sizes when comparing outcomes limited to its respective domain. CONCLUSION Overall, these findings suggest that, while both interventions were beneficial, treatment interventions that were strictly memory-based were more effective at improving cognition in individuals diagnosed with MCI than interventions that targeted multiple cognitive domains.
Collapse
Affiliation(s)
- Dale S Sherman
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Rossier School of Education, University of Southern California, Los Angeles, CA, USA
| | - Kelly A Durbin
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - David M Ross
- Department of Physical Medicine & Rehabilitation, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
36
|
Trelle AN, Carr VA, Guerin SA, Thieu MK, Jayakumar M, Guo W, Nadiadwala A, Corso NK, Hunt MP, Litovsky CP, Tanner NJ, Deutsch GK, Bernstein JD, Harrison MB, Khazenzon AM, Jiang J, Sha SJ, Fredericks CA, Rutt BK, Mormino EC, Kerchner GA, Wagner AD. Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults. eLife 2020; 9:55335. [PMID: 32469308 PMCID: PMC7259949 DOI: 10.7554/elife.55335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within- and across-individual memory variability in older adults.
Collapse
Affiliation(s)
| | - Valerie A Carr
- Department of Psychology, Stanford University, Stanford, United States
| | - Scott A Guerin
- Department of Psychology, Stanford University, Stanford, United States
| | - Monica K Thieu
- Department of Psychology, Stanford University, Stanford, United States
| | - Manasi Jayakumar
- Department of Psychology, Stanford University, Stanford, United States
| | - Wanjia Guo
- Department of Psychology, Stanford University, Stanford, United States
| | - Ayesha Nadiadwala
- Department of Psychology, Stanford University, Stanford, United States
| | - Nicole K Corso
- Department of Psychology, Stanford University, Stanford, United States
| | - Madison P Hunt
- Department of Psychology, Stanford University, Stanford, United States
| | - Celia P Litovsky
- Department of Psychology, Stanford University, Stanford, United States
| | - Natalie J Tanner
- Department of Psychology, Stanford University, Stanford, United States
| | - Gayle K Deutsch
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | | | - Marc B Harrison
- Department of Psychology, Stanford University, Stanford, United States
| | - Anna M Khazenzon
- Department of Psychology, Stanford University, Stanford, United States
| | - Jiefeng Jiang
- Department of Psychology, Stanford University, Stanford, United States
| | - Sharon J Sha
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Carolyn A Fredericks
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Brian K Rutt
- Department of Radiology & Radiological Sciences, Stanford University, Stanford, United States
| | - Elizabeth C Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Geoffrey A Kerchner
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, United States
| | - Anthony D Wagner
- Department of Psychology, Stanford University, Stanford, United States
| |
Collapse
|
37
|
Dang C, Harrington KD, Lim YY, Ames D, Hassenstab J, Laws SM, Yassi N, Hickey M, Rainey-Smith SR, Robertson J, Rowe CC, Sohrabi HR, Salvado O, Weinborn M, Villemagne VL, Masters CL, Maruff P. Superior Memory Reduces 8-year Risk of Mild Cognitive Impairment and Dementia But Not Amyloid β-Associated Cognitive Decline in Older Adults. Arch Clin Neuropsychol 2020; 34:585-598. [PMID: 30272115 DOI: 10.1093/arclin/acy078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 09/11/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To prospectively examine 8-year risk of clinical disease progression to mild cognitive impairment (MCI)/dementia in older adults ≥60 with superior episodic memory (SuperAgers) compared to those cognitively normal for their age (CNFA). Additionally, to determine the extent to which SuperAgers were resilient to the negative effects of elevated amyloid-beta (Aβ+) on cognition. METHOD Participants were classified as SuperAgers based on episodic memory performance consistent with younger adults aged 30-44 and no impairment on non-memory tests (n = 179), and were matched with CNFA on age, sex, education, and follow-up time (n = 179). Subdistribution hazard models examined risk of clinical progression to MCI/dementia. Linear mixed models assessed the effect of Aβ on cognition over time. RESULTS Prevalence of Aβ+ and APOE ε4 was equivalent between SuperAgers and CNFA. SuperAgers had 69%-73% reduced risk of clinical progression to MCI/dementia compared to CNFA (HR: 0.27-0.31, 95% CI: 0.11-0.73, p < .001). Aβ+ was associated with cognitive decline in verbal memory and executive function, regardless of SuperAger/CNFA classification. In the absence of Aβ+, equivalent age-related changes in cognition were observed between SuperAgers and CNFA. CONCLUSIONS SuperAgers displayed resilience against clinical progression to MCI/dementia compared to CNFA despite equivalent risk for Alzheimer's disease (AD); however, SuperAgers had no greater protection from Aβ+ than CNFA. The deleterious effects of Aβ on cognition persist regardless of baseline cognitive ability. Thus, superior cognitive performance does not reflect resistance against the neuropathological processes associated with AD, and the observed resilience for SuperAgers may instead reflect neuropsychological criteria for cognitive impairment.
