1
|
Wang BA, Drammis S, Hummos A, Halassa MM, Pleger B. Modulation of prefrontal couplings by prior belief-related responses in ventromedial prefrontal cortex. Front Neurosci 2023; 17:1278096. [PMID: 38033544 PMCID: PMC10684683 DOI: 10.3389/fnins.2023.1278096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Humans and other animals can maintain constant payoffs in an uncertain environment by steadily re-evaluating and flexibly adjusting current strategy, which largely depends on the interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the level of uncertainty (i.e., prior belief about external states), it remains unclear how the brain recruits the PFC-MD network to re-evaluate decision strategy based on the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI data to test how prior belief-dependent activity in vmPFC gates the information flow in the PFC-MD network when individuals switch their decision strategy. We show that the prior belief-related responses in vmPFC had a modulatory influence on the connections from dorsolateral PFC (dlPFC) to both, lateral orbitofrontal (lOFC) and MD. Bayesian parameter averaging revealed that only the connection from the dlPFC to lOFC surpassed the significant threshold, which indicates that the weaker the prior belief, the less was the inhibitory influence of the vmPFC on the strength of effective connections from dlPFC to lOFC. These findings suggest that the vmPFC acts as a gatekeeper for the recruitment of processing resources to re-evaluate the decision strategy in situations of high uncertainty.
Collapse
Affiliation(s)
- Bin A. Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Sabrina Drammis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ali Hummos
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
3
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
4
|
Hummos A, Wang BA, Drammis S, Halassa MM, Pleger B. Thalamic regulation of frontal interactions in human cognitive flexibility. PLoS Comput Biol 2022; 18:e1010500. [PMID: 36094955 PMCID: PMC9499289 DOI: 10.1371/journal.pcbi.1010500] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/22/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Interactions across frontal cortex are critical for cognition. Animal studies suggest a role for mediodorsal thalamus (MD) in these interactions, but the computations performed and direct relevance to human decision making are unclear. Here, inspired by animal work, we extended a neural model of an executive frontal-MD network and trained it on a human decision-making task for which neuroimaging data were collected. Using a biologically-plausible learning rule, we found that the model MD thalamus compressed its cortical inputs (dorsolateral prefrontal cortex, dlPFC) underlying stimulus-response representations. Through direct feedback to dlPFC, this thalamic operation efficiently partitioned cortical activity patterns and enhanced task switching across different contingencies. To account for interactions with other frontal regions, we expanded the model to compute higher-order strategy signals outside dlPFC, and found that the MD offered a more efficient route for such signals to switch dlPFC activity patterns. Human fMRI data provided evidence that the MD engaged in feedback to dlPFC, and had a role in routing orbitofrontal cortex inputs when subjects switched behavioral strategy. Collectively, our findings contribute to the emerging evidence for thalamic regulation of frontal interactions in the human brain.
Collapse
Affiliation(s)
- Ali Hummos
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bin A. Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Bochum, Germany
| | - Sabrina Drammis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael M. Halassa
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Wang BA, Pleger B. Confidence in Decision-Making during Probabilistic Tactile Learning Related to Distinct Thalamo–Prefrontal Pathways. Cereb Cortex 2020; 30:4677-4688. [DOI: 10.1093/cercor/bhaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/22/2023] Open
Abstract
Abstract
The flexibility in adjusting the decision strategy from trial to trial is a prerequisite for learning in a probabilistic environment. Corresponding neural underpinnings remain largely unexplored. In the present study, 28 male humans were engaged in an associative learning task, in which they had to learn the changing probabilistic strengths of tactile sample stimuli. Combining functional magnetic resonance imaging with computational modeling, we show that an unchanged decision strategy over successively presented trials related to weakened functional connectivity between ventralmedial prefrontal cortex (vmPFC) and left secondary somatosensory cortex. The weaker the connection strength, the faster participants indicated their choice. If the decision strategy remained unchanged, participant’s decision confidence (i.e., prior belief) was related to functional connectivity between vmPFC and right pulvinar. While adjusting the decision strategy, we instead found confidence-related connections between left orbitofrontal cortex and left thalamic mediodorsal nucleus. The stronger the participant’s prior belief, the weaker the connection strengths. Together, these findings suggest that distinct thalamo–prefrontal pathways encode the confidence in keeping or changing the decision strategy during probabilistic learning. Low confidence in the decision strategy demands more thalamo–prefrontal processing resources, which is in-line with the theoretical accounts of the free-energy principle.
Collapse
Affiliation(s)
- Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, 44780 Bochum, Germany
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, 44780 Bochum, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|