Collapse
Affiliation(s)
- Christa Dang
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Karra D Harrington
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.,Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,National Ageing Research Institute, Parkville, Victoria, Australia
| | - Jason Hassenstab
- Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - Simon M Laws
- Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia.,Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Nawaf Yassi
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Joanne Robertson
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia.,School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L Villemagne
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.,CogState Ltd., Melbourne, Victoria, Australia
| | | |
Collapse
|
38
|
Dang L, Larson SP, Gluck MA, Petok JR. Age-Related Decline in Learning Deterministic Judgment-Based Sequences. J Gerontol B Psychol Sci Soc Sci 2020; 75:961-969. [PMID: 30184192 DOI: 10.1093/geronb/gby100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Because sequence learning is integral to cognitive functions across the life span, the present study examined the effect of healthy aging on deterministic judgment-based sequence learning. METHODS College-aged, younger-old (YO), and older-old (OO) adults completed a judgment-based sequence learning task which required them to learn a full sequence by chaining together single stimulus-response associations in a step-by-step fashion. RESULTS Results showed that younger adults outperformed YO and OO adults; older adults were less able to acquire the full sequence and committed significantly more errors during learning. Additionally, higher sequence learning errors were associated with advancing age among older adults, even when controlling for other factors known to contribute to sequence learning abilities. Such impairments were selective to learning sequential information, because adults of all ages performed equivalently on postlearning probe trials, as well as on learning simple stimulus-response associations. DISCUSSION This pattern of age deficits during deterministic sequence learning challenges past reports of age preservation. Though the neural processes underlying learning cannot be determined here, our patterns of age deficits and preservation may reflect different brain regions that are involved in the task phases, adding behavioral evidence to the emerging hypothesis of frontostriatal declines despite spared hippocampal function with age.
Collapse
Affiliation(s)
- Layla Dang
- Psychology Department, Saint Olaf College, Northfield, Minnesota
| | - Sylvia P Larson
- Psychology Department, Saint Olaf College, Northfield, Minnesota
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey
| | - Jessica R Petok
- Psychology Department, Saint Olaf College, Northfield, Minnesota.,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey
| |
Collapse
|
39
|
Wang X, Ren P, Baran TM, Raizada RDS, Mapstone M, Lin F. Longitudinal Functional Brain Mapping in Supernormals. Cereb Cortex 2020; 29:242-252. [PMID: 29186360 DOI: 10.1093/cercor/bhx322] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Prevention of age-related cognitive decline is an increasingly important topic. Recently, increased attention is being directed at understanding biological models of successful cognitive aging. Here, we examined resting-state brain regional low-frequency oscillations using functional magnetic resonance imaging in 19 older adults with excellent cognitive abilities (Supernormals), 28 older adults with normative cognition, 57 older adults with amnestic mild cognitive impairment, and 26 with Alzheimer's disease. We identified a "Supernormal map", a set of regions whose oscillations were resistant to the aging-associated neurodegenerative process, including the right fusiform gyrus, right middle frontal gyrus, right anterior cingulate cortex, left middle temporal gyrus, left precentral gyrus, and left orbitofrontal cortex. The map was unique to the Supernormals, differentiated this group from cognitive average-ager comparisons, and predicted a 1-year change in global cognition (indexed by the Montreal Cognitive Assessment scores, adjusted R2 = 0.68). The map was also correlated to Alzheimer's pathophysiological features (beta-amyloid/pTau ratio, adjusted R2 = 0.66) in participants with and without cognitive impairment. These findings in phenotypically successful cognitive agers suggest a divergent pattern of brain regions that may either reflect inherent neural integrity that contributes to Supernormals' cognitive success, or alternatively indicate adaptive reorganization to the demands of aging.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Ping Ren
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA
| | - Timothy M Baran
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.,Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Rajeev D S Raizada
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Mark Mapstone
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Feng Lin
- School of Nursing, University of Rochester Medical Center, Rochester, NY, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
40
|
Febo M, Rani A, Yegla B, Barter J, Kumar A, Wolff CA, Esser K, Foster TC. Longitudinal Characterization and Biomarkers of Age and Sex Differences in the Decline of Spatial Memory. Front Aging Neurosci 2020; 12:34. [PMID: 32153384 PMCID: PMC7044155 DOI: 10.3389/fnagi.2020.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
The current longitudinal study examined factors (sex, physical function, response to novelty, ability to adapt to a shift in light/dark cycle, brain connectivity), which might predict the emergence of impaired memory during aging. Male and female Fisher 344 rats were tested at 6, 12, and 18 months of age. Impaired spatial memory developed in middle-age (12 months), particularly in males, and the propensity for impairment increased with advanced age. A reduced response to novelty was observed over the course of aging, which is inconsistent with cross-sectional studies. This divergence likely resulted from differences in the history of environmental enrichment/impoverishment for cross-sectional and longitudinal studies. Animals that exhibited lower level exploration of the inner region on the open field test exhibited better memory at 12 months. Furthermore, males that exhibited a longer latency to enter a novel environment at 6 months, exhibited better memory at 12 months. For females, memory at 12 months was correlated with the ability to behaviorally adapt to a shift in light/dark cycle. Functional magnetic resonance imaging of the brain, conducted at 12 months, indicated that the decline in memory was associated with altered functional connectivity within different memory systems, most notably between the hippocampus and multiple regions such as the retrosplenial cortex, thalamus, striatum, and amygdala. Overall, some factors, specifically response to novelty at an early age and the capacity to adapt to shifts in light cycle, predicted spatial memory in middle-age, and spatial memory is associated with corresponding changes in brain connectivity. We discuss similarities and differences related to previous longitudinal and cross-sectional studies, as well as the role of sex differences in providing a theoretical framework to guide future longitudinal research on the trajectory of cognitive decline. In addition to demonstrating the power of longitudinal studies, these data highlight the importance of middle-age for identifying potential predictive indicators of sexual dimorphism in the trajectory in brain and cognitive aging.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Karyn Esser
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
Walhovd KB, Fjell AM, Westerhausen R, Nyberg L, Ebmeier KP, Lindenberger U, Bartrés-Faz D, Baaré WF, Siebner HR, Henson R, Drevon CA, Strømstad Knudsen GP, Ljøsne IB, Penninx BW, Ghisletta P, Rogeberg O, Tyler L, Bertram L. Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts (“Lifebrain”). Eur Psychiatry 2020; 50:47-56. [DOI: 10.1016/j.eurpsy.2017.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
AbstractThe main objective of “Lifebrain” is to identify the determinants of brain, cognitive and mental (BCM) health at different stages of life. By integrating, harmonising and enriching major European neuroimaging studies across the life span, we will merge fine-grained BCM health measures of more than 5000 individuals. Longitudinal brain imaging, genetic and health data are available for a major part, as well as cognitive and mental health measures for the broader cohorts, exceeding 27,000 examinations in total. By linking these data to other databases and biobanks, including birth registries, national and regional archives, and by enriching them with a new online data collection and novel measures, we will address the risk factors and protective factors of BCM health. We will identify pathways through which risk and protective factors work and their moderators. Exploiting existing European infrastructures and initiatives, we hope to make major conceptual, methodological and analytical contributions towards large integrative cohorts and their efficient exploitation. We will thus provide novel information on BCM health maintenance, as well as the onset and course of BCM disorders. This will lay a foundation for earlier diagnosis of brain disorders, aberrant development and decline of BCM health, and translate into future preventive and therapeutic strategies. Aiming to improve clinical practice and public health we will work with stakeholders and health authorities, and thus provide the evidence base for prevention and intervention.
Collapse
|
42
|
Johansson J, Salami A, Lundquist A, Wåhlin A, Andersson M, Nyberg L. Longitudinal evidence that reduced hemispheric encoding/retrieval asymmetry predicts episodic-memory impairment in aging. Neuropsychologia 2019; 137:107329. [PMID: 31887310 DOI: 10.1016/j.neuropsychologia.2019.107329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 01/31/2023]
Abstract
The HERA (Hemispheric Encoding/Retrieval Asymmetry) model captures hemispheric lateralization of prefrontal cortex (PFC) brain activity during memory encoding and retrieval. Reduced HERA has been observed in cross-sectional aging studies, but there is no longitudinal evidence, to our knowledge, on age-related changes in HERA and whether maintained or reduced HERA relates to well-preserved memory functioning. In the present study we set out to explore HERA in a longitudinal neuroimaging sample from the Betula study [3 Waves over 10 years; Wave-1: n = 363, W2: n = 227, W3: n = 101]. We used fMRI data from a face-name paired-associates task to derive a HERA index. In support of the HERA model, the mean HERA index was positive across the three imaging waves. The longitudinal age-HERA relationship was highly significant (p < 10-11), with a HERA decline occurring after age 60. The age-related HERA decline was associated with episodic memory decline (p < 0.05). Taken together, the findings provide large-scale support for the HERA model, and suggest that reduced HERA in the PFC reflects pathological memory aging possibly related to impaired ability to bias mnemonic processing according to the appropriate encoding or retrieval state.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden.
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Gävlegatan 16, S11330, Stockholm, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Statistics, USBE, Umeå University, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Umeå University, S90187, Umeå, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, S90187, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden; Department of Integrative Medical Biology, Umeå University, S90187, Umeå, Sweden
| |
Collapse
|
43
|
Zeng Q, Luo X, Li K, Wang S, Zhang R, Hong H, Huang P, Jiaerken Y, Xu X, Xu J, Wang C, Zhou J, Zhang M. Distinct Spontaneous Brain Activity Patterns in Different Biologically-Defined Alzheimer's Disease Cognitive Stage: A Preliminary Study. Front Aging Neurosci 2019; 11:350. [PMID: 32009939 PMCID: PMC6980867 DOI: 10.3389/fnagi.2019.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Background: The National Institute on Aging-Alzheimer's Association (NIA-AA) has proposed a biological definition of Alzheimer's disease (AD): individuals with both abnormal amyloid and tau biomarkers (A+T+) would be defined as AD. It remains unclear why different cognitive status is present in subjects with biological AD. Resting-state functional magnetic resonance imaging (rsfMRI) has provided an opportunity to reveal the brain activity patterns in a biologically-defined AD cohort. Accordingly, we aimed to investigate distinct brain activity patterns in subjects with existed AD pathology but in the different cognitive stages. Method: We selected individuals with AD pathology (A+T+) and healthy controls (HC, A-T-) based on the cerebrospinal fluid (CSF) biomarkers. According to the cognitive stage, we divided the A+T+ cohort into three groups: (1) preclinical AD; (2) prodromal AD; and (3) AD with dementia (d-AD). We compared spontaneous brain activity measured by a fractional amplitude of low-frequency fluctuation (fALFF) approach among four groups. Results: The analysis of covariance (ANCOVA) results showed significant differences in fALFF in the posterior cingulate cortex/precuneus (PCC/PCu). Further, compared to HC, we found increased fALFF values in the right inferior frontal gyrus (IFG) in the preclinical AD stage, whereas prodromal AD patients showed reduced fALFF in the bilateral precuneus, right middle frontal gyrus (MFG), right precentral gyrus, and postcentral gyrus. Within the d-AD group, both hyperactivity (right fusiform gyrus, right parahippocampal gyrus (PHG)/hippocampus, and inferior temporal gyrus) and hypoactivity (bilateral precuneus, left posterior cingulate cortex, left cuneus and superior occipital gyrus) were detected. Conclusion: We found the distinct brain activity patterns in different cognitive stages among the subjects defined as AD biologically. Our findings may be helpful in understanding mechanisms leading to cognitive changes in the AD pathophysiological process.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Dang C, Yassi N, Harrington KD, Xia Y, Lim YY, Ames D, Laws SM, Hickey M, Rainey-Smith S, Sohrabi HR, Doecke JD, Fripp J, Salvado O, Snyder PJ, Weinborn M, Villemagne VL, Rowe CC, Masters CL, Maruff P. Rates of age- and amyloid β-associated cortical atrophy in older adults with superior memory performance. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:566-575. [PMID: 31909172 PMCID: PMC6939054 DOI: 10.1016/j.dadm.2019.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Superior cognitive performance in older adults may reflect underlying resistance to age-associated neurodegeneration. While elevated amyloid β (Aβ) deposition (Aβ+) has been associated with increased cortical atrophy, it remains unknown whether "SuperAgers" may be protected from Aβ-associated neurodegeneration. METHODS Neuropsychologically defined SuperAgers (n = 172) and cognitively normal for age (n = 172) older adults from the Australian Imaging, Biomarkers and Lifestyle study were case matched. Rates of cortical atrophy over 8 years were examined by SuperAger classification and Aβ status. RESULTS Of the case-matched SuperAgers and cognitively normal for age older adults, 40.7% and 40.1%, respectively, were Aβ+. Rates of age- and Aβ-associated atrophy did not differ between the groups on any measure. Aβ- individuals displayed the slowest rates of atrophy. DISCUSSION Maintenance of superior memory in late life does not reflect resistance to age- or Aβ-associated atrophy. However, those individuals who reached old age without cognitive impairment nor elevated Aβ deposition (i.e. Aβ-) displayed reduced rates of cortical atrophy.
Collapse
Affiliation(s)
- Christa Dang
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nawaf Yassi
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Medicine and Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karra D. Harrington
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Ying Xia
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Simon M. Laws
- Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - James D. Doecke
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity, the Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Peter J. Snyder
- George & Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, USA
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Australian Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia, Australia
- School of Psychological Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Victor L. Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- CogState Ltd., Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Haberman RP, Monasterio A, Branch A, Gallagher M. Aged rats with intact memory show distinctive recruitment in cortical regions relative to young adults in a cue mismatch task. Behav Neurosci 2019; 133:537-544. [PMID: 31246080 DOI: 10.1037/bne0000332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to elderly humans, aged Long-Evans rats exhibit individual differences in performance on tasks that critically depend on the medial temporal lobe memory system. Although reduced memory performance is common, close to half of aged rats in this outbred rodent population perform within the range of young subjects, exhibiting a stable behavioral phenotype that may signal a resilience to memory decline. Increasing evidence from research on aging in the Long-Evans study population supports the existence of adaptive neural change rather than avoidance of detrimental effects of aging on the brain, indicating a malleability of brain function over the life span that may preserve optimal function. Augmenting prior work that centered on hippocampal function, the current study extends investigation to cortical regions functionally interconnected with the hippocampal formation, including medial temporal lobe cortices and posterior components of the default mode network. In response to an environmental manipulation that creates a mismatch in the expected cue orientation, aged rats with preserved memory show greater activation across an extended network of cortical regions as measured by immediate early gene expression. In contrast, young subjects, behaviorally similar to the aged rats in this study, show a more limited cortical response. This distinctive cortical recruitment in aged unimpaired rats, set against a background of comparable activation across hippocampal subregions, may represent adaptive cortical recruitment consistent with evidence in human studies of neurocognitive aging. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
46
|
Pudas S, Josefsson M, Rieckmann A, Nyberg L. Longitudinal Evidence for Increased Functional Response in Frontal Cortex for Older Adults with Hippocampal Atrophy and Memory Decline. Cereb Cortex 2019; 28:936-948. [PMID: 28119343 DOI: 10.1093/cercor/bhw418] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The functional organization of the frontal cortex is dynamic. Age-related increases in frontal functional responses have been shown during various cognitive tasks, but the cross-sectional nature of most past studies makes it unclear whether these increases reflect reorganization or stable individual differences. Here, we followed 130 older individuals' cognitive trajectories over 20-25 years with repeated neuropsychological assessments every 5th year, and identified individuals with stable or declining episodic memory. Both groups displayed significant gray matter atrophy over 2 successive magnetic resonance imaging sessions 4 years apart, but the decline group also had a smaller volume of the right hippocampus. Only individuals with declining memory demonstrated increased prefrontal functional responses during memory encoding and retrieval over the 4-year interval. Regions with increased functional recruitment were located outside, or on the borders of core task-related networks, indicating an expansion of these over time. These longitudinal findings offer novel insight into the mechanisms behind age-associated memory loss, and are consistent with a theoretical model in which hippocampus atrophy, past a critical threshold, induces episodic-memory decline and altered prefrontal functional organization.
Collapse
Affiliation(s)
- Sara Pudas
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.,Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research at Umeå University (CEDAR), Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Rieckmann
- Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, SE-901 87 Umeå, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.,Umeå center for Functional Brain Imaging, Umeå University, SE-901 87 Umeå, Sweden.,Department of Radiation Sciences, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
47
|
Arenaza-Urquijo EM, Przybelski SA, Lesnick TL, Graff-Radford J, Machulda MM, Knopman DS, Schwarz CG, Lowe VJ, Mielke MM, Petersen RC, Jack CR, Vemuri P. The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies. Brain 2019; 142:1134-1147. [PMID: 30851100 PMCID: PMC6439329 DOI: 10.1093/brain/awz037] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 11/14/2022] Open
Abstract
Research into cognitive resilience imaging markers may help determine the clinical significance of Alzheimer's disease pathology among older adults over 80 years (80+). In this study, we aimed to identify a fluorodeoxyglucose (FDG)-PET based imaging marker of cognitive resilience. We identified 457 participants ≥ 80 years old (357 cognitively unimpaired, 118 cognitively impaired at baseline, mean age of 83.5 ± 3.2 years) from the population-based Mayo Clinic Study of Aging (MCSA) with baseline MRI, Pittsburgh compound B-PET and FDG-PET scans and neuropsychological evaluation. We identified a subset of 'resilient' participants (cognitively stable 80+, n = 192) who maintained normal cognition for an average of 5 years (2-10 years). Global PIB ratio, FDG-PET ratio and cortical thickness from Alzheimer's disease signature regions were used as Alzheimer's disease imaging biomarker outcomes and global cognitive z-score was used as a cognitive outcome. First, using voxel-wise multiple regression analysis, we identified the metabolic areas underlying cognitive resilience in cognitively stable 80+ participants, which we call the 'resilience signature'. Second, using multivariate linear regression models, we evaluated the association of risk and protective factors with the resilience signature and its added value for predicting global cognition beyond established Alzheimer's disease imaging biomarkers in the full 80+ sample. Third, we evaluated the utility of the resilience signature in conjunction with amyloidosis in predicting longitudinal cognition using linear mixed effect models. Lastly, we assessed the utility of the resilience signature in an independent cohort using ADNI (n = 358, baseline mean age of 80 ± 3.8). Our main findings were: (i) FDG-PET uptake in the bilateral anterior cingulate cortex and anterior temporal pole was associated with baseline global cognition in cognitively stable 80+ (the resilience signature); (ii) established Alzheimer's disease imaging biomarkers did not predict baseline global cognition in this subset of participants; (iii) in the full MCSA 80+ and ADNI cohorts, amyloid burden and FDG-PET in the resilience signature were the stronger predictors of baseline global cognition; (iv) sex and systemic vascular health predicted FDG-PET in the resilience signature, suggesting vascular health maintenance as a potential pathway to preserve the metabolism of these areas; and (v) the resilience signature provided significant information about global longitudinal cognitive change even when considering amyloid status in both the MCSA and ADNI cohorts. The FDG-PET resilience signature may be able to provide important information in conjunction with other Alzheimer's disease biomarkers for the determination of clinical prognosis. It may also facilitate identification of disease targeting modifiable risk factors such as vascular health maintenance.
Collapse
Affiliation(s)
| | | | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Health Science Research, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
48
|
Lövheim H, Norman T, Weidung B, Olsson J, Josefsson M, Adolfsson R, Nyberg L, Elgh F. Herpes Simplex Virus, APOE ɛ4, and Cognitive Decline in Old Age: Results from the Betula Cohort Study. J Alzheimers Dis 2019; 67:211-220. [DOI: 10.3233/jad-171162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Tove Norman
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Bodil Weidung
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden
- Department of Public Health and Caring Sciences, Geriatric Medicine, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Maria Josefsson
- Centre for Demographic and Ageing Research, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Abstract
For more than 50 years, psychologists, gerontologists, and, more recently, neuroscientists have considered the possibility of successful aging. How to define successful aging remains debated, but well-preserved age-sensitive cognitive functions, like episodic memory, is an often-suggested criterion. Evidence for successful memory aging comes from cross-sectional and longitudinal studies showing that some older individuals display high and stable levels of performance. Successful memory aging may be accomplished via multiple paths. One path is through brain maintenance, or relative lack of age-related brain pathology. Through another path, successful memory aging can be accomplished despite brain pathology by means of efficient compensatory and strategic processes. Genetic, epigenetic, and lifestyle factors influence memory aging via both paths. Some of these factors can be promoted throughout the life course, which, at the individual as well as the societal level, can positively impact successful memory aging.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
- Umeå center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
- Umeå center for Functional Brain Imaging, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
50
|
Touroutoglou A, Dickerson BC. Cingulate-centered large-scale networks: Normal functions, aging, and neurodegenerative disease. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:113-127. [PMID: 31731908 DOI: 10.1016/b978-0-444-64196-0.00008-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review evidence from structural and functional neuroimaging in humans to consider the role of the cingulate cortex subregions (i.e., subgenual anterior cingulate cortex, pregenual anterior cingulate cortex, anterior midcingulate cortex, and dorsal posterior cingulate cortex) as major hubs anchoring multiple large-scale brain networks. We begin with a review of evidence from intrinsic functional connectivity and diffusion tensor imaging studies to show how connections within and between cingulate-centered networks contribute to processing and integrating signals related to autonomic, affective, executive, and memory functions. We then consider how variability in cingulate-centered networks could contribute to a range of aging outcomes, including typical aging and unusually successful aging (dubbed "superaging"), as well as early neurodegenerative dementias, including frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| |
Collapse
